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Abnormal deposition of the microtubule-associated pro-
tein tau is a common pathological feature of multiple
neurodegenerative diseases, including Alzheimer’s dis-
ease (AD), and plays critical roles in their pathogen-
esis. Disruption of calcium homeostasis and the
downstream kinase Ca2+/calmodulin-dependent protein
kinase II (CaMKII) coincides with pathological phos-
phorylation of tau in AD brains. However, it remains
unclear whether and how dysregulation of CaMKII af-
fects tau toxicity. Using a Drosophila model, we found
that CaMKII promotes neurodegeneration caused by tau
phosphorylated at the AD-associated sites Ser262/356.
Overexpression of CaMKII promoted, while RNA-
mediated knockdown of CaMKII and inhibition of
CaMKII activity by expression of an inhibitory peptide
suppressed, tau-mediated neurodegeneration. Blocking
tau phosphorylation at Ser262/356 by alanine substitu-
tions suppressed promotion of tau toxicity by CaMKII,
suggesting that tau phosphorylation at these sites is
required for this phenomenon. However, neither knock-
down nor overexpression of CaMKII affected tau phos-
phorylation levels at Ser262/356, suggesting that
CaMKII is not directly involved in tau phosphorylation
at Ser262/356 in this model. These results suggest that a
pathological cascade of events, including elevated levels
of tau phosphorylated at Ser262/356 and aberrant acti-
vation of CaMKII, work in concert to promote tau-
mediated neurodegeneration.

Keywords: Ca2+/calmodulin (CaM)-dependent pro-
tein kinase II; Drosophila; microtubule-associated
protein tau; phosphorylation; tauopathy.

The tau protein accumulates in multiple neurodegen-
erative diseases, including Alzheimer’s disease (AD),
progressive supranuclear palsy (PSP), frontotemporal
dementia with parkinsonism linked to chromosome 17
(FTDP-17), corticobasal degeneration (CBD), fronto-
temporal dementia (FTD), Pick’s disease (PiD) and
Lewy Body Dementia (LBD) (1). Tau is a microtu-
bule-binding protein that is predominantly localized
in axons, where it binds to microtubules to regulate
their stability. In the brains of patients with the afore-
mentioned diseases, however, tau is detached from
microtubules and phosphorylated at disease-specific
sites (2�5). Hyperphosphorylated tau proteins aggre-
gate into bundles of filaments that are deposited as
neurofibrillary tangles (NFTs), which are well corre-
lated with the clinical expression of these diseases (6).

Among more than 40 sites in tau that are phos-
phorylated in disease brains (3�5), tau phosphoryl-
ation at Ser262 and Ser356 is one of the pathological
changes in the early stages and has a significant impact
on the metabolism and toxicity of tau (7�13). Both
residues are located in the microtubule-binding
domain, and phosphorylation at these sites increases
the levels of microtubule-unbound tau (14�17), which
is subsequently phosphorylated at other sites (10�13).
Thus, tau phosphorylation at Ser262/356 is likely to
play an initiating role in tau toxicity (10�13).
However, the factors involved in neurodegeneration
downstream of tau phosphorylation at Ser262/356
have not been fully elucidated.

Disruption of intracellular Ca2+ homeostasis has been
observed in a number of neurodegenerative diseases, and
Ca2+/calmodulin (CaM)-dependent protein kinase II
(CaMKII) may be a key molecule in the pathological
cascade downstream of abnormal Ca2+ signaling (18,
19). CaMKII is activated by the binding of Ca2+/CaM
followed by autophosphorylation at Thr286, and this
autophosphorylated form retains its catalytic activity
beyond the initial stimulation (20). CaMKII phosphor-
ylates tau at several sites including Ser262 and Ser356 in
vitro (21), promotes phosphorylation of tau in cultured
cells (22�24) and frequently co-localizes with NFTs in
AD brains (24�29). Furthermore, CaMKII inhibitors
reduce death of primary cortical neurons treated with
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Alzheimer’s amyloid-b peptides (30). These reports sug-
gest that dysregulation of CaMKII activity may contrib-
ute to abnormal metabolism and toxicity of tau under
disease conditions.

In this study, we used a Drosophila model to inves-
tigate the roles of CaMKII in tau toxicity and its rela-
tionship with tau phosphorylation at Ser262 and
Ser356. Our results suggest that although CaMKII is
not directly involved in tau phosphorylation at Ser262/
356, it promotes neurodegeneration caused by tau
phosphorylated at Ser262/356.

Materials and Methods

Fly stocks
Flies were maintained in standard cornmeal media at 25 �C. The
transgenic fly lines carrying the human 0N4R tau, which has four
tubulin-binding domains (R) at the C-terminal region and no N-
terminal insert (N), is a gift from Dr. M. B. Feany (Harvard
Medical School) (31). GMR-Gal4 was obtained from the
Bloomington Stock Center. UAS-CaMKII RNAi is obtained from
Vienna Drosophila Resource Center. UAS-CaMKII (32) and UAS-
ala (33) are gifts from Dr. Leslie Griffith (Brandeis University). The
transgenic fly line carrying UAS-S2Atau was reported previously
(10, 11, 34). All experiments were performed using female flies at
3�5 day-old after eclosion unless otherwise indicated. Genotypes are
described in Supplementary Table SI.

Western blotting
Western blotting was carried out as described previously (10, 11, 34).
Anti-CaMKIIa phospho-Thr286 (Santa Cruz Biotechnology), anti-
dCaMKII (Cosmo Bio), anti-tau antibody (Tau46, Invitrogen), anti-
tau phospho-Ser262 (Abcam), anti-tau phospho-Ser356 (Biosource),
anti-actin (Sigma) and anti-tubulin (Sigma) were purchased. The
signal intensity was quantified using Image J (NIH) or an Odyssey
system. Western blots were repeated a minimum of three times with
different animals.

Histological analysis
Preparation of paraffin sections, hematoxylin and eosin staining and
analysis of neurodegeneration were described previously (10). Serial
sections (6 mm thickness) through the entire heads were prepared and
examined by bright-field microscopy. Images of the sections that
include the lamina were captured with Insight 2 CCD Camera
(SPOT), and vacuole area was measured using Image J (NIH).
Heads from more than four flies (more than eight hemispheres)
were analyzed for each genotype.

In vivo microtubule-binding assay
Microtubule binding assay was performed using a previously re-
ported (10, 34). Protein concentration in each fraction was measured
using the BCA Protein Assay Kit (Pierce). The same amount of
protein was loaded to each lane of Tris-Glycine gels and analyzed
by western blotting using anti-tau antibody (Tau46, Zymed) or anti-
tubulin (Sigma).

Statistics
Statistics was done with Microsoft Excel (Microsoft) with Student’s t.

Results

Knockdown of CaMKII suppresses, while overex-
pression of CaMKII promotes, neurodegeneration
induced by tau
Drosophila has one gene encoding CaMKII that gives
rise to at least four protein isoforms, which all share
over 85% sequence identity with the a isoform of ver-
tebrate CaMKII and contain the autophosphorylation
site T287, which is functionally equivalent to T286 in
mammalian CaMKIIa (35). To determine whether

CaMKII is involved in neurodegeneration induced by
tau, we knocked down CaMKII in a fly model of tauo-
pathy (31). Expression of wild-type human tau in
Drosophila eyes using the pan-retinal GMR-GAL4
driver causes age-dependent and progressive neurode-
generation, which is observed as vacuoles in the
lamina, the first synaptic neuropil of the optic lobe con-
taining photoreceptor axons (34). RNAi-mediated
knockdown of CaMKII efficiently decreased CaMKII
activity as indicated by reduced levels of the autopho-
sphorylated form of all isoforms of CaMKII (Fig. 1A),
and significantly suppressed neurodegeneration caused
by tau (Fig. 1B). This effect was not due to titration of
the effectiveness of GAL4-mediated transcription, as
CaMKII knockdown did not reduce total levels of tau
(Fig. 1C). Moreover, expression of control RNAi
(RNAi targeting firefly luciferase) did not affect tau-
induced neurodegeneration (34), indicating that sup-
pression of tau toxicity caused by CaMKII RNAi was
not due to non-specific effects of RNAi expression.

We next investigated whether upregulation of
CaMKII would promote tau-induced neurodegenera-
tion by using well-established transgenic fly carrying
Drosophila R3 isoform of CaMKII (32, 33), whose ex-
pression has been shown to increase CaMKII activity
in Drosophila neurons (35�42). Co-expression of
CaMKII significantly increased neurodegeneration
due to tau, whereas CaMKII expression alone did
not cause neurodegeneration (Fig. 1D). Co-expression
of CaMKII did not alter total tau levels (Fig. 1E),
suggesting that this effect was not due to an increase
in the tau protein levels.

To determine whether inhibition of CaMKII activity
is sufficient to suppress tau toxicity, we expressed the
inhibitory domain of the rat CaMKII (ala) (43).
Expression of this peptide has been shown to reduce
CaMKII activity in Drosophila neurons (35, 37�39,
41�46). Co-expression of CaMKII inhibitory peptide
suppressed tau-induced neurodegeneration (Fig. 1F),
indicating that the observed promotion of tau toxicity
is mediated by the kinase activity of CaMKII.

Taken together, these results indicate that CaMKII
activity is involved in neurodegeneration in a
Drosophila model of tauopathy.

Blocking tau phosphorylation at Ser262/356
abolishes enhancement of tau-mediated neurode-
generation caused by CaMKII
Tau phosphorylation at Ser262 and Ser356 is observed in
the early phases of pathological changes in tau (7), and
blocking tau phosphorylation at these sites decreases the
levels of tau phosphorylated at other sites and attenuates
tau toxicity (11�13). Thus, tau phosphorylation at these
sites plays a critical role in tau toxicity upstream of other
pathological changes in tau. Therefore, we asked whether
tau phosphorylation at Ser262 and Ser356 is involved in
the enhancement of tau-induced neurodegeneration
caused by overexpression of CaMKII. For these experi-
ments, we used transgenic flies carrying human tau with
alanine substitutions at both phosphorylation sites (S2A
tau). CaMKII overexpression did not augment neurode-
generation caused by S2A tau (Fig. 2), suggesting that
tau phosphorylated at Ser262/356 is involved in the
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Fig. 1 Knockdown of CaMKII suppresses, while overexpression of CaMKII promotes, neurodegeneration induced by tau. (A) CaMKII RNAi
reduces active CaMKII in Drosophila brain. Western blot analysis of fly heads carrying the pan-neuronal elav-Gal4 driver alone (control) or
expressing CaMKII RNAi driven by elav-Gal4 (CaMKII RNAi) with anti-pT286 CaMKII antibody. Tubulin was used as a loading control.
Mean ± SD, n = 5, ***, P5 0.005, Student’s t-test. (B) RNAi-mediated knockdown of CaMKII suppresses tau-induced neurodegeneration.
(Left) The lamina of flies expressing human tau alone (tau) and co-expressing human tau and CaMKII RNAi (tau+CaMKIIRNAi) driven by
GMR-Gal4. Neurodegeneration is indicated by arrows. (Right) Quantification of neurodegeneration, Mean ± SEM, n = 8�12. **, P50.01.
(C) RNAi-mediated knockdown of CaMKII does not change tau protein levels. Western blot analysis of fly heads expressing human tau alone
(tau) and co-expressing human tau and CaMKII RNAi (tau+CaMKIIRNAi) driven by GMR-Gal4 with anti-tau antibody. Actin was used as a
loading control. Mean ± SD, n = 5, n.s., P> 0.05. (D) Overexpression of CaMKII enhances tau-induced neurodegeneration. (Left) The lamina
of control flies bearing the GMR-Gal4 driver only (control), flies expressing tau alone (tau), co-expressing tau and CaMKII (tau+CaMKII) and
CaMKII alone (CaMKII). (Right) Quantification of neurodegeneration. Mean ± SEM, n = 8�12. ***, P5 0.005. (E) Overexpression of
CaMKII does not change tau protein levels. Western blot analysis of fly heads expressing human tau alone (tau) and co-expressing human tau
and CaMKII (tau+CaMKII) driven by GMR-Gal4 with anti-tau antibody (tau). Expression of exogenous CaMKII (R3) is confirmed by
Western blot with anti-dCaMKII antibody (dCaMKII). Please note that this blot reflects all the CaMKII proteins in the head including
endogenous CaMKII. Endogenous CaMKII is expressed in multiple isoforms and abundant in all the brain regions, while exogenous CaMKII is
R3 isoform (arrowhead) and expressed only in the retina. Mean ± SD, n = 5, n.s., P> 0.05. (F) Inhibition of CaMKII activity suppresses tau-
induced neurodegeneration. (Left) The lamina of flies expressing human tau alone (tau) and co-expressing human tau and the inhibitory domain
of the rat CaMKII (tau+ala) driven by GMR-Gal4. (Right) Quantification of neurodegeneration. Mean ± SEM, n = 8�12. *, P5 0.05.

CaMKII promotes tau toxicity

337

D
ow

nloaded from
 https://academ

ic.oup.com
/jb/article/162/5/335/3869165 by guest on 23 April 2024



promotion of tau-induced neurodegeneration caused by
CaMKII.

Neither knockdown nor overexpression of CaMKII
alters the levels of tau phosphorylated at Ser262/356
CaMKII phosphorylates tau at Ser262 and Ser356 in
vitro (21). Thus, we asked whether overexpression of
CaMKII would increase tau phosphorylation at
Ser262 and Ser356. Co-expression of CaMKII did
not increase the level of tau phosphorylated at
Ser262 or at Ser356 (Fig. 3A, also see total tau levels
in Fig. 1E).

We also investigated whether suppression of tau-
induced toxicity by CaMKII was accompanied by a
reduction in the levels of tau phosphorylated at
Ser262. In our Drosophila model, tau is phosphory-
lated at Ser262, whereas phosphorylation at Ser356
is not detectable (11). Western blotting using phos-
pho-tau�specific antibody revealed that CaMKII
knockdown did not significantly affect the levels of
tau phosphorylated at Ser262 (Fig. 3A, also see total
tau levels in Fig. 1C). Since neurodegeneration is res-
cued by CaMKII knockdown (Fig. 1B), these results
suggest that the effect of CaMKII on tau toxicity is not
associated with the levels of tau phosphorylation at
Ser262 in this model.

CaMKII does not alter tau distribution to the microtu-
bule and cytosol
Alterations in the distribution of tau are associated
with tau toxicity, and tau phosphorylation at Ser262/
356 initiates mismetabolism of tau by increasing the

levels of microtubule-unbound free tau (10). Because
CaMKII regulates microtubule stability during synap-
tic activation (47), CaMKII might augment toxicity of
tau phosphorylated at Ser262/356 by promoting tau
detachment from microtubules. Thus, we tested the
effect of CaMKII overexpression on the binding of
tau to microtubules. We found that CaMKII overex-
pression did not significantly affect the distribution of
tau on microtubules or in the cytosol (Fig. 4A), indi-
cating that CaMKII does not cause mislocalization of
tau in this fly model.

Discussion

Tau accumulation is observed in multiple neurodegen-
erative diseases, including AD. Abnormal metabolism
of tau is induced by post-translational modifications of
tau, including phosphorylation (1). Tau phosphoryl-
ation at Ser262/356 is thought to be one of the patho-
logical changes that initiate tau mislocalization and
mismetabolism (8�13). Phosphorylation at these sites
decreases tau binding to microtubules and increases
the levels of microtubule-unbound tau, leading to fur-
ther phosphorylation of tau at other sites, and pro-
motes tau-induced neurodegeneration (9, 11, 14�17).
Although this cascade of events plays a central role in
the disease pathogenesis, it is not fully understood how
this process is modified by other cellular changes under
pathological conditions.

Neuronal hyperexcitability and disruption of intra-
cellular calcium homeostasis are observed in the early
stages of AD and other neurodegenerative diseases (18,

Fig. 2 Blocking tau phosphorylation at Ser262/356 abolishes enhancement of tau-mediated neurodegeneration caused by CaMKII. (A) The lamina
of flies expressing tau carrying the S262A/S356A double mutation (S262A/S356A) and co-expressing S262A/S356A tau and CaMKII (S262A/
S356A+CaMKII) driven by GMR-Gal4. Neurodegeneration is indicated by arrows. (B) Quantification of neurodegeneration. Mean ± SEM, n
= 8�10. n.s., P > 0.05, Student’s t-test. Flies were 10 days-after-eclosion. (C) Overexpression of CaMKII does not change the levels of S262A/
S356A tau. Western blot analysis of fly heads expressing S262A/S356A tau alone (S262A/S356A) and co-expressing S262A/S356A tau and
CaMKII (S262A/S356A+CaMKII) driven by GMR-Gal4 with anti-tau antibody (tau) or anti-dCaMKII antibody (dCaMKII).
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Fig. 4 CaMKII does not alter tau distribution to the microtubule and cytosol. The levels of tau and tubulin in the lysate of fly heads expressing tau
alone (tau) or co-expressing tau and CaMKII (tau+CaMKII) before sedimentation (input), in the supernatant (cytosol) and in the pellet
containing microtubules (microtubule) were analyzed by western blotting by using anti-tau and anti-tubulin antibodies. The same amount of
proteins from each genotype was loaded. Mean ± SD, n = 5, n.s., P> 0.05, Student’s t-test.

Fig. 3 CaMKII does not affect the levels of tau phosphorylated at Ser262/356. (A) Western blot analysis of fly heads expressing human tau alone
(tau) and co-expressing human tau and CaMKII (tau+CaMKII) with antibody against pSer262 (pSer262) or an antibody recognizes tau
phosphorylated at Ser356 (pSer356). (B) Western blot analysis of fly heads expressing human tau alone (tau) and co-expressing human tau and
CaMKII RNAi (tau+CaMKIIRNAi) with an antibody that recognizes tau phosphorylated at Ser262 (pSer262). Actin was used as a loading
control. Mean ± SD, n = 5, n.s., P> 0.05, Student’s t-test.
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19). Impairment of cellular pathways involved in Ca2+

buffering under pathological conditions can increase
intracellular Ca2+ (48, 49), which may result in pro-
longed activity of CaMKII and its mislocalization out-
side of synapses (50). In this study, we demonstrated
that excess activity of CaMKII promotes neurodegen-
eration caused by tau phosphorylated at Ser262/356
using a Drosophila model of tauopathy. Our results
suggest that elevated levels of tau phosphorylated at
Ser262/356 and aberrant activation of CaMKII work
in concert to promote tau-mediated neurodegeneration
in disease pathogenesis, and that dysregulation of
CaMKII activity, if it coincides with accumulation of
tau phosphorylated at Ser262/356, significantly pro-
motes tau-mediated neurodegeneration. Future studies
of the mechanisms underlying enhancement of tau tox-
icity via CaMKII, including possible roles of other
phosphorylation sites in tau, will advance our under-
standing of disease pathogenesis.

Supplementary Data

Supplementary Data are available at JB Online.
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