Abstract

To dissect the rat receptor for advanced glycation end products (RAGE) subcellular distribution and trafficking in eukaryotic cells, an expression system coding for a fusion protein between the RAGE and an enhanced green fluorescent protein (EGFP) has been used. The RAGE–EGFP protein is expressed at the plasma membrane of CHO-k1 and Neuro-2a (N2a) cells and retains the capacity to bind Texas Red-labelled advanced glycation end products (AGEs). AGEs addition to the cell cultures induced a change in the subcellular distribution of the fluorescent RAGE–EGFP protein compatible with an internalization of the AGEs–RAGE complex. Furthermore, while N2a cells expressing the RAGE–EGFP showed an increase in ERK1/2 phosphorylation and NF-κB DNA binding in response to AGEs, pre-incubation with dansyl-cadaverine or phenylarsine oxide, inhibitors of receptors internalization, blocked the activation of ERKs and other intracellular responses mediated by AGEs. These results suggest that internalization plays a key role in the signal transduction mediated by RAGE.

You do not currently have access to this article.