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ABSTRACT

Objective: Federated learning (FL) allows multiple distributed data holders to collaboratively learn a shared

model without data sharing. However, individual health system data are heterogeneous. “Personalized” FL var-

iations have been developed to counter data heterogeneity, but few have been evaluated using real-world

healthcare data. The purpose of this study is to investigate the performance of a single-site versus a 3-client fed-

erated model using a previously described Coronavirus Disease 19 (COVID-19) diagnostic model. Additionally,

to investigate the effect of system heterogeneity, we evaluate the performance of 4 FL variations.

Materials and methods: We leverage a FL healthcare collaborative including data from 5 international health-

care systems (US and Europe) encompassing 42 hospitals. We implemented a COVID-19 computer vision diag-

nosis system using the Federated Averaging (FedAvg) algorithm implemented on Clara Train SDK 4.0. To study

the effect of data heterogeneity, training data was pooled from 3 systems locally and federation was simulated.

We compared a centralized/pooled model, versus FedAvg, and 3 personalized FL variations (FedProx, FedBN,

and FedAMP).

Results: We observed comparable model performance with respect to internal validation (local model: AUROC

0.94 vs FedAvg: 0.95, P¼ .5) and improved model generalizability with the FedAvg model (P< .05). When inves-

tigating the effects of model heterogeneity, we observed poor performance with FedAvg on internal validation

as compared to personalized FL algorithms. FedAvg did have improved generalizability compared to personal-

ized FL algorithms. On average, FedBN had the best rank performance on internal and external validation.
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Conclusion: FedAvg can significantly improve the generalization of the model compared to other personaliza-

tion FL algorithms; however, at the cost of poor internal validity. Personalized FL may offer an opportunity to

develop both internal and externally validated algorithms.

Key words: computer vision, federated learning, COVID-19, artificial intelligence

INTRODUCTION

Biomedical artificial intelligence (AI) models learn from data to pre-

dict future patterns. Typically, to train generalizable AI models,

data from multiple institutions are pooled and a model is trained on

the pooled (centralized) dataset. Such an approach suffers from mul-

tiple issues including concerns about data security, data privacy, and

regulatory restrictions from Health Insurance Portability and

Accountability Act (HIPAA)1 and General Data Protection Regula-

tion.2 Federated learning (FL) overcomes these limitations by ena-

bling multiple distributed data holders to collaboratively train a

shared model without data sharing.

Individual health system data, however, are highly heterogene-

ous due to the differences in patient populations and clinical work-

flow. Thus, as previous patterns help predict future patterns, in the

context of system heterogeneity, it is possible that AI models trained

on single-institution historic data may have superior predictive capa-

bilities locally than federated models trained with supplementation

of external institutional data. This presents a unique problem that

must be addressed by FL variations in healthcare. Federated Averag-

ing (FedAvg), a well-known FL algorithm, may suffer in the pres-

ence of data heterogeneity.3,4 Zhao et al4 show that when the

client’s data are highly skewed, the accuracy of FedAvg reduces sig-

nificantly, by up to �55%. Similarly, Li et al5 point out that FedAvg

will not converge to the optimal solution when the training quantity

is imbalanced among different clients. Recently, “personalized” var-

iations of FL have been developed to counter this data heterogeneity

issue, but most studies to date only consider a single type of data

heterogeneity and experiment in a simulated environment.5–9 Thus,

a rigorous investigation of single site, centralized (“pooled”),

FedAvg, and “personalized” FL models is needed to characterize the

optimal solutions and current gaps. Additionally, an investigation is

needed to characterize the generalizability of “personalized” FL var-

iations using real-world clinical data from multiple heterogeneous

hospitals. The purpose of this study was to investigate the perform-

ance of single site, centralized, and multiple FL models using a previ-

ously developed and validated computer vision diagnostic AI model

using a real-world Coronavirus Disease 19 (COVID-19) chest radio-

graph (CXR) images from 42 United States (US) and European hos-

pitals.

OBJECTIVE

This study characterized the problem posed by data heterogeneity

using the well-known FedAvg algorithm across data from 5 hetero-

geneous international (US and Europe) healthcare systems encom-

passing 42 hospitals. Then, to identify an optimal solution for

model training, we evaluated the performance of 3 personalized fed-

erated variations (FedBN [Fed batch normalization],6 FedAMP [Fed

attentive message passing],8 and FebProx5) a locally trained model,

FedAvg, and a centralized (data “pooled” together at a single site)

model.

MATERIALS AND METHODS

Dataset collection
Model training and validation datasets

Five datasets were available for this analysis (Table 1). Three were

pooled locally at the University of Minnesota and 2 were made

available within a federated healthcare platform10 which supports

the FedAvg algorithm.10 Figure 1 provides a schematic representa-

tion of the study design, available datasets, and the analysis con-

ducted for this study.

All patients aged 18 years or older who presented to the emergency

department (ED) of a participating site between February 1, 2019 and

November 11, 2020 and received a CXR were included. Positive cases

were defined as CXRs from patients who presented to the ED with

PCR-confirmed COVID-19 (taken either 2 weeks prior to COVID-19

diagnosis or during a COVID-19-associated hospitalization). Negative

controls were defined as CXRs from patients who were not PCR posi-

tive for COVID-19 and had a CXR obtained in the ED for any reason

prior to the onset of COVID-19. This definition of a negative control

ensures that negative controls were true negatives and not patients

that had a false negative PCR or were not tested for COVID-19 due to

limited availability of COVID-19 PCR testing early in the pandemic.

There were no missing DICOM images for patients who had a CXR

performed. To train the federated model, we used data collected from

5 sites: (1) 12-hospital M Health Fairview University of Minnesota

system (MHFV), Minnesota, USA, (2) 16-hospital Indiana University

(IU) system, Indiana, USA, (3) 12-hospital Emory University (EU) sys-

tem, Georgia, USA, (4) University of Florida, Gainesville, Florida,

USA, and (5) Valencian Region Medical ImageBank (BIMCV), Valen-

cia, Spain (Table 1).

Data harmonization

The only data element used in model training was the CXR image

itself. Each institution was responsible for obtaining data locally.

Data from BIMCV and University of Florida, Gainesville were trans-

ferred directly to MHFV, whereas data from IU and EU were stored

within each institution. For data harmonization, data from MHFV,

BIMCV, and the University of Florida, Gainesville, were stored

locally on MHFV’s HIPAA-compliant cloud computing environ-

ment each within a site-specific directory. A spreadsheet was main-

tained that contained the path to each image as well as data labels.

Data from IU and EU were stored locally within each partner insti-

tution’s GPU computing environments.

Investigation of training heterogeneity impact on model

performance
We hypothesized that a federated model would improve generaliz-

ability of the model, but at the result in diminished local perform-

ance due to increased training data heterogeneity. To investigate

this, we proposed a 2-phase model to mitigate the effect of data

inconsistency and data noise. In phase 1, we preprocessed the multi-

source (heterogeneous) data using a shared processing pipeline

including lung segmentation, outlier detection, and image normal-
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ization; as we have developed previously (see Supplementary Meth-

ods).11 This step helps to ensure that the data fed into the final clas-

sifier is qualitatively consistent across all sites, which is critical for

successful federation. Additionally, these steps minimize the inclu-

sion of data outside of the lung window thus minimizing the risk of

“AI shortcuts”.12

In phase 2, we used Clara Train SDK 4.0 and NVFlare, and built

the FL model using MONAI (Medical Open Network for AI)13 Den-

senet121 pre-trained on ImageNet.14

We used FedAvg, a standard FL algorithm widely used in many

applications and areas. The main idea of FedAvg is to aggregate

models to achieve a comparable performance to centralized learning

without the need for data sharing. It aims to solve the problem as

shown in Equation (1).

min
w

XK

i¼1

ni

n
Fk wð Þ where Fk ¼

1

nk

Xnk

i¼1
Lw Xi; Yið Þ; (1)

where nk is the number of training samples in client k, and n is the

sum of the training sample over all the clients. Note that only

weights w are shared among different clients. There is no data shar-

ing during the training.

The pipeline of FedAvg is shown in Figure 2, and presents a hub-

and-spoke topology with the hub representing a central aggregator

and spoke connecting to each client. Overall, FL consists of 3 steps:

(1) local training: each client site can independently train the model

locally for several epochs, (2) model aggregation: each client will

send the model trained in the last step to a central server, where the

model will be aggregated (weighted average), and (3) local update:

the aggregated model at the central server will be sent back to the

Figure 1. Schematic representation of the available datasets and the analysis conducted for this study. IU: Indiana University; EU: Emory University; MHFV: M

Health Fairview; UF: University of Florida; BIMCV: Valencian Region Medical ImageBank.

Table 1. Distribution of the data on each datasets

COVID-19 status N Age in years, median

(IQR: 25th–75th)

Male % Racial distribution (if

available)

MHFV Positive 3997 62 (50–73) 57.4% 31.7% Black

20.4% Other

47.9% White

Negative 41516 60 (44–72) 47.1% 9.7% Black

9.1% Other

81.2% White

IU Positive 8231 62 (50–74) 57.3% Not Available

Negative 7668 71 (43–71) 48.8% Not Available

EU Positive 8602 61 (50–73) 51.5% 68.5% Black

10.8% Other

20.7% White

Negative 11651 60 (45–72) 48.4% 50.4% Black

6.7% Other

42.9% White

BIMCV Positive 2261 Not Available Not Available Not Available

Negative 1561 Not Available Not Available Not Available

UF Positive 1009 58 (39–69) 45.7% 41.8% Black

9.9% Other

48.3% White

Negative 1460 59 (43–70) 52.7% 27.4% Black

5.8% Other

66.8% White
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clients for update in the next round. The model is converged by iter-

ating the 3 steps through a finite round. We summarize the FedAvg

in Algorithm 1.

Investigation of single institution model training verses

federated learning
For this experiment, we leveraged the Nvidia Clara Train Platform

which already contained data from 3 sites (MHFV, IU, and EU). For

each site, we randomly split the data into training and test sets with

a ratio of 8:2. Furthermore, we separated 20% of the training data

into a validation set to avoid overfitting. For external model evalua-

tion, we held data from University of Florida, Gainesville (UF, Flor-

ida, USA) and BIMCV15 (Valencia, Spain) as external validation

sets. Details on the label distribution can be found in Table 1.

Investigation of personalized federated variation

performance
In order to investigate the performance of personalized federated

variations, all training data was required to be held locally in the

MHFV server for 2 reasons: (1) to facilitate the evaluation of a

pooled model and (2) due to their novelty, personalized federated

variations are not yet supported by Clara train. To facilitate this

experiment, our training data consisted of data from MHFV, UF,

and BIMCV, and we reserved EU and IU dataset for external valida-

tion.

For comparison, we selected 3 representative personalized FL

algorithms, including FedProx, FedBN, and FedAMP, and compared

their performance with FedAvg and centralized training. FedProx

was initialized by Li et al5 to address the heterogeneous local update

issues in FedAvg. By adding a proximal term to the objective of the

local update, it can suppress the impact of variable local updates.

FedBN is proposed by Li et al6 to solve the covariate shift over the

clients’ data. In its design, all weights are shared and aggregated

except from batch normalization layers. FedAMP is an attention-

based approach that automatically learns the aggregation weight for

each client. Their design follows the personalized federation manner

where all clients have a dedicated global model on the server and the

goal is to train a personalized model such that the local performance

is maximized. The comparison of these methods can be found in

Algorithms 1 and 2.

Training details
We normalized the CXR images using the mean and standard devia-

tion of ImageNet (see Supplementary Methods). Before being fed

into the neural network, mild random rotation was used for data

augmentation. For each round of federated training, we used cross-

entropy loss to measure the prediction error (the difference between

model prediction and ground truth label). To mitigate the adverse

effect of class imbalance, we defined the training objective as mini-

mizing the maximum of averaged loss over the positive and negative

cases. We set a maximum training epoch of 100 and optimized our

learning objective using Adam optimizer,16 with an initial learning

rate of 0.0001 and set other hyper-parameters as default in PyTorch

1.5.0.17 A learning-rate scheduler was applied to achieve faster con-

vergence; when the area under the precision recall curve (AUPRC)

on the validation set stopped improving, the learning rate was

decreased by a factor of 0.5. As different FL clients have installed

GPUs of different processing capacity, we specified a batch size of

64, 128, and 256 for sites 2, 3, and 1, respectively. The learning rate

and training epoch used above is determined by k-fold cross-

validation. To be more specific, we defined a set for each hyper-

parameter: training epoch f50, 100, 200g and learning rate f0.001,

0.0001, 0.00001, 0.000001g. Then, we divided the data into 5-fold,

with each having the same number of images. For each iteration, we

used 1 of the 5 folds as the validation set while remaining folds were

used for training. The optimal combination was chosen if the highest

average AUPRC on 5 iterations was observed on the validation set.

Due to the complexity of tuning hyper-parameters in a FL setting,

all the tuning process was performed locally on MHFV.

All analysis was completed on a system consisting of Intel(R)

Xeon(R) Processor E5-2690 v4þ4x Tesla V100 PCIe (MHFV),

Figure 2. Overview of federated learning in Nvidia Clara Train.
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Algorithm 1: Federated learning algorithms (FedAvg/FedBN/FedProx/FedAMP)

Notation: Xi indicate data from client i, K is the total number of client, T is maximum training round, n is the sum of n1 to

nk , r is the hyper-parameter in FedAMP

Initialize server model weights w(1)/wi 1ð Þ8 i ¼ 1; 2; . . . ;K

Initialize client model weights wi 8 i ¼ 1; 2; . . . ;K

For each round t¼1, 2, . . . T do

Send server model weight wðtÞ to each client/send w tð Þk to client k

For each client k ¼ 1; 2; . . . ; K do

Client k perform LocalUpdateðXk ; Yk ; wk Þ  Algorithm 2

ck ¼
nk

n

End for

For each client j ¼ 1; 2; . . . ; K do

cij ¼ bk 1� e
jj wi�wj jj

2

r

� �
where i 6¼ j

End for

For each global model i

w t þ 1ð Þi ¼
Xk

i¼1

cikwk

End for

For each layer j in model k if is not BatchNorm then

w t þ 1ð Þ ¼
Xk

j¼1

ckwkj

End for

End for

Algorithm 2: Local model training using mini batch stochastic gradient descent (LocalUpdate) (FedAvg/FedBN/FedProx/

FedAMP)

Notation: R is the local update round, B is the number of batches, fwr
is the neural network parameterized by wr , g is the

learning rate, l is the hyper-parameter in FedProx, k and ak are the hyper-parameters in FedAMP

For each round r ¼ 1; 2; . . . ; R do

Randomly shuffle Xk and create B batches ððX1; Y1Þ; ðX2; Y2Þ; . . . ; ðXB ; YBÞÞ

Lwr
¼ BCELoss fwr

ðXbð Þ; YbÞ þ
l
2
jjwk �wk tð Þjj2 þ k

2ak
jjwk �wk tð Þjj2

For each mini batch b ¼ 1; 2; . . . ; B do

wrþ1 ¼ wr � grLwr
ðXb; YbÞ

End for

58 Journal of the American Medical Informatics Association, 2023, Vol. 30, No. 1

D
ow

nloaded from
 https://academ

ic.oup.com
/jam

ia/article/30/1/54/6754819 by guest on 23 April 2024



Intel(R) Xeon(R) Gold 6130þNVIDIA V100X-16Q (IU), and

Intel(R) Core(TM) i9-9940X þ 2x GeForce RTX 2080Ti (EU).

Python 3.8.5 and libraries Numpy 1.19.4, Pandas 1.0.0, Scikit-

image 0.15.0, and Pydicom 1.4.2 were used for image conversion;

torch 1.5.0, torchvision 0.8.0a0, and monai 0.5.3 were used for neu-

ral network training. The FL framework was built upon Clara train

v4.0 and Docker 20.10.11 þ azure-3. If not specifically mentioned,

all settings were consistently aligned across 3 clients.

Statistical analysis
The sample size needed for adequate power varies with disease preva-

lence.18 Our previous studies identified that the real-world prevalence

of COVID-19 for ED patients who receive a CXR for any reason is

4.8%.11 Assuming a 5% prevalence race, 4860 predictions would be

needed for investigation with over 80% power. We measured the model

performance using area under the receiver operating characteristic

(AUROC), where the ROC curve is created by plotting the true positive

rate against the false positive rate at varied thresholds. We used Youden

index (J),19 a common summary measure of the ROC curve, to deter-

mine the optimal threshold, from which precision, recall and F1 score

were calculated. We used Delong’s test20 and Mcnemar’s test21 to evalu-

ate the statistical significance of the difference between the single insti-

tute model and FL model on the reported metrics. For the 2 tests, a P

value less than .05 was considered to indicate statistical significance.

The Checklist for Artificial Intelligence in Medical Imaging was

used for reporting this study (see Supplementary files). This study

was approved by the University of Minnesota Institutional Review

Board (IRB) STUDY00014526. This study was approved by the

University of Florida IRB Study 202101857. This study was

approved by the Indiana University IRB Study 2010169012. This

study was approved by the Emory University IRB Study

STUDY00000506 ML-COVID19.

Table 2. Internal and external validation of federated model

N AUROC AUPRC 95% CI Precision Recall F1 score

Internal MHFV 9102 0.951 0.838 0.940–0.963 0.616 0.840 0.711

IU 3179 0.871 0.886 0.857–0.885 0.828 0.748 0.786

EU 4051 0.832 0.801 0.813–0.851 0.681 0.784 0.729

External BIMCV 3822 0.601 0.611 0.585–0.617 0.616 0.471 0.533

UF 2469 0.713 0.651 0.692–0.734 0.629 0.592 0.610

Table 3. Performance comparison between single institution model (SIM) and federated learning model (FLM)

AUROC Sensitivity Specificity

SIM FLM P value SIM FLM P value SIM FLM P value

MHFV 0.944 0.951 .492 0.870 0.840 .020 0.939 0.950 <.05

BIMCV 0.557 0.601 <.05 0.301 0.471 <.05 0.833 0.730 <.05

UF 0.667 0.713 <.05 0.548 0.592 <.05 0.721 0.759 <.05

Note: We use Delong’s test to compare the difference of AUROC and McNemar’s test to compare specificity and sensitivity.

Figure 3. Performance of 4 federated learning algorithms on internal validation dataset measured by AUPRC. AUPRC: area under the precision recall curve; FL:

federated learning; MHFV: M Health Fairview; UF: University of Florida, Gainesville; Pool: Centralized (“Pooled”) model performance.
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RESULTS

Investigation of federated training versus single

institution training

The model trained with single-site MHFV data had an internal

AUROC of 0.94 (95% confidence interval [CI], 0.93–0.96) and

AUPRC of 0.85 and BIMCV (Spain) external validation of AUROC:

0.56 (95% CI, 0.54–0.57) and AUPRC: 0.57 and University of Flor-

ida external validation of AUROC: 0.67 (95% CI, 0.65–0.69) and

AUPRC: 0.6 (Supplementary Table S1). To investigate if the FL

model had improved performance versus the single institution model

(SIM), a Delong’s test was performed. The federated learning

FedAvg model (FLM) trained using data from all 3 sites had similar

performance as the MHFV SIM within MHFV (AUROC SIM: 0.94

vs AUROC FLM: 0.95, P¼ .5) (Tables 2 and 3). However, the

federated model was associated with significant improvement in

Figure 4. Performance of 4 federated learning algorithms on internal validation dataset measured by AUROC. AUROC: area under the receiver operating charac-

teristic curve; FL: federated learning; MHFV: M Health Fairview; UF: University of Florida, Gainesville; Pool: Centralized (“Pooled”) model performance.

Figure 5. Performance of 4 federated learning algorithms on external validation dataset measured by AUPRC. AUPRC: area under the precision recall curve; FL:

federated learning; IU: Indiana University; EU: Emory University; MHFV: M Health Fairview; UF: University of Florida, Gainesville; Pool: Centralized (“Pooled”)

model performance.
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external validation (BIMCV [Spain] AUROC FLM: 0.60 vs SIM:

0.56 and UF Gainesville AUROC FLM: 0.71 vs SIM: 0.67, P< .05).

To investigate if the federated model was associated with improved

sensitivity and specificity, a McNemar’s test was performed. The

federated model had significantly lower sensitivity (0.84 vs 0.87,

P¼ .02) than the SIM; however, significantly higher specificity (0.95

vs 0.94, P¼ .02). On external validation, the federated model using

FedAvg was associated with significantly improved AUROC

(Table 3).

Personalized federated learning versus FedAvg and

pooled model training
To evaluate the performance of personalized federated variations (as

compared to pooled and FedAvg training), we conducted a federa-

tion using the original 2 external validation datasets and the MHFV

dataset. As we did not have access to the IU and EU datasets, they

were used as external validation datasets. On internal validation,

pooled data training and FedBN provided more consistent results.

FedAvg had superior performance on internal validation for the MH

FV datasets which made up 87.9% of the training data; however,

poor performance on UF and BIMCV datasets (Figures 3 and 4).

Despite this skew in data, though FedBN maintained comparable

training with pooled training. Of note, we identified significantly

improved performance in BIMCV with FedAMP. We hypothesize

this is because FedAMP is invulnerable to quantity skew as the

aggregation weights are adaptive learned during training (Figures 3

and 4).

On external validation, we noted FedAvg performed comparable

(Delong P¼ .4 [IU dataset] and P¼ .2 [EU dataset] with centralized

training). This supports that FedAvg trains a generalizable model

comparable to centralized training. In both cases, FedAMP signifi-

cantly underperformed centralized training (Figures 5 and 6). Of the

personalized FL variations, again FedBN had comparable (Delong

P¼ .1 [IU]) or superior (Delong P ¼ .003 [EU dataset]) performance

as compared to centralized model training (Table 4, Figures 5 and 6).

DISCUSSION

FL is a novel approach originally developed with the intention to

preserve data privacy while facilitating data availability for general-

izable model training. To date, few studies have investigated the role

of FL in the healthcare setting.22 In this study, we characterized the

problem posed by data heterogeneity using the FedAvg algorithm

and evaluated the performance of 3 personalized federated varia-

tions (FedBN, FedAMP, and FedProx), a locally trained model,

FedAvg, and a centralized model for a diagnostic model for COVID-

19. This study identified that FL is feasible and improves model gen-

eralizability. Of the federated variations, FedAvg significantly

improves external generalizability of models compared to SIMs;

however, suffers from limitations on internal validation. While stat-

istically significant improvements in external generalizability were

observed, it is critical to point out that performance was only mod-

estly improved (ie, UF external validation improved from AUROC

0.667 to 0.713). In both models, SIM and FLM, a large performance

drop was noted between internal and external validation. We believe

the drop in performance comes from the innate distribution shift

Figure 6. Performance of 4 federated learning algorithms on external validation dataset measured by AUROC. AUROC: area under the receiver operating charac-

teristic curve; FL: federated learning; IU: Indiana University; EU: Emory University; MHFV: M Health Fairview; UF: University of Florida, Gainesville; Pool: Central-

ized (“Pooled”) model performance.

Table 4. DeLong’s test evaluating performance of pooled, FedAvg,

and personalized FL variations

IU EU

AUROC P value AUROC P value

FedAvg 0.801 6 0.013 .408 0.702 6 0.036 .213

FedAmp 0.713 6 0.001 <.05 0.619 6 0.012 <.05

FedProx 0.784 6 0.013 .184 0.674 6 0.015 .0536

FedBN 0.782 6 0.021 .135 0.695 6 0.006 <.05

Centralized/Pool 0.795 6 0.008 reference 0.686 6 0.031 reference

Note: P values are obtained using Delong’s test to compare with the AUC

of the centralized/pooled model.
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between the internal and external datasets. As shown in Table 1, the

distributions of sex, race, and age in the UF dataset were different

from MHFV and EU. Similarly, the BIMCV dataset, collected from

Europe, has a distribution different from all other datasets in our

study. These disparities were associated with differences in model

performance. For example, in Table 2, the model was trained on

data from MHFV, EU, and IU, all US centers, which may explain

why the model performed better on UF data than on BIMCV data.

Additionally, when the model was trained using data from MHFV,

UF, and BIMCV (Table 4), we see highest performance in IU. This is

unsurprising as FedAvg tends to perform optimally in sites that con-

tribute the most data to model training. MHFV contributed the

most data and IU has a similar patient population as MHFV

(Table 1).

When analyzing 4 different FL algorithms on real-world medical

image datasets with data heterogeneity, we found that FedAvg has a

strong bias in favor of clients with large data quantities. MHFV,

which contributes 87.9% training data, received the highest

AUROC and AUPRC score among all clients. However, on internal

validation (Figure 4) at lesser contributors (UF and BIMCV),

FedAvg significantly underperformed centralized training. This

presents a serious limitation to the widespread use of FedAvg. As

pointed out by prior work,23 the heterogeneity in local dataset size

affects the number of local updates that the client will perform,

which ultimately causes objective inconsistency and leads to a biased

solution. Other types of heterogeneity, such as system heterogene-

ity24 and data distribution heterogeneity,25 can also bring bias to the

federation.26

Some personalized FL algorithms claim to address the data dis-

tribution drift problem5,8; however, in this study, they did not gener-

alize well on the real-world medical image data, eg, FedAMP and

FedProx. We observed consistent good performance with FedBN on

all evaluations which even outperformed centralized training in 1 of

the 2 external validation datasets. As compared with centralized

training, FedBN had comparable performance on internal validation

(Figure 4), and the FedBN_MHFV model had comparable or signifi-

cantly superior performance on external validation (Table 4). Our

result suggests that when the goal is to maximize the generalization

of the model, then FedAvg or FedBN is preferred whereas when

local performance matters more, personalized FL such as FedBN

should be prioritized.

One potential solution worth investigating could be the inclusion

of an outer layer within the neural network which can identify the

optimal FL for deployment given demographic and clinical similar-

ities between the original training datasets and the validation data-

set. In this scenario, a model would be trained with multiple FL

variations (FedAvg, FedBN, etc.) with the inclusion of details

regarding dataset demographic and clinical distribution. Hospital

systems with similar demographic and clinical distributions may

have superior performance when validated using personalized FL

algorithms trained on similar health systems.

Limitations
This study suffers from the following limitations: due to data pri-

vacy limitations, we were unable to pool the training data across all

institutions together and train a centralized model and compare its

performance with the federated model. Additionally, the Nvidia

Clara platform only supports the FedAvg algorithm, thus any feder-

ated training using personalized variations were done using simula-

tion. The current federation is small in scale and thus running in a

well-controlled environment. Previous studies by our group11 inves-

tigated whether temporal changes (ie, change in patient population

or radiographic features with different COVID-19 variants) resulted

in COVID-19 diagnostic model bias and performance drift, thus this

was not further investigated in this study, as the purpose of this

study was to investigate institutional data heterogeneity and model

federation.

CONCLUSIONS

Our results suggest that FedAvg can significantly improve the gener-

alization of the model compared to other personalization FL algo-

rithms; however, at the cost of poor internal validity. Personalized

FL such as FedBN may offer an opportunity to develop both internal

and externally validated algorithms. Future research should develop

network layers that can characterize dataset distribution and iden-

tify the optimal FL algorithms based on dataset distribution to maxi-

mize returns.
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