Abstract

The National Cancer Institute–funded Cancer Intervention and Surveillance Modeling Network (CISNET) breast cancer mathematical models have been increasingly utilized by policymakers to address breast cancer screening policy decisions and influence clinical practice. These well-established and validated models have a successful track record of use in collaborations spanning over 2 decades. While mathematical modeling is a valuable approach to translate short-term screening performance data into long-term breast cancer outcomes, it is inherently complex and requires numerous inputs to approximate the impacts of breast cancer screening. This review article describes the 6 independently developed CISNET breast cancer models, with a particular focus on how they represent breast cancer screening and estimate the contribution of screening to breast cancer mortality reduction and improvements in life expectancy. We also describe differences in structures and assumptions across the models and how variation in model results can highlight areas of uncertainty. Finally, we offer insight into how the results generated by the models can be used to aid decision-making regarding breast cancer screening policy.

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/pages/standard-publication-reuse-rights)
You do not currently have access to this article.