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ABSTRACT

Objective: As the US Food and Drug Administration (FDA) receives over a million adverse event reports associ-

ated with medication use every year, a system is needed to aid FDA safety evaluators in identifying reports

most likely to demonstrate causal relationships to the suspect medications. We combined text mining with ma-

chine learning to construct and evaluate such a system to identify medication-related adverse event reports.

Methods: FDA safety evaluators assessed 326 reports for medication-related causality. We engineered features

from these reports and constructed random forest, L1 regularized logistic regression, and support vector ma-

chine models. We evaluated model accuracy and further assessed utility by generating report rankings that rep-

resented a prioritized report review process.

Results: Our random forest model showed the best performance in report ranking and accuracy, with an area

under the receiver operating characteristic curve of 0.66. The generated report ordering assigns reports with a

higher probability of medication-related causality a higher rank and is significantly correlated to a perfect report

ordering, with a Kendall’s tau of 0.24 (P¼ .002).

Conclusion: Our models produced prioritized report orderings that enable FDA safety evaluators to focus on re-

ports that are more likely to contain valuable medication-related adverse event information. Applying our mod-

els to all FDA adverse event reports has the potential to streamline the manual review process and greatly

reduce reviewer workload.

Key words: drug-related side effects and adverse reactions, supervised machine learning

BACKGROUND AND SIGNIFICANCE

The US Food and Drug Administration (FDA) receives more than

4000 medication safety reports every day, and the number of reports

received each year has been increasing exponentially over the last

decade. These reports are stored in a database known as the FDA

Adverse Event Reporting System (FAERS), which has collected over

11 million reports since its inception in 1969.1 In the United States,

reporting these adverse events, medication errors, and product qual-

ity issues by health care professionals and consumers via the Med-

Watch program is voluntary, but it is mandatory for drug

manufacturers.2 The FDA uses these reports to detect safety issues

that may not have been identified during pre-market clinical trials

used as the basis for medication approval. Among the reasons for

not detecting safety issues during pre-market evaluation are that the
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adverse event may be extremely rare or may be occurring in a popu-

lation of individuals who were not previously studied.3,4

While the volume of reports is significant and increasing yearly,

many of the reports do not provide sufficient information to deter-

mine whether the suspect drug caused the reported adverse event, or

the information provided does not reasonably suggest that the ad-

verse event was caused by the suspect medication. Therefore, devel-

oping a tool that could assist FDA safety evaluators by identifying

reports that are most likely to be useful would be highly valuable

and could help to ensure that safety issues do not go undetected.

There has been considerable interest in the use of natural language

processing (NLP) and machine learning to enable workers to focus on

subject matter that is most likely to be useful.5,6 Free-text narratives

often contain details that allow causal inference, so extracting these

details is expected to be an important aspect of this work. In the cur-

rent project, we explore the possibility of using NLP and machine

learning to assess the likelihood of drug causality for safety reports

submitted to the FDA. In this first phase, we demonstrate the feasibil-

ity of and potential benefits to the adverse event review process in a

subset of adjudicated FAERS reports. With success, FDA safety evalu-

ators would be able to apply our system to the entire corpus of over 11

million reports, enabling them to focus their review efforts on reports

that are most likely to indicate the emergence of a new safety concern.

METHODS

Data and gold standard
A “gold standard” for drug causality assessment was created by dei-

dentifying and redacting 326 case reports from FAERS. Safety reports

were selected from FAERS based on convenience sampling of cases re-

ceived by the FDA between November 1997 and March 2015. Specifi-

cally, the redacted fields include the patient identification number; date

of birth; reporter name, organization, and location; and dates in the

narrative. Only cases received after November 1997 were eligible, as

only those reports contain an electronically retrievable and machine

readable narrative section. The Stanford University Institutional

Review Board approved this study (IRB-34866). Access to the data

used in this study for research purposes can be requested through the

FDA Technology Transfer Program at techtransfer@fda.hhs.gov.

Every case report was assessed for causality by 3 FDA safety eval-

uators using a modified version of the World Health Organization–

Uppsala Monitoring Centre (WHO-UMC) criteria for drug causality

assessment (Table 1). All evaluators participated in training sessions

to ensure consistent scoring. Evaluators were instructed to consider

the totality of the case report in their assessment (ie, both structured

and unstructured data). If 2 or more evaluators agreed on the assess-

ment, then the assessment of the majority was used. If all 3 evaluators

disagreed, a final adjudication was made by a fourth evaluator. An as-

sessment of causality was based on only the suspect medication(s) and

adverse reaction(s) identified by the reporter of the event. Other prod-

ucts or reactions included in the report, but not identified as “sus-

pect” by the reporter, were not assessed. As multiple medications and

adverse reactions could appear in a single report, the case assessment

was based on the medication-event combination that gave the highest

likelihood of causality assessment based on the WHO-UMC scale.

After adjudication, case reports were randomly divided by the FDA

investigators into a training and a test set, consisting of 60% and 40%

of the data, respectively. We chose these proportions in order to cap-

ture a more comprehensive and representative set of the causality cate-

gories in the test set for evaluation. We then formulated our problem

as a binary classification task by aggregating the causality categories

into 2 groups: (1) Certain, Probable, Possible and (2) Unlikely,

Unassessable. All features and models were built using the training

data and assessed using the test data. All analyses were performed using

R 3.3.0 (R Development Core Team, Vienna, Austria).

Feature engineering
Adverse event reports consist of structured data and an unstructured

narrative. The structured data consists of fields such as age, adverse

event outcomes (death, hospitalization, other), timeline of report en-

try by the FDA, adverse event reporters and their qualifications,

terms mapped to the Medical Dictionary for Regulatory Activities

(MedDRAVR ), and drug suspect products. The unstructured narrative

is a free-text entry that varies in length from one word or sentence

Table 1. Modified WHO-UMC causality categories

Causality Term Assessment Criteria

Certain Event or laboratory test abnormality, with plausible time relationship to drug intake

Cannot be explained by disease or other drugs

Response to withdrawal plausible (pharmacologically, pathologically)

Event definitive pharmacologically or phenomenologically (ie, an objective and specific medical disorder or a recognized

pharmacologic phenomenon)

Rechallenge satisfactory, if necessary

Probable/likely Event or laboratory test abnormality, with reasonable time relationship to drug intake

Unlikely to be attributed to disease or other drugs

Response to withdrawal clinically reasonable

Rechallenge not required

Possible Event or laboratory test abnormality, with reasonable time relationship to drug intake

Could also be explained by disease or other drugs

Information on drug withdrawal may be lacking or unclear

Unlikely Event or laboratory test abnormality, with a time to drug intake that makes a relationship improbable (but not impossible)

Disease or other drugs provide plausible explanation

Unassessablea Cannot be judged because information is insufficient or contradictory

Medication Errora Report suggesting accidental or intentional inappropriate use

Not necessarily associated with an adverse event

Product Quality Issuea Report suggesting a possible product quality issue

Not necessarily associated with an adverse event

aCategory modified from the WHO-UMC Causality Assessment Scale. The unmodified version of this scale is located at http://who-umc.org/Graphics/26649.pdf.7
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to multiple paragraphs. These narratives typically detail the chrono-

logical course of the adverse event, occasionally including medica-

tions and laboratory results. Protected health information was

redacted from both the structured data and unstructured narratives

prior to review by the Stanford investigators.

Structured data

We processed the structured data by re-encoding categorical vari-

ables, generating new features, and summarizing existing data. We

expanded each categorical variable by transforming the possible val-

ues into multiple binary features. Age was binned by decade, and

medications were binned by the first level of the Anatomical Thera-

peutic Chemical (ATC) Classification System.8 For the report types,

direct reports are sent to the FDA by the general public, whereas 15-

day (expedited) and nonexpedited reports are sent by pharmaceuti-

cal companies. The expedited 15-day time frame is for adverse

events that are serious and unexpected. We calculated the number of

days to complete the report as the data entry completion date minus

the initial FDA received date. The data entry completion date is

updated whenever a follow-up report is added to the case report.

The total number of outcomes and reporters was calculated and in-

cluded as additional features. MedDRA terms were represented by

the number of preferred terms (PTs), high-level terms, high-level

group terms, and system organ classes associated with each report.9

Unstructured narrative

The unstructured narratives were tokenized, lemmatized, and part-

of-speech tagged using Stanford CoreNLP.10 Tokenization refers to

splitting the narrative into individual words, lemmatization refers to

converting each word into its base form, and part-of-speech tagging

refers to assigning a part of speech (eg, noun, verb) to each word.

We incorporated the number of sentences and average number of

words, nouns, verbs, adjectives, and adverbs per sentence as nonse-

mantic features. We additionally counted the number of redacted

terms in each narrative, which typically corresponded to dates de-

tailing the time course of the adverse event.

Expert opinion derived features

From the structured data, we compiled all MedDRA preferred terms

that were present in at least 5 reports. We surveyed 5 adjudicators,

who assessed each of these preferred terms and indicated if the pres-

ence of the term in a report would tend to increase the likelihood of a

medication-related adverse event. Any preferred term that had at least

3 affirmative votes was included as an additional binary variable. We

refer to this binary feature as the “presence of curated PTs.” The in-

cluded terms were “drug interaction,” “acute kidney injury,” “sei-

zure,” “drug hypersensitivity,” “drug ineffective,” “rhabdomyolysis,”

“product quality issue,” and “toxicity to various agents.”

From the unstructured narratives, 5 adjudicators compiled a list

of 10 words and phrases that they believed were more likely to be

associated with a medication-related adverse event. These words

and phrases were “toxicity,” “induced,” “rechallenge,” “probable,”

“no alternative etiology,” “reaction,” “adverse reaction,” and “drug

level.” Alternative spellings of these chosen phrases were included as

well. The presence of any of these words and phrases in the narrative

was included as a binary feature, titled “presence of curated terms.”

Model construction and evaluation
We constructed models to differentiate reports with an assessment

of Certain, Probable, or Possible from reports with an assessment of

Unlikely or Unassessable. We built models using L1 regularized lo-

gistic regression, random forest, and support vector machines

(SVMs) using the glmnet,11 randomForest,12 and caret13 packages

in R, respectively. Model parameters were chosen by 10-fold cross-

validation14,15 on the training set; no reports from the test set were

used in model parameter selection or model construction. The pen-

alty parameter lambda for the L1 regularized logistic regression

model was chosen as the largest value of lambda that was within 1

standard error of the minimum error.15 The values of lambda

searched ranged from 0.0001 to 0.15, as determined by the glmnet

package. A grid search was used to determine the optimal values of

C and gamma for our SVM model. We searched over 10 values for

each parameter, with C ranging from 0.01 to 5 and gamma ranging

from 0.001 to 2. Our model predictions were evaluated by calculat-

ing the sensitivity, positive predictive value, accuracy, and area un-

der the receiver operating characteristic curve (AUROC). To assess

the relative importance of our features, we extracted features re-

tained in the L1 regularized logistic regression model and used the

mean decrease in the Gini index in the random forest model.

We further evaluated the utility of our models by using their pre-

dictions to create ranked lists of reports corresponding to the order

in which they would be reviewed by manual adjudication. Specifi-

cally, for all 3 classifiers, we ordered the reports by their probability

of having an assessment from Certain to Possible, where a greater

probability would correspond to a report being adjudicated sooner

and having an earlier ranking. For comparison, we made a ranked

list of reports based on the date of data entry completion by the

FDA, which we used to represent manual review of reports on a first

come, first reviewed basis. We also assessed ranking the reports in

reverse date order to simulate a scenario where the newest reports

would be reviewed first. Additionally, we simulated arbitrary order-

ings by generating 10 000 random report rankings. We compared

each of these report rankings to a perfectly ranked list using Spear-

man’s rho correlation coefficient, Kendall’s tau correlation test, and

average precision (AP). We calculated AP using 2 cutoffs: (1) the en-

tire test set (N¼125) and (2) the number of reports with an assess-

ment of Certain, Probable, or Possible (N¼64).

We performed an error analysis of our model results by categoriz-

ing the false positive (FP) and false negative (FN) errors based on our

features. We considered reports with an assessment of Certain, Prob-

able, or Possible as positives and those with an assessment of Unlikely

or Unassessable as negatives. We compared the distribution of each

feature for the accurately classified reports to the reports classified as

FN or FP. For categorical variables, we used the chi-squared test, and

for continuous variables, we used Student t-test.

RESULTS

Data
Of the 326 reports, approximately half had an assessment of at least

Possible (Figure 1), and no reports in the test set had an assessment

of Certain. There was a total of 25 reports with an assessment of

Medication Error or Product Quality Issue, 6 from the test set and

19 from the training set. Focusing on reports with an assessment of

Certain to Unassessable resulted in a total of 301 reports, for a train-

ing set of 176 (107 Certain, Probable, Possible; 69 Unlikely, Unas-

sessable) and test set of 125 (64 Certain, Probable, Possible; 61

Unlikely, Unassessable).

When assessing adjudicator agreement, we found that at least 2

of the 3 adjudicators tended to agree on any given report. At the

granular level, using 7 classes, all 3 adjudicators agreed on 37.4% of
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the reports, and 92.6% of reports had at least 2 adjudicators in

agreement. When we grouped the reports (Certain, Probable, Possi-

ble, vs Unlikely, Unassessable), all 3 adjudicators agreed on 61% of

the reports.

Features
Summary statistics for features constructed from structured and un-

structured data fields for reports with assessments between Certain

and Unassessable are shown in Table 2. Features from structured data

were constructed in separate categories, including report logistics, re-

porters, MedDRA terms, outcomes, and drugs. The unstructured nar-

ratives had an average length of 366.1 6 444.7 words, with a range

from 1 to 2575. We found that the “Days to Complete Report” fea-

ture correlated with the number of follow-up reports (data not shown)

and potentially more information about the case. We chose to use

“Days to Complete Report” to represent the length of the case time-

line due to the increased granularity of dates over the number of re-

ports. Overall, the training and test sets are similar across our

features, though we did observe minor differences in the distribution

of drug ATC classes and the number of days to complete the report.

Model evaluation
Results from our models on the test set of reports are shown in

Table 3. The parameters chosen by cross-validation for our models

were lambda¼0.0646, C¼1, and gamma¼0.05. The random for-

est and L1 regularized logistic regression models attained the highest

AUROC (Figure 2), with the random forest model resulting in

slightly higher accuracy. The random forest model also showed the

greatest similarity to the perfect ranking and the most improvement

over other report orderings, with a Kendall’s tau of 0.24 (P¼ .002)

and Spearman’s q of 0.28. Perfect ranking resulted in AP values of

0.85 (N¼125 cutoff) and 1.00 (N¼64 cutoff), and out of all our

models and heuristics, the random forest model attained the closest

performance, with AP values of 0.65 and 0.74, respectively. Neither

of the date-ranking heuristics was significantly correlated with the

perfect ranking. Reverse ranking achieved approximately the inverse

of the results of the forward ranking, the difference due to multiple

reports with the same assessment in the test set. Although the SVM

and L1 regularized logistic regression models showed similar accu-

racy and AUROC, the report rankings they produced showed no sig-

nificant correlation to the perfect ordering.

Using the report rankings from the random forest model resulted

in a shift of reports with lower assessments being ranked earlier,

whereas ordering reports by date resulted in these reports being more

concentrated at the end of the ordering (Figures 3A and B). As ex-

pected, the random orderings tended to produce uniform assessment

distributions, with correlation values around 0 (Figures 4A and B).

Our random forest model produced a more significantly correlated re-

port ordering than all but 20 of the 10 000 random ordering simula-

tions and outperformed both date heuristics (Figures 4A and B). Using

our random forest model, in order to review at least 80% of the re-

ports with an assessment of Certain, Probable, or Possible in the test

set, evaluators would need to review 86 out of the 125 reports, as

compared to 100 out of 125 if we reviewed by date or an average of

99 out of 125 if we reviewed in random order. This represents a po-

tential 10% reduction in workload at a sensitivity threshold of 80%.

Further examination at the individual assessment level showed a shift

of reports with an assessment of Probable or Possible in the test set to

earlier in the report order, and reports with an assessment of Unlikely

or Unassessable to later (Figure 5). Notably, the magnitude of the

change in report order appeared to be more accentuated for reports

with a more extreme assessment of Probable or Unassessable.

When examining the FP errors, we found that there were no statis-

tically significant differences among the features. Out of all the fea-

tures, the largest difference between FP errors and accurately

classified reports was in the number of direct type reports. We found

that none of the FP errors were direct reports, whereas in the training

set, a direct report type tended to be associated with the positive class.

For the FN errors, we found that these reports had significantly

less manually curated PT terms from MedDRA (P¼ .007) and were

significantly more likely to have death as an outcome (P¼ .03).

None of the FN reports, despite being evaluated as having a higher

likelihood of medication-related causality, contained any of the PT

terms that were manually curated. Additionally, the FN errors con-

sisted of 2 out of a total 16 Probable reports and 11 out of 48 Possi-

ble reports. Thus, the classifier tended to misclassify reports with a

lower causality assessment as negative.

Feature importance
We extracted important features from our random forest and L1

regularized logistic regression models (Table 4). The latter model in-

cluded 6 variables and the former model included correlated vari-

ables and features from both the structured data and the

unstructured narratives.

DISCUSSION

A key component of FDA regulatory activities is pharmacovigilance,

which partly relies on post-marketing surveillance and spontaneous

reporting systems, including the FDA Adverse Event Reporting

System. Over the last decade, the number of adverse event reports has

increased exponentially, resulting in a substantial workload for re-

viewers. Delays in detecting drug adverse events can have costly and

detrimental effects on public health, and thus a system to identify re-

ports most likely to contain information demonstrating causal drug

events would be highly beneficial. Researchers have investigated such

approaches using the US Vaccine Adverse Event Reporting System, in

which extracted text features16,17 were used with multiple classifica-

tion algorithms to create an effective report classification model.18–20

The success of text classification in the Vaccine Adverse Event

Reporting System and previous computational discoveries of new

medication-related adverse events in FAERS21–27 have generated sig-

nificant interest in developing a classification system for FAERS. To

accomplish this, we built models to classify and rank adverse event

Figure 1. Histogram of FAERS report assessments.
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Table 2. Summary of features derived from structured and unstructured data

Training Set Test Set

Structured Data No. of Reports 176 125

Age 50.5 6 23.0 54.6 6 17.9

Sex: Male, n (%) 75 (42.6) 55 (44.0)

Days to Complete Report

Report type 91.5 6 305.6 55.9 6 92.4

15-day, n (%) 134 (76.1) 86 (68.9)

Non-expedited, n (%) 32 (18.2) 28 (22.4)

Direct, n (%) 10 (5.7) 11 (8.8)

Reporters

Health professional, n (%) 37 (21.0) 22 (17.6)

Consumer, n (%) 10 (5.7) 10 (8.0)

Foreign, n (%) 20 (11.4) 8 (6.4)

Other, n (%) 120 (68.2) 85 (68.0)

MedDRA Terms

# PTs 3.9 6 5.2 3.1 6 2.7

# HLTs 3.2 6 2.7 2.9 6 2.4

# HLGTs 2.9 6 2.4 2.8 6 2.1

# SOCs 2.5 6 1.7 2.3 6 1.7

Presence of curated PTs, n (%) 18 (10.2) 12 (9.6)

Outcomes

Death, n (%) 17 (9.7) 12 (9.6)

Hospitalization, n(%) 71 (40.3) 40 (32.0)

Other, n (%) 76 (43.2) 62 (49.6)

Serious outcome, n (%) 140 (79.5) 98 (78.4)

Number of Drug Suspects

Drug suspect ATC class, first level 2.01 6 1.9 2.06 6 2.4

J (antiinfectives for systemic use), n (%) 30 (17.0) 9 (7.2)

R (respiratory system), n (%) 12 (6.8) 10 (8.0)

A (alimentary tract and metabolism), n (%) 43 (24.4) 33 (26.4)

N (nervous system), n (%) 29 (16.4) 30 (24.0)

C (cardiovascular system), n (%) 10 (5.7) 12 (9.6)

L (antineoplastic and immunomodulating agents), n (%) 31 (17.6) 19 (15.2)

Unstructured Narrative No. of Sentences

# Words per sentence 23.1 6 24.2 19.6 6 22.3

Parts of speech 18.1 6 7.4 17.8 6 10.1

# Nouns per sentence 6.6 6 3.2 6.3 6 4.2

# Verbs per sentence 2.6 6 1.0 2.7 6 1.4

# Adjectives per sentence 1.8 6 1.0 1.7 6 1.3

# Adverbs per sentence 0.5 6 0.3 0.5 6 6 0.4

Number redacted 1.2 6 3.0 0.7 6 1.9

Presence of curated terms 50 (28.4) 36 (28.8)

Binary features are reported using the number and percentage of reports, and numerical features are reported using mean 6 standard deviation.

Table 3. Performance metrics of classification models

Metric By Date Reverse Date Random Order (N¼ 10,000) Random Forest L1 Regularized Logistic Regression SVM

Sensitivity – – – 0.66 0.69 0.50

PPV – – – 0.64 0.58 0.60

Accuracy – – – 0.63 0.58 0.58

AUROC – – – 0.66 0.66 0.58

Spearman’s q �0.09 0.11 Mean (SD): �0.002 (0.09) 0.28 �0.04 0.01

Kendall’s tau �0.07 0.09 Mean (SD): �0.002 (0.08) 0.24 �0.04 �0.03

P-value .31 .23 Mean (SD): 0.50 (0.27) 0.002 0.62 0.73

AP (N¼ 125) 0.46 0.57 Mean (SD): 0.51 (0.04) 0.65 0.47 0.53

AP (N¼ 64) 0.44 0.59 Mean (SD): 0.51 (0.07) 0.74 0.44 0.55

Random report orderings are summarized using the mean and standard deviation (SD) of the correlation metrics.

For each metric, the bolded value indicates the best performing classifier.
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reports based on the likelihood of medication-related causality. In

addition, we showed the potential utility of our models to assist

manual adjudicators by shifting reports with a higher probability of

medication-related causality to a higher priority in rank order.

For the first phase of this study, we chose to focus on reports

with assessments of Certain to Unassessable, as they constituted

over 90% of our corpus. Though the modified WHO-UMC causal-

ity categories additionally include Medication Error and Product

Quality Issue, these reports were heterogeneous and few in number.

Furthermore, Medication Error and Product Quality Issue are Med-

DRA preferred terms that appear as part of the MedDRA structured

data fields. These can aid in the detection of reports with these is-

sues, whereas a system for differentiating reports with assessments

from Certain to Unassessable does not yet exist.

We engineered features based on structured data fields and ex-

tracted nonsemantic features from unstructured narratives. We chose

to focus on nonsemantic features for this initial corpus of reports due

to the wide variety of narratives, which range from one word to mul-

tiple paragraphs. Due to this, we found that patterns of words and

dependencies were frequently unique and that such patterns would

not generalize to the entirety of the adverse event report database.

Instead, we relied on expert knowledge to curate terms that are con-

sidered to raise the probability of a report having medication-related

causality. We recognize that the lack of semantic features is a feature

engineering limitation, mostly due to the size of our current corpus.

However, we believe that the unstructured narratives contain addi-

tional valuable information, and with the entirety of FAERS, we plan

Figure 2. ROC curves for all classification models.

Figure 3. Comparison of report orderings in the held-out test set by (A) date

and (B) random forest with assessments of Certain, Probable, or Possible vs

assessments of Unlikely or Unassessable.

Figure 4. Histograms of (A) Kendall’s tau and (B) Spearman’s rho correlation

coefficients for the 10 000 random report orderings.
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to fully leverage semantic features to improve the discrimination

power of our models. Examples of such features include entity recog-

nition using the Unified Medical Language System,28 quantification

of common words and phrases using term frequency, and relation-

ship extraction between words at the sentence level.

With our engineered features, we were able to see modest separa-

tion between high- and low-probability reports using 3 different

types of machine learning models. The superior results of the L1 reg-

ularized logistic regression and random forest models over the SVM

model suggest that data-driven feature selection is beneficial in

avoiding overfitting and improving performance. When we assessed

the reports misclassified by our model, we found that the FP and FN

errors had features generally opposite to the predictive trends pre-

sent in the training data. We attribute these errors to mild overfit-

ting, which is due, in part, to the limitations imposed by a small

corpus.

Upon closer inspection of the features selected by our models,

we found that the L1 regularized logistic regression model re-

tained only 6 features, many of which were also considered highly

important by the random forest model. The majority of these fea-

tures appear to have an intuitive interpretation, such as a con-

sumer reporter increasing the likelihood of a report being

Unlikely or Unassessable. As the “Days to Complete Report” fea-

ture reflects the addition of follow-up reports, a longer report

completion time appears to increase the likelihood of a Certain,

Probable, or Possible assessment. Interestingly, these features

range across multiple feature categories, including outcomes,

MedDRA terms, drug suspects, and reporter qualifications. The

feature selection suggests that each of these categories likely con-

tains correlated variables, with each category providing addi-

tional value for classification.

In addition to report classification, we further assessed utility

based on reordering reports to expedite the review process for

manual adjudicators. We see high-probability reports shifting to

earlier in rank order at the individual assessment report level, in-

dicating that our model can improve upon the current system of

reviewing by date or randomly. We acknowledge that our work

is limited by the number of reports and has the potential for ad-

ditional feature extraction from the unstructured narratives. This

is due to the time-intensive nature of adjudication and curation,

which also serves as the motivation for this work. Despite these

limitations, we believe that the benefits seen in this work can be

magnified upon expansion of our model to the millions of re-

ports in the FAERS system. Furthermore, this evaluation simu-

lates a more realistic application, which can be easily integrated

into the existing workflow. Its implementation has the potential

to increase efficiency and improve detection of safety issues by pri-

oritizing reports with a higher probability of medication-related

causality.

CONCLUSION

This study serves as the foundation for construction of a system to

detect adverse event reports with a high probability of indicating

medication-related causality. We explored and constructed several

models, which we used to demonstrate feasibility and applicability

in aiding manual reviewers via report prioritization. Expansion of

these models to the entirety of the FDA adverse event reporting

Figure 5. Individual assessment level density plots based on reports ordered

by date and by using the random forest model in the held-out test set. There

were no reports with an assessment of Certain in the test set.

Table 4. Important features included by the random forest and L1 regularized logistic regression models

Random Forest L1 Regularized Logistic Regression

Feature Mean Decrease

in Gini Index

Certain, Probable,

Possible

Unlikely,

Unassessable

Feature Coefficient Certain, Probable,

Possible

Unlikely,

Unassessable

Age 6.312 � Presence of curated PTs 4.54e-3 �

No. of sentences 6.120 �

# words per sentence 5.707 � Outcome: death �0.112 �

Days to complete report 4.719 � Days to complete report 5.61e-6 �

MedDRA: # PTs 3.702 � Presence of curated terms 0.043 �

Number of drug suspects 3.053 � No. of drug suspects 0.011 �

Reporter: consumer 2.717 � Reporter: consumer �0.327 �

A check indicates that a higher value of the feature is associated with a higher likelihood of an assessment from the respective column.
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system could substantially improve the manual review process and

have potential downstream benefits for pharmacovigilance.
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