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ABSTRACT

Background: Existing screening tools for early detection of autism are expensive, cumbersome, time- intensive,

and sometimes fall short in predictive value. In this work, we sought to apply Machine Learning (ML) to gold

standard clinical data obtained across thousands of children at-risk for autism spectrum disorder to create a

low-cost, quick, and easy to apply autism screening tool.
Methods: Two algorithms are trained to identify autism, one based on short, structured parent-reported ques-

tionnaires and the other on tagging key behaviors from short, semi-structured home videos of children. A com-

bination algorithm is then used to combine the results into a single assessment of higher accuracy. To over-

come the scarcity, sparsity, and imbalance of training data, we apply novel feature selection, feature

engineering, and feature encoding techniques. We allow for inconclusive determination where appropriate in

order to boost screening accuracy when conclusive. The performance is then validated in a controlled clinical

study.
Results: A multi-center clinical study of n¼162 children is performed to ascertain the performance of these

algorithms and their combination. We demonstrate a significant accuracy improvement over standard screen-

ing tools in measurements of AUC, sensitivity, and specificity.
Conclusion: These findings suggest that a mobile, machine learning process is a reliable method for detection

of autism outside of clinical settings. A variety of confounding factors in the clinical analysis are discussed along

with the solutions engineered into the algorithms. Final results are statistically limited and will benefit from fu-

ture clinical studies to extend the sample size.
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INTRODUCTION

Diagnosis within the first few years of life dramatically improves the

outlook of children with autism, as it allows for treatment while the

child’s brain is still rapidly developing.1,2 Unfortunately, autism is

typically not diagnosed earlier than age 4 in the United States, with

approximately 27% of cases remaining undiagnosed at age 8.3 This

delay in diagnosis is driven primarily by a lack of effective screening

tools and a shortage of specialists to evaluate at-risk children. The

use of higher accuracy screening tools to prioritize children to be

seen by specialists is therefore essential.

Most autism screeners in use today are based on questions for

the parent or the medical practitioner, that produce results by com-

paring summed answer scores to predetermined thresholds. Notable

examples are the Modified Checklist for Autism in Toddlers, Re-

vised (M-CHAT),4 a checklist-based screening tool for autism that is

intended to be administered during developmental screenings for

children between the ages of 16 and 30 months, and the Child Be-

havior Checklist (CBCL).5 Both are parent-completed screening

tools. For both instruments, responses to each question are summed

with each question given equal weighting, and if the total is above a

pre-determined threshold the child is considered to be at high risk of
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autism. In the case of CBCL there are multiple scales based upon dif-

ferent sets of questions corresponding to different conditions. The

“Autism Spectrum Problems” scale of CBCL is used when comparing

its performance to the performances of our algorithms in this paper.

In this paper, we present two new machine learning screeners that

are reliable, cost-effective, short enough to be completed in minutes,

and achieve higher accuracy than existing screeners on the same age

span as existing screeners. One is based on a short questionnaire about

the child, which is answered by the parent. The other is based on iden-

tification of specific behaviors by trained analysts after watching two

or three short videos of the child within their natural environment

that are captured by parents using a mobile device.

The parent questionnaire screener keys on behavioral patterns

similar to those probed by a standard autism diagnostic instrument,

the Autism Diagnostic Interview – Revised (ADI-R).6 This clinical

tool consists of an interview of the parent with 93 multi-part ques-

tions with multiple choice and numeric responses which are deliv-

ered by a trained professional in a clinical setting. While this

instrument is considered a gold-standard, and gives consistent

results across examiners, the cost and time to administer it can be

prohibitive in a primary care setting. In this paper, we present our

approach to using clinical ADI-R instrument data to create a

screener based on a short questionnaire presented directly to parents

without supervision.

The video screener keys on behavioral patterns similar to those

probed in another diagnostic tool, the Autism Diagnostic Observa-

tion Schedule (ADOS).7 ADOS is widely considered a gold standard

and is one of the most common behavioral instruments used to aid

in the diagnosis of autism.8 It consists of an interactive and struc-

tured examination of the child by trained clinicians in a tightly con-

trolled setting. ADOS is a multi-modular diagnostic instrument,

with different modules for subjects at different levels of cognitive de-

velopment. In this paper, we present our approach to mining ADOS

clinical records, with a focus on younger developmental age, to cre-

ate a video-based screener that relies on an analyst evaluating short

videos of children filmed by their parents at home.

The use of behavioral patterns commonly probed in ADI-R and

ADOS scoresheets as inputs to train autism screening classifiers was

introduced, studied, and clinically validated in previous work.9–12

There are several new aspects in this paper. First, the algorithms de-

tailed in the present study have been designed to be more accurate

and more robust against confounding biases between training and

application data. Next, this paper focuses considerable attention on

the impact of confounding factors on machine learning algorithms

in this context. Examples of these confounding biases will be dis-

cussed below and highlighted in Table 2. Labeled data usually origi-

nates from tightly controlled clinical environments and is, hence,

clean but sparse, unbalanced, and of a different context to the data

available when applying the screening techniques in a less formal en-

vironment. This paper also presents a combination between the

algorithms for a more powerful single screener. Lastly, this paper

generalizes the algorithms to be non-binary, sometimes resulting in

an “inconclusive” determination when presented with data from

more challenging cases. This allows higher screening accuracy for

those children who do receive a conclusive screening, while still pre-

senting a clinically actionable inconclusive outcome in the more

challenging cases.

These classifiers of this paper were applied to screen children in

a clinical study using the Cognoa13 App. To date, Cognoa has been

used by over 250 000 parents in the US and internationally. The ma-

jority of Cognoa users are parents of young children between 18 and

30 months. The clinical study consisted of 162 at-risk children who

had undergone full clinical examination and received a clinical diag-

nosis at a center specialized in neurodevelopmental disorders.

METHODS

It is not feasible to amass large training sets of children who have

been evaluated by the mobile screeners and who also have received a

professional medical diagnosis. Our approach is to start with histor-

ical medical instrument records of previously diagnosed subjects,

and use those as training data for screeners that will rely on informa-

tion acquired outside the clinical setting. Expected performance deg-

radation from applying the algorithms into a less controlled setting

would result in inaccurate screeners if conventional machine learn-

ing methods were used. Much of this paper outlines the details of

creative machine learning methods designed to overcome this chal-

lenge and create reliable screeners in this setting.

Training data were compiled from multiple repositories of

ADOS and ADI-R score-sheets of children between 18 and 84

months of age including Boston Autism Consortium, Autism Ge-

netic Resource Exchange, Autism Treatment Network, Simons Sim-

plex Collection, and Vanderbilt Medical Center. Since such

repositories are highly imbalanced with very few non-autistic

patients, the controls across the datasets were supplemented with

balancing data obtained by conducting ADI-R interviews by a

trained clinician on a random sample of children deemed at low risk

for autism from Cognoa’s user base. For both algorithms a smaller

set of optimal features was selected using methods that will be dis-

cussed below. Details about the final selected features are given in

the Supplementary Material.

The clinical validation sample consists of 230 children who pre-

sented to one of three autism centers in the United States between 18

and 72 months of age. All participants were referred through the

clinics’ typical referral program process, and only those with

English-speaking parents were considered for the study. The three

clinical centers were approved on a multisite IRB (project number

2202803). Every child received an ADOS as well as standard screen-

ers like M-CHAT and CBCL as appropriate, and a diagnosis was ul-

timately ascertained by a licensed health care provider. For 162 of

those children, the parents also used their mobile devices to com-

plete the short parental questionnaire and submit the short videos

required for the screeners discussed in this paper. The sample break-

down by age group and diagnosis for both the training and clinical

validation datasets is shown in Table 1.

Approach
We trained two independent ML classifiers and combined their out-

puts into a single screening assessment. The parent questionnaire

classifier was trained using data from historical item-level ADI-R

score-sheets with labels corresponding to established clinical diagno-

ses. The video classifier was trained using ADOS instrument score-

sheets and diagnostic labels. In each case, progressive sampling was

used to verify sufficient training volume as detailed in the Supple-

mentary Materials. Multiple machine learning algorithms were eval-

uated including ensemble techniques on the training data. A number

of algorithms performed well. Random Forests were chosen because

of robustness against overfitting.

ADI-R and ADOS instruments are designed to be administered by

trained professionals in highly standardized clinical settings and typi-

cally take hours. In contrast, our screening methods are deliberately
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designed to be administered at home by parents without expert super-

vision, and to take only minutes to complete. This change of environ-

ment causes significant data degradation and biases resulting in an

expected loss of screening accuracy. For each classifier, we present

mindful adjustments to ML methodology to mitigate these issues.

These biases and efforts to mitigate them are discussed below.

Differences Between Training and Application

Environments
The screeners are trained on historical patient records that corre-

spond to controlled, lengthy clinical examinations, but applied via

web or mobile app aimed at unsupervised parents at home. Table 2

details the various mechanisms by which confounding biases may

consequently creep into the application data. Note that inaccuracies

introduced by such biases cannot be probed by cross- validation or

similar analysis of the training data alone.

Hyperparameter Optimization
For each parental questionnaire and video model that will be dis-

cussed below, model hyperparameters were tuned with a boot-

strapped grid search. In all cases, class labels were used to stratify

the folds, and (age, label) pairs were used to weight-balance the sam-

ples. More details can be found in the Supplementary Materials.

Parent Questionnaire
Multiple model variants representing incremental improvements

over a generic ML classification approach are discussed below.

Generic ML Baseline Variant

A random forest was trained over the ADI-R instrument data. Each

of the instrument’s 155 data columns was treated as a categorical

variable and one-hot encoded. The subject’s age and gender were in-

cluded as features as well. Of the resulting set of features, the top 20

were selected using feature-importance ranking in the decision

forest.

Robust Feature Selection Variant

Due to the small size and sparsity of the training dataset, generic fea-

ture selection was not robust, and the selected features (along with

the performance of the resulting model) fluctuated from run to run

due to the stochastic nature of the learner’s underlying bagging ap-

proach. Many ADI-R questions are highly correlated, leading to

multiple competing sets of feature selection choices that were seem-

ingly equally powerful during training, but which had different per-

formance characteristics when the underlying sampling bias was

exposed via full bootstrapped cross-validation. This resulted in a

wide performance range of the variant of the Generic ML baseline

method as shown in Table 3.

Table 1. Dataset Breakdown by Age Group and Condition Type for Each of the Sources of Training Data and for the Clinical Validation

Sample. The Negative Class Label Includes Normally Developing (i.e. neurotypical) Children as Well as Children with Developmental Delays

and Conditions other than Autism

Number of samples

Age Condition Classification type Questionnaire Video Clinical validation

(years) training training

< 4 Autism þ 414 1445 84

< 4 Other condition � 133 231 18

< 4 Neurotypical � 74 308 3

� 4 Autism þ 1885 1865 37

� 4 Other condition � 154 133 11

� 4 Neurotypical � 26 277 9

Table 2. Differences Between Training and Application Environments. These Differences are Expected to Cause Bias that Cannot be Cap-

tured by Cross-validation Studies

Aspect Training Setting Application Setting

Source ADI-R and ADOS instrument administered

by trained professionals during clinical

eval-uations

Short parent questionnaires displayed on smartphone, and behavior tagging by

ana-lysts after observing two or three 1-minute home videos uploaded by

parents

Proctor Highly trained medical professionals Parents answering the questionnaires are un-trained, and the analysts evaluating

the home videos are only minimally trained. As a result, their answers may not

be as consistent, objective, or reliable

Setting Clinic setting with highly standardized and

semi-structured interactions

At home. Not possible to recreate the structured clinical environment, resulting in

an undesired variability of the output signals. Subjects might also behave differ-

ently at the clinic than at home, further amplifying the bias

Duration The ADI-R can take up to 4 hours to com-

plete; The ADOS can take up to 45

minutes of direct observation by trained

professionals

Under 10 minutes to complete the parent questionnaire, and a few minutes of

home video. As a result, some symptoms and behavioral patterns might be pre-

sent but not observed. Also causes big uncertainty about the severity and fre-

quency of observed symptoms

Questionnaires Sophisticated language involving psycholog-

ical concepts, terms, and subtleties unfa-

miliar to nonexperts

Simplified questions and answer choices result in less nuanced, noisier inputs
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Robust feature selection overcame that limitation using a two-

step approach. First, a 100-count bootstrapped feature selection

was run, with a weight balanced 90% random sample selected in

each iteration. The top 20 features were selected each time, and a

rank-invariant tally was kept for the number of times each feature

made it to a top-20 list. Next, the top 30 features in the tally were

kept as candidates and all other features were discarded. A final

feature-selection run was used to pick the best subset of these can-

didate features. This approach was found to be more robust to sta-

tistical fluctuations, usually selecting the same set of features when

run multiple times. A minimal subset of maximally performant fea-

tures was chosen and locked for clinical validation, totaling 17 fea-

tures for the young children and 21 features for the old. Details

about these selected features are available in the Supplementary

Material.

Age Silo Variant

This variant built upon the improvements of the robust feature selec-

tion method, by exploiting of the dichotomy between pre-phrasal

and fully-phrasal language capability in at-risk children. Language

development is significant in this domain as it is known to affect the

nature in which autism presents, and consequently the kinds of be-

havioral clues to look for in order to screen for it.

This variant achieved better performance by training separate

classifiers for children in the younger and older age groups of

Table 1. The age dichotomy of<4,�4 was chosen to serve as the

best proxy for language ability. Feature selection, model parameter-

tuning, and cross-validation were run independently for each age

group classifier. Before siloing by age group, the classifier was lim-

ited to selecting features that work well across children of both de-

velopmental stages. Siloing enabled the classifiers to specialize on

features that are most developmentally appropriate within each age

group.

Severity-level Feature Encoding Variant

Building upon the method including age siloing above, this variant

achieved better performance by replacing one-hot feature encoding

with a more context-appropriate technique. One-hot encoding does

not distinguish between values that correspond to increasing levels of

severity of a behavioral symptom, and values that do not convey a clear

concept of severity. This is especially troublesome since a typical ADI-

R instrument question includes answer choices from both types of val-

ues. For example, ADI-R question 37, which focuses on the child’s ten-

dency to confuse and mix up pronouns, allows for answer codes 0, 1,

2, 3, 7, 8, and 9. Among those choices, 0 through 3 denote increasing

degrees of severity in pronominal confusion, while 7 denotes any other

type of pronominal confusion not covered in 0-3 regardless of severity.

Codes 8 and 9 denote the non-applicability of the question (for exam-

ple, to a child still incapable of phrasal speech) or the lack of an answer

(for example, if the question was skipped) respectively. When coding

the answers to such questions, generic one-hot encoding would allow

for non-symptomatic answer codes to be selected as screening features

based on phantom correlations present in the dataset.

Severity-level encoding converts all answer codes that do not con-

vey a relevant semantic concept to a common value, thereby reducing

the chance of useless feature selection, and reducing the number of fea-

tures to choose from. In addition, severity-level encoding condenses the

signal according to increasing ranges of severity. For example, the

encoding of ADI-R question 37 would map its responses to new fea-

tures with 1s in the following cases (all other new features would be

zero): (0!“¼0,” 1! “1,” 2! [“1,” “2”], 3! [“1,” “2,” “3”], 7!
“¼7,” 8, 9!None). This more closely resembles the way medical prac-

titioners interpret such answer choices, and helps alleviate the problem

of sparsity over each of the one-hot encoded features in the dataset.

Aggregate Features Variant

Building upon the method including severity level encoding above,

this variant achieved better performance by incorporating aggregate

Table 3. Performance of Increasingly Effective Classifier Variants Based on the Training Data for the Parent Questionnaire. Results in the

Top Table are Based on Cross-validated Training Performance. Results in the BottomTable (which are only available for variants using the

optimally selected features) are Based on Actual Clinical Results

AUC Sensitivity Specificity

All ages < 4 years >¼ 4 years All ages < 4 years >¼ 4 years All ages < 4 years >¼ 4 years

Training scenario

Generic ML baseline 0.932 to

0.950

0.928 to

0.953

0.928 to

0.953

0.976 to

0.982

0.975 to

0.984

0.975 to

0.984

0.628 to

0.645

0.625 to

0.648

0.625 to

0.648

Robust feature selection

variant

0.958 0.958 0.958 0.982 0.982 0.982 0.624 0.624 0.624

Age silo variant 0.953 0.939 0.961 0.962 0.939 0.977 0.777 0.774 0.779

Severity-level feature

encoding variant

0.965 0.950 0.974 0.962 0.912 0.993 0.748 0.833 0.692

Aggregate features variant 0.972 0.987 0.963 0.992 0.988 0.994 0.754 0.894 0.661

With inconclusive

allowance [up to 25\%]

0.991 0.997 0.983 1.000 1.000 1.000 0.939 0.977 0.881

Application scenario

Age silo variant 0.62 0.68 0.54 0.65 0.62 0.52 0.48 0.46 0.24

Severity-level feature

encoding variant

0.67 0.69 0.64 0.64 0.62 0.58 0.48 0.46 0.33

Aggregate features variant 0.68 0.73 0.68 0.68 0.69 0.65 0.57 0.62 0.48

With inconclusive

allowance [up to 25\%]

0.72 0.72 0.73 0.70 0.72 0.67 0.67 0.71 0.53
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features such as the minimum, maximum, and average severity level,

as well as number of answer choices by severity level across the

questions corresponding to the 20 selected features. These new fea-

tures were especially helpful due to the sparse, shallow, and wide na-

ture of the training set, whereupon any semantically meaningful

condensation of the signal can be useful to the trained classifier.

Inconclusive Results Variant

Children with more complex symptom presentation are known to

pose challenges to developmental screening. These children often

screen as false positives or false negatives, resulting in an overall

degradation of screening accuracy that is observed by all standard

methods and has become acceptable in the industry. Given that our

low-cost instruments do not rely on sophisticated observations to

differentiate complex symptom cases, our approach was to avoid

assessing them altogether, and to try instead to spot and label them

as “inconclusive.”

Building upon the method including feature engineering, two

methods to implement this strategy were devised. The first was to

train a binary classifier with a continuous output score, then replace

the cutoff threshold with a cutoff range, with values within the cut-

off range considered inconclusive. A grid search was used to deter-

mine the optimal cutoff range representing a tradeoff between

inconclusive determination rate and accuracy over conclusive sub-

jects. The second approach was to train and cross-validate a simple

binary classifier, label the correctly and incorrectly predicted sam-

ples as conclusive or inconclusive respectively, and then build a sec-

ond classifier to predict whether a subject would be incorrectly

classified by the first classifier. At runtime, the second classifier was

used to spot and label inconclusives. The conclusives were sent for

classification by a third, binary classifier trained over the conclusive

samples only. Both methods for labeling inconclusive results yielded

similar performance. Therefore, the simpler method of using a

threshold range in the machine learning output was used to report

inconclusive results for this paper.

The inconclusive rate is a configurable model parameter that

controls the tradeoff between coverage and accuracy. Throughout

this paper, the inconclusive rate for this variant was set to 25%.

Video
The second of our two-method approach to autism screening is an

ML classifier that uses input answers about the presence and severity

of target behaviors among subjects. This information was provided

by an analyst upon viewing two or three 1-minute home videos of

children in semi-structured settings that are taken by parents on

their mobile phones. The classifier was trained on item-level data

from two of the ADOS modules (module 1: preverbal, module 2:

phrased speech) and corresponding clinical diagnosis.

Two decision forest ML classifiers were trained corresponding to

each ADOS module. For each classifier, 10 questions were selected

using the same robust feature selection method, and the same allow-

ance for inconclusive outcomes was made as for the parental ques-

tionnaire classifier. Each model was independently parameter-tuned

with a bootstrapped grid search. Class labels were used to stratify

the cross-validation folds, and (age, label) pairs were used to weight-

balance the samples.

Problems related to the change of environment from training to

application are especially significant in the case of video screening

because ADOS involves a 45 minute direct observation of the child

by experts, whereas our screening was based on unsupervised short

home videos. Specifically, we expect the likelihood of inconclusive

or unobserved behaviors and symptoms to be much higher in the ap-

plication than in the training data, and the assessed level of severity

or frequency of observed symptoms to be less reliable in the applica-

tion than in the training data. The following improvements were

designed to help overcome these limitations.

Presence of Behavior Encoding

To minimize potential bias from a video analyst misreading the se-

verity of a symptom in a short cell phone video, this encoding

scheme improves feature reliability at the expense of feature infor-

mation content by collapsing all severity gradations of a question

into one binary value representing the presence vs absence of the be-

havior or symptom in question. Importantly, a value of 1 denotes

the presence of behavior, regardless of whether the behavior is indic-

ative of autism or of normalcy. This rule ensures that a value of 1

corresponds to a reliable observation, whereas a 0 does not necessar-

ily indicate the absence of a symptom but possibly the failure to ob-

serve the symptom within the short window of observation.

Missing Value Injection to Balance the Nonpresence of Features for

the Video Screener Training Data

While collapsing severity gradations into a single category over-

comes noisy severity assessment, it does not help with the problem

of a symptom not present or unnoticeable in a short home video.

For this reason, it is important that the learning algorithm treat a

value of 1 as semantically meaningful, and a value of 0 as inconse-

quential. To this end, we augmented the training set with duplicate

samples that had some feature values flipped from 1 to 0. The injec-

tion of 0s was randomly performed with probabilities such that the

sample-weighted ratio of positive to negative samples for which the

value of any particular feature is 0 is about 50%. Such ratios ensure

that the trees in a random forest will be much less likely to draw

conclusions from the absence of a feature.

Combination
It is desirable to combine the questionnaire and video screeners to

achieve higher accuracy. However, the needed overlapping training

set was not available. Instead, the clinical validation dataset itself

was used to train the combination model.

The numerical responses of each of the parent questionnaire and

video classifiers were combined using L2-regularized logistic regres-

sion, which has the advantage of reducing the concern of overfitting,

particularly given the logistic model has only three free parameters.

Bootstrapping and cross -validation studies showed that any overfit-

ting that may be present from this procedure is not detectable within

statistical limitations. Since each of the individual methods was

siloed by age, separate combination algorithms were trained per age

group silo. For each combination algorithm, optimal inconclusive

output criteria were chosen using the logistic regression response,

using the same techniques as for the parental questionnaire and

video classifiers. The performance characteristics of the overall

screening process compared to standard alternative screeners are

shown below.

RESULTS

Parent Questionnaire Performance on Training Data
Bootstrapped cross-validation performance metrics for the optimally

parameter-tuned version of each of the variants of the parental
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questionnaire are reported in the top of Table 3. The results for

baseline variant are reported as a range rather than a single value,

because the unreliability of generic feature selection leads to differ-

ent sets of features selected from run to run, with varying perfor-

mance results.

Parents of children included in the clinical study answered short,

age-appropriate questions chosen using the robust feature selection

method discussed above. The clinical performance metrics for each of

the classification variants that build upon that feature selection scheme

are shown in the bottom of Table 3. The difference in performance be-

tween the training and validation datasets is driven by the differences

that are emphasized in Table 2. See below and the results of Table 4

for a discussion of the statistical significance of these results.

ROC curves in Figure 1 show how our parent questionnaire clas-

sification approach outperforms some of the established screening

tools like MCHAT and CBCL on the clinical sample. Since clinical

centers are usually interested in screening tools with a high sensitiv-

ity, we have drawn shaded regions between 70% and 90% sensitiv-

ity to aid the eye.

Combination Screening Performance on Clinical Data
ROC curves in Figure 2 show how combining the questionnaire and

video classifiers into a single assessment further boosted perfor-

mance on the clinical study sample. When up to 25% of the most

challenging cases are allowed to be determined, inconclusive the per-

formance on the remaining cases is shown in Figure 3. Note that the

ROC curves in these figures for M-CHAT contain only younger chil-

dren (mostly under four years of age) due to the fact that this instru-

ment is not intended for older children. A same-sample comparison

between M-CHAT and the ML screeners can be seen in the age

binned figures (Figures 4 and 5).

Results for Young Children
Young children are of particular interest given the desire to identify

autism as early as possible. Results restricted to only children less

than four years old are shown in Figures 4 and 5.

Statistical Significance
For the training data, sample sizes are large enough that statistical

limitations are minimal. However, results reported for the clinical

data have significant statistical limitations. In this section we com-

pare the performance of the screening algorithms on the clinical

data that we have discussed in this paper: (1) the questionnaire-

based algorithm of,13 (2) M-CHAT, (3) CBCL, (4) the

questionnaire-based algorithm of this paper, and (5) the combined

questionnaire plus video algorithm of this paper. Direct comparisons

in performance between many of these algorithms are reported

along with statistical significances in Table 4.

DISCUSSION

We have introduced a novel machine learning algorithm based on a

parental questionnaire and another based on short home videos

recorded by parents and scored by a minimally trained analyst. We

have discussed pitfalls such as data sparsity, and the mixed ordinal

and categorical nature of the questions in our training data. We

have also identified several important confounding factors that arise

from differences between the training and application settings of the

algorithms. We have shown novel feature encoding, feature selec-

tion, and feature aggregation techniques to address these challenges,

and have quantified their benefits. We have shown the benefits of

allowing some subjects with lower certainty output from the algo-

rithms to be classified as inconclusive. We have also shown the bene-

fits of combining the results of the two algorithms into a single

determination.

By specializing the machine learning models on a dichotomy of

age groups, we found that the screener for younger children capital-

ized on non-verbal behavioral features such as eye contact, gestures,

and facial expressions, while the screener for older children focused

more on verbal communication and interactions with other children.

For more details please refer to the Supplementary Material.

The methods and resulting improvements shown in this paper

are expected to translate well into other clinical science applications

Table 4. Performance Comparisons Between Various Algorithms on Clinical Data

Base model Model from this paper AUC improvement Mean recall improvement

2012 publication Questionnaire 0.07, [�0.03, 0.17] 0.1, [0.02, 0.17]

M-CHAT Questionnaire 0.01, [�0.11, 0.12] 0.06, [�0.04, 0.17]

CBCL Questionnaire 0.06, [�0.04, 0.17] 0.11, [0.03, 0.2]

2012 publication Questionnaire & video 0.16, [0.07, 0.25] 0.12, [0.04, 0.2]

M-CHAT Questionnaire & video 0.08, [�0.03, 0.19] 0.1, [�0.01, 0.21]

CBCL Questionnaire & video 0.15, [0.04, 0.26] 0.14, [0.04, 0.24]

2012 publication Questionnaire þ inconclusive 0.16, [0.02, 0.28] 0.09, [�0.02, 0.2]

M-CHAT Questionnaire þ inconclusive �0.01, [�0.39, 0.31] 0.08, [�0.18, 0.29]

CBCL Questionnaire þ inconclusive 0.15, [0.01, 0.29] 0.11, [�0.02, 0.24]

2012 publication Questionnaire & video þ inconclusive 0.21, [0.1, 0.32] 0.19, [0.1, 0.28]

M-CHAT Questionnaire & video þ inconclusive 0.09, [�0.05, 0.23] 0.15, [0.04, 0.27]

CBCL Questionnaire & video þ inconclusive 0.2, [0.09, 0.32] 0.2, [0.09, 0.31]

Questionnaire Questionnaire & video 0.09, [0.02, 0.15] 0.03, [�0.04, 0.09]

Questionnaire Questionnaire þ inconclusive 0.09, [�0.01, 0.17] �0.0, [�0.09, 0.08]

Questionnaire Questionnaire & video þ inconclusive 0.14, [0.06, 0.23] 0.09, [0.01, 0.17]

Q. and video Questionnaire & video þ inconclusive 0.06, [0.01, 0.11] 0.06, [0.0, 0.13]

Each row evaluates the improvement of one of the algorithms from this paper over a “Base model” algorithm for the AUC metric, and for the average between

the autism and the non-autism recalls at a response threshold point that achieves approximately 80% sensitivity. Negative values would represent a worsening of

performance for a given algorithm compared to the base model. Both average values of the improvements and [5%, 95%] confidence intervals are reported. Algo-

rithms that are labeled “inconclusive” allow up to 25% of the most difficult samples to be discarded from the metric evaluation. Note that the M-CHAT instru-

ment is intended for use on younger children. Therefore, older children were excluded when preforming comparisons to M-CHAT in this table.
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Figure 1. ROC curves on the clinical sample for various questionnaire based autism screening techniques, ordered from the least to most sophisticated. Note that

unlike Figures 2 through 3 and 4, 168 children are included in this sample (six children did not have videos available).

Figure 2. ROC curves on the clinical sample for the questionnaire and the video based algorithms, separately and in combination. The established screening tools

MCHAT and CBCL are included as baselines.

Figure 3. ROC curves on the clinical sample for the questionnaire and the video based algorithms, separately and in combination. Inconclusive determination is

allowed for up to 25% of the cases. The established screening tools MCHAT and CBCL are included as baselines.

Figure 4. ROC curves on the clinical results for children under four years of age, for the questionnaire and the video based algorithms, as well as the combination.

Comparisons with the established (nonmachine learning) screening tools MCHAT and CBCL are also shown.
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including screening for cognitive conditions such as dementia for the

elderly and physical conditions such as concussions in adults. Fur-

ther, we expect that these methods would apply well to any other

survey based domain in which the application context is different

from the training context.

Significant further improvements may be possible. Initial studies

have identified probable improvements to the machine learning

methodology as well as improved methods for handling the biases

between the training data and application settings. A new clinical

trial with larger sample sizes is underway that will make it possible

to validate new improvements resulting from these studies as well as

to improve confidence in the high performance of our algorithms.

CONCLUSION

Machine learning can play a very important role in improving the ef-

fectiveness of behavioral health screeners. We have achieved a sig-

nificant improvement over established screening tools for autism in

children as demonstrated in a multi-center clinical trial. We have

also shown some important pitfalls when applying machine learning

in this domain, and quantified the benefit of applying proper solu-

tions to address them.
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