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Context: It has been well established that the human gut microbiome plays a critical role in the
regulation of important biological processes and the mechanisms underlying numerous complex
diseases. Although researchers have only recently begun to study the relationship between the gut
microbiota and bone metabolism, early efforts have provided increased evidence to suggest an
important association.

Evidence Acquisition: In this study, we attempt to comprehensively summarize the relationship
between the gut microbiota and bone metabolism by detailing the regulatory effects of the
microbiome on various biological processes, including nutrient absorption and the intestinal
mucosal barrier, immune system functionality, the gut–brain axis, and excretion of functional
byproducts. In this review, we incorporate evidence from various types of studies, including ob-
servational, in vitro and in vivo animal experiments, as well as small efficacy clinic trails.

Evidence Synthesis: We review the various potential mechanisms of influence for the gut micro-
biota on the regulation of bone metabolism and discuss the importance of further examining the
potential effects of the gut microbiota on the risk of osteoporosis in humans. Furthermore, we
outline some useful tools/approaches for metagenomics research and present some prominent
examples of metagenomics association studies in humans.

Conclusion: Current research efforts, although limited, clearly indicate that the gut microbiota may
be implicated in bone metabolism, and therefore, further exploration of this relationship is a
promising area of focus in bone health and osteoporosis research. Although most existing studies
investigate this relationship using animal models, human studies are both needed and on
the horizon. (J Clin Endocrinol Metab 102: 3635–3646, 2017)

The human body is colonized with rich and diverse
microbial communities consisting of bacteria, viruses,

fungi, and protozoa, all of which taken together compose
the human microbiome (1). The majority of these mi-
croorganisms reside in the gastrointestinal tract (gut
microbiota), typically lining the mucosal surfaces of the
host. These microbes begin to interact with the human
body beginning from the earliest stages of life, as it is
believed the human fetus may be exposed to the maternal

microbiome during gestation and development (2). After
birth, the gut microbiota quickly colonize in the digestive
tract, and the microbiome is established within the first
few years of life (1, 3). Although the composition of an
individual’s gut microbiota usually remains relatively
stable in adulthood (1), it may be altered by various
factors, including host genetics (4), diet (5), age (6), ge-
ography (6), host immune status (7), travel (8), and use of
certain medications (9).
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It is estimated that .1000 different microbial species
exist in the human gut (10). The combination of the
unique genomes corresponding to each of these species
contributes to the gut metagenome, which is estimated to
contain .450 times the number of genes as the human
genome (11). Previous association studies have shown
that the gut microbiome is involved in the regulation
of a wide variety of biological processes, including gut
physiology (12), nutrient production and absorption
(13), host growth (1), energy balancing (14), metabolic
functions (15), immune-system functions (16), brain–
behavior systems (17), and inflammatory processes (12).
Additionally, differences in the composition of the gut
microbiota have been found to be associated with the
pathogenesis of several complex human diseases, in-
cluding obesity (18), irritable bowel syndrome (19), type
1 (20) and type 2 diabetes (21), colorectal cancer (22),
Parkinson’s disease (23), transient ischemic attack (24),
and rheumatoid arthritis (25).

Although the number of studies assessing the impact of
the microbiota composition on bone metabolism is still
very limited, the current findings suggest a potentially
intriguing and complex relationship thatwarrants further
examination to determine the specific mechanisms by
which themicrobiomemaymodulate bone physiology. In
this review, we comprehensively summarize the existing
evidence of the connections between the gut microbiota
and bone processes and discuss the potential path-
ways of functional influence. Whereas some aspects of
the microbiota–bone relationship have previously been
reviewed (26), we also contribute some useful bio-
informatics methodology and approaches for meta-
genomics research and provide perspectives for future
explorations of the role of the gut microbiota in the
etiology of osteoporosis.

Evidence of the Association Between Gut
Microbiota and Bone

Intestinal bacterial overgrowth and bone loss
The earliest evidence of a relationship between the gut

microbiota and bone metabolism reported that bone
mineral density (BMD) was associated with intestinal
bacterial overgrowth. In a prospective cohort study, Di
Stefano et al. (27) found that bone loss at the site of the
lumbar spine and femoral neck was associated with in-
testinal bacterial overgrowth, indicating overgrowth of
the gut microbiota may be an important risk factor in
osteopenia/osteoporosis. These findings were further vali-
dated by Stotzer et al. (28), who observed that individuals
with intestinal bacterial overgrowth had significantly lower
BMD in the lumbar spine and the femoral neck. In contrast
to these findings, a separate study in a small elderly cohort

(;80 years old) found no differences in femoral BMD
between intestinal bacterial overgrowth subjects and con-
trols (29).However,we hypothesize that the negative results
may be attributed to the overwhelming effects of other bone-
related factors (e.g., extremely low physical activity) and
comorbidities that are common to elderly populations.

We note that intestinal bacterial overgrowth has also
been shown to be associated with malabsorption, which
can influence the metabolism of essential elements for
bone processes such as calcium, carbohydrates, vitamin
B, and vitamin K (30). Although malabsorption is known
to be an important risk factor for bone-related dis-
eases, the effect of bacterial overgrowth on bone loss is
not solely accounted for by this deficiency. In the
Stotzer et al. study (28), serum-ionized calcium and 1,25-
dihydroxyvitamin D3 levels in the bacterial overgrowth
individuals were measured to be at normal levels, sug-
gesting that the observed osteoporosis/osteopenia is most
likely mediated by several different mechanisms.

Experiments with germfree animals
Germfree mice, born and raised under sterile condi-

tions and therefore largely free of microbiota, are useful
tools to study the effects of the gutmicrobial communities
on host physiology. Sjogren et al. (31) reported that
7-week-old female germfree mice had increased BMD and
a reduced number of osteoclasts compared with conven-
tionally raised mice. More importantly, colonization of the
germfree mice with a normal gut microbiota reduced bone
mass, suggesting that the absence of gut microbiota may be
responsible for the elevated BMD in the germfree mice. In
contrast, Schwarzer et al. (32) showed that 8-week-oldmale
germfree mice had significantly decreased bone growth
characteristics, including femur length, cortical thickness,
and cortical/trabecular bone fractionof the femur compared
with wild-type mice that had normal gut colonization.

We hypothesize that the conflicting findings from these
studies may be attributed to the different genetic profiles
of the C57BL/6J mice used in Sjogren et al. (31) and the
BALB/cmice used in Schwarzer et al. (32). It has beenwell
documented that the immune reactions of these two
mouse strains to gut bacteria are very different. For ex-
ample, innate secretory immunoglobulin A, a core fun-
damental molecule for intestinal immune homeostasis,
has been shown to be elevated in BALB/c mice compared
with C57BL6/J mice in both feces and serum samples
(33). In the same study, it was shown that, when chal-
lenged by Typhimurium aroA, the level of Salmonella-
specific IgA in the feces was similar for both strains,
although the level in the serum was much less in BALB/c
mice (33). Collectively, these differences in immune re-
sponses may result in differences in the levels of cytokines
critical for bone metabolism such as tumor necrosis factor
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(TNF)-a and interleukin (IL)-6, potentially leading to
differences in BMD.

Evidence from prebiotics, probiotics, and
antibiotics studies

Prebiotics are nondigestible food ingredients that
benefit host health by modification of the composition
and activities of the gut microbiota (34). Essentially,
prebiotics include certain types of plant fiber that reside
inside the gastrointestinal tract and provide nourishment
for the healthy bacteria of the gut. They are mainly
known for their role in digestive processes; however,
common prebiotics such as galactooligosaccharide, in-
ulin, and resistant starch have also been shown to pro-
mote mineral (calcium, magnesium, and zinc) absorption
(35, 36), a process that has an important impact on the
regulation of BMD and the prevention of bone loss (37).

In contrast, probiotics are living microorganisms that
have important positive health effects on the host, par-
ticularly by acting on the digestive system (38). The effects
of several important probiotics, mainly Lactobacillus and
Bifidobacteria, on the regulation of BMDhave been studied
in both animal models and humans. Treating mice with the
probiotic Lactobacillus reuteri was shown to significantly
decrease osteoclastogenesis and bone resorption, prevent-
ing bone loss in a mouse model (39). Similar results have
also been observed for other Lactobacillus strains, such as
Lactobacillus rhamnosusandLactobacillusparacasei, among
others (40–42).

Narva et al. (42) identified Lactobacillus helveticus
fermentedmilk to have an acute positive effect on calcium
metabolism. Although milk has long been known to
contain nutritional elements that are beneficial for bone
health, there have not been any current studies exploring
whether milk consumption benefits bone metabolism by
altering the composition of the gut microbiota. However,
it has been shown that some types of gut bacteria may aid
in the breakdown of proteins contained in milk to bio-
logically active peptides (43), suggesting that the gut
bacteria may regulate the beneficial effects from milk
consumption on bone metabolism. Taken together, all
the evidence suggests that improved bone metabolism
may be included among the many protective health
benefits associated with probiotics.

It is also well known that antibiotic treatments have
the ability to perturb the composition of the gut micro-
biota. Cho et al. (9) treated mice with four types of anti-
biotic regimens (penicillin, vancomycin, penicillin plus
vancomycin, and chlortetracycline) and demonstrated
that altering the composition of the microbiome by anti-
biotic treatment can significantly affect bone growth
during early life development. Several additional anti-
biotics studies have supported these findings, indicating

that the gut microbiota may impact bone growth through
changes in metabolic hormones as well as the regulation
of hepatic gene expression (44, 45).

Potential Mechanisms for Gut Microbiota
Affecting Bone Metabolism

There are several potential mechanisms by which the gut
microbiota may influence biological processes important
for human health, and in the subsequent sections we aim
to outline the current findings as they relate to bone
metabolism.

Influence on nutrient absorption and the intestinal
mucosal barrier

Among the extensive variety of bacterial species in the
gut microbiota, many can influence the processes of
nutrient absorption. For instance, an elevated concen-
tration of the probiotics L. reuteri and Bifidobacterium
longum in the gut may increase BMD by promoting
mineral (calcium, magnesium, and phosphate) absorp-
tion (46). It has also been shown that the composition of
the gut microbiota can influence the pH level of the gut
(47), an important factor for nutrient absorption, espe-
cially calcium (48). Other studies have shown that the gut
microbiota aid in the breakdown of macromolecules to
smaller components that can be more easily absorbed, an
important feature for both bone health and human
metabolism more generally (49). Moreover, these micro-
organisms play an essential role in the synthesis of vitamin
B and vitamin K as well as the metabolism of bile acids
(50). It is well known that vitamins B andK are critical for
the regulation of bone health (51, 52), and that various
bile acids may play key roles in the control of calcium
absorption. For example, it has been shown that urso-
deoxycholic acid promotes calcium absorption, whereas
deoxycholic acid inhibits calcium absorption (53).

Nutrient absorption may also be influenced by host
diet, which can in turn impact the composition of the
microbial profile. The intake of carbohydrates and other
nutrients provides energy for the survival of the gut
bacteria; however, the composition of the diet can have
important effects on the microbial community. High-
calorie diets are associated with a reduction in the
Bacteriodetes/Firmicutes ratio (54), which can lead to
metabolic disturbance of the host. In contrast, low-calorie
diets increase the concentration of harmful substances in
the intestinal tract (55), which may also have negative
consequences for host health. Although adequate protein
intake provides necessary elements for bone growth, an
excess of protein in the diet may also lead to an elevated
level of toxins in the intestinal tract, such as hydrogen
sulfide and methane (56). Therefore, it is crucial to
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maintain a balanced diet and adequate carbohydrate/
protein ratio because dietary intake can lead to mean-
ingful alterations in the gut microbiota, thereby influ-
encing bone metabolic processes.

The relationship between the gut microbiota and the
intestinal mucosal barrier is quite complex, as they are
known to codevelop and work together to engage foreign
pathogens (57). Hamilton et al. (58) demonstrated that a
change in the composition of the gut microbiota induced
an increase in intestinal permeability, which could result
in metabolic disorders. The dysfunction of the intestinal
mucosal barrier may lead to an increase in serum levels of
lipopolysaccharide (LPS), which could in turn increase
membrane permeability, resulting in metabolic endo-
toxemia (59). Early studies have suggested that LPS
promotes the survival of osteoclasts in vitro (60, 61);
however, most studies have used much higher dosages of
LPS than what is necessary to induce metabolic endo-
toxemia, and therefore it is unclear whether endotoxemia
would influence bone mass in vivo.

Influence on immune system
In order for the immune system to adequately func-

tion, the human bodymust be able to distinguish between
the molecules that are normally present in the host en-
vironment and the foreign microorganisms that are not.
Because the gut microbiota are acquired from the envi-
ronment, they may elicit immune responses at either the
local site of the gut or systemically throughout the body.
Therefore, the presence of certain species may lead to an
increase in a number of cytokines, including many that
are associated with bone metabolism, such as TNF-a
(31). In support of these findings, Sjogren et al. (31) found
that germfree mice had reduced expression of proin-
flammatory cytokines TNF-a and IL-6. TNF-a is known
to stimulate the receptor activator for nuclear factor kB
ligand signaling pathway, which may promote bone loss
(62), as well as suppress the differentiation of mesen-
chymal stem cells into osteoblasts, inhibiting bone for-
mation (63).

It has been noted that there is an interesting re-
lationship between bone loss and bariatric surgeries (64).
The mechanism of the bone loss induced by bariatric
surgeries is not fully understood, although it is believed to
include malabsorption and certain immune system fac-
tors along with multiple other unknown components
(65). In one recent study, it was reported that gut
microbiota and proinflammatory cytokines (including
TNF-a and IL-6) were altered after sleeve gastrectomy
(66). In particular, after treatment by sleeve gastrectomy,
the levels of TNF-a and IL-6 were reduced (66). How-
ever, bone loss is known to be associated with increased
levels of TNF-a and IL-6 rather than decreased levels.

Therefore, although it is worth noting, these findings are
inconsistent, and it is unclear exactly how bariatric
surgeries may impact the microbiome relevant to bone.

Influence on gut–brain axis
In recent years, it has been discovered that the gut

microbiota may have important effects on the nervous
system through regulation of the synthesis of hormones
and neurotransmitters such as serotonin (5-HT) (17). The
5-HT signal transduction system is regarded as an im-
portant factor for the regulation of bone development
and maintenance. Bliziotes et al. (67) reported that both
osteoblast and osteocyte cells contain 5-HT receptors,
and that increased 5-HT levels are associated with de-
creased bone mass in mice. In accordance with this dis-
covery, another study found that decreasing the 5-HT
levels with a synthesized molecular inhibitor was able to
prevent ovariectomized-induced bone loss in mice (68).
Additionally, Sjogren et al. (31) showed that germfree
mice had decreased 5-HT levels and increased trabecu-
lar bone volume/tissue volume. Therefore, the evidence
suggests that the gut microbiota may influence bone
processes by affecting the levels of metabolic hormones
within the body.

Effects by gut microbial excretion byproducts
Microbial byproducts not only help digestion and

absorption of nutrients, but also have their own potential
function in the regulation of BMD. For example, some
short chain fatty acids produced by the gut microbiota
(e.g., butyrate) play an important role in bone formation
and bone mineralization by influencing the Runx and
osteoprotegerin signaling pathways (69, 70). In addition,
butyrate reduces osteoclastogenesis by suppressing the
receptor activator for nuclear factor kB ligand signaling
pathway (71). It is also known that the gut microbiota
may influence intestinally derived estrogen such as fla-
vonoids and diethylstilbestrol (72, 73). The decrease of
estrogen levels is a major factor contributing to post-
menopausal osteoporosis risk, and therefore, the gut
microbiota may influence the regulation of bone health
by altering levels of nonovarian estrogens.

Additional studies have discovered that short chain
fatty acids also might indirectly affect BMD by signifi-
cantly influencing the function of host endocrine factors
that are related to bone metabolism, such as peptide YY
and glucagon-like peptide 1 (74). Peptide YY is a gas-
trointestinal hormone secreted from the endocrine L cells
and has been shown to be negatively associated with total
body and hip BMD in premenopausal women (75).
Glucagon-like peptide 1, an amino acid hormone that is
also secreted from the endocrine L cells, has been shown
to act as a regulator of bone metabolism by altering the
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balance between osteoblast and adipocyte differentiation
from bone mesenchymal stem cells (76).

The overall relationship between the gut microbiota
and bone metabolism is summarized in Fig. 1.

Approaches for Metagenomics Analysis

Given the importance of the gut microbiota for bone
metabolism and potentially the risk of osteoporosis de-
velopment, we anticipate a growing number of meta-
genomic studies in this field throughout the near future.
In the following section, we outline some prevailing
technical and analytical approaches that are appropriate

for gut microbiome studies of complex diseases such as
osteoporosis.

Profiling techniques: 16S ribosomal RNA gene
sequencing, metagenomic shotgun sequencing,
and DNA microarrays

The 16S ribosomal RNA (rRNA) gene sequencing is a
highly efficient and cost-effective method for microbiota
profiling (77). Bacterial DNA is extracted after sample
collection, and either the variable regions or full-length
(78) of the 16S rRNA gene are selected for sequenc-
ing. Bacterial identification is accomplished using se-
quence alignment to cluster the microbes into operational

Figure 1. Potential etiology of osteoporosis attributed to gut microbiota. Gut microbiota may be altered by various factors, including host genetics,
diet, age, geography, host immune status, travel, and use of certain medications. Gut microbiota play important roles on the regulation of bone via
nutrition absorbing, changing the permeability of intestinal mucosal barrier, immune system, gut–brain axis, and excrete products. ?, evidence for the
effects of 5-HT and LPS on bone is unconfirmed as more studies are needed for validation. PH, potential of hydrogen; SCFA, short chain fatty acid.
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taxonomic units (OTUs) based on genetic similarity,
which can then be incorporated into statistical associa-
tion analysis. Although it has been shown that the 16S
sequencing approach is fairly powerful to identify
microbiota taxa (9), there are some important technical
limitations, such as poor taxonomic resolution, low
sensitivity making it difficult to detect the rare taxa, and it
does not provide information about genomic functional
information of the microbes (79).

Recent improvements in next-generation sequencing
technology have stimulated the development and appli-
cation of metagenomic shotgun sequencing for gut
microbiome analysis (21, 22, 25). In this approach, DNA
is extracted from all microbes in a community, but in-
stead of targeting a specific marker gene for amplifica-
tion, the entire nucleotide pool is separated into small
fragments that are subsequently sequenced. Because
this approach does not rely on the single-copy and
evolutionary assumptions of marker genes, it can pro-
duce a less biased community profile than does 16S rRNA
sequencing (80). In addition, metagenomic shotgun se-
quencing can generally provide higher-resolution de-
scriptions of the microbial compositions, making it
possible to identify particular species and even strains
of microbes (81). More importantly, sequencing reads
sampled from coding sequences can provide insight into
the genes and biological functions encoded by specific
microbes. Despite these benefits, we note that the nec-
essary bioinformatics tools for metagenomic shotgun
sequencing may be considered more challenging com-
pared with that for the 16S rRNA sequencing data,
although computational and bioinformatics tools are
currently being developed (79–82).

In addition to the aforementioned sequencing-based
approaches, the DNA microarray technique is also

commonly used. There are many advantages to DNA
microarray–based analysis, including high-throughput
capabilities, cost effectiveness, as well as relative ease
and quickness. DNA microarrays for the analysis of the
gut microbiota, such as Human Intestinal Tract Chip
(HITChip), are composed of oligonucleotide probes
contained in known gene catalogs (20). Although both
simple and convenient, the major disadvantage of the
microarray approach is that it is based on complementary
DNA hybridization, and therefore it is not possible to
study uncultured/unknown strains of bacteria.

The strengths and weaknesses of the aforementioned
three approaches are outlined in Table 1.

Data analysis workflow

The data analysis workflow for 16S rRNA sequencing
and metagenomic shotgun sequencing data have been
extensively reviewed (21, 79, 83, 84), and we summarize
several commonly used computational tools for meta-
genomic data analysis in Table 2.

Briefly, the bacterial identification and classification of
16S rRNA sequencing data involve three main steps. The
first step includes raw sequencing data processing,
quality filtering, de-noising, removing artificial chimera
sequences, and data normalization. The second step in-
volves global alignment for sequence taxonomy, clus-
tering by OTUs, and building phylogenetic trees. The
final step involves statistical analyses of the OTU taxa to
measure a- and b-diversity, the microbial diversity within
and between samples, respectively.

Similarly, in metagenomic shotgun sequencing, the
process begins with raw sequencing data processing,
quality filtering, sequence alignment, removal of human
sequencing reads, and de novo assembly of the meta-
genome. This is followed by taxonomic assignment,

Table 1. Strengths and Weaknesses of the Three Main Approaches in Metagenome-Wide Association Study

Features 16S rRNA Sequencing Metagenomic Shotgun Sequencing DNA Microarrays

Strengths 1. Identify speciesa/genusb of
bacteria, including known
and novel speciesa/genusb of bacteria

1. Detect very low-abundance microbes 1. High throughput

2. Highly efficient and cost effective 2. Provide information at all
taxonomic levels

2. Quickness

3. Provide potential functional
information of gut microbiota

3. Direct phylogenetic
identification

4. Cost effective
Weaknesses 1. Poor taxonomic resolution 1. Expensive 1. Can’t find novel

species/strains
2. Can’t detect very low-abundance

microbes
2. Need complex analysis tools to

generate all the data
2. Cross-hybridization and

hybridization
3. Can’t provide biological functional information

of gut microbiota

aFull-length 16S rRNA gene sequencing can pinpoint to species.
b16S rRNA amplicon sequencing can pinpoint to genus, not species.
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which is typically accomplished by comparingmetagenomic
reads with a database of taxonomically informative marker
genes and using sequence or phylogenetic similarity to
taxonomically characterize metagenomic homologs.
Finally, functional information of themicrobes is provided
by annotating predicted genes or sequencing reads into
orthologous gene families and metabolic pathways using
various databases such as the Kyoto Encyclopedia of Genes
and Genomes, Clusters of Orthologous Groups (85), egg-
NOG (86), Pfam (87), and TIGRFAMs (88).

Although the current bioinformatics tools for meta-
genomic data certainly have utility, there are still several
crucial limitations that leave much room for improve-
ment. Although new approaches that can accommodate
the types of analytical challenges common tometagenomic
data are rapidly evolving, there is a necessity for an increased
focus on methodology development.

Perspective

In this section, we offer some suggestions for research
areas that may provide further insight into the relation-
ship between the gut microbiome and bone metabolism.
Although to date there are no current metagenome-wide
association studies (MGWASs),multiomics, or translational
studies specific to osteoporosis, there are promising exam-
ples for other complex diseases that may serve as a guide for
future bone research.

Metagenomics studies for osteoporosis
With increasingly reduced costs of high-throughput

sequencing, MGWASs, which aim to identify the asso-
ciation between the relative abundances of taxonomic
units in a metagenome (e.g., gut microbiome) and a

phenotypic trait, are quickly becoming more popular.
Recent MGWASs have not only shed insights into the
pathophysiological mechanisms of a number of complex
human diseases, but have also shown the effective power
to distinguish between cases and healthy controls based
on the composition of the gut microbiota. Qin et al. (21)
conducted a two-stage MGWAS using metagenomic
shotgun sequencing and identified several type 2
diabetes–associated biomarkers. In another study, Zhang
et al. (25) used a metagenomic shotgun-sequencing ap-
proach to show that the composition of the gut micro-
biota in rheumatoid arthritis cases was significantly different
from the microbial profile of healthy controls.

MGWAS for osteoporosis holds great promise in
providing findings regarding the specificmicrobial features
that are involved in the underlying biological mechanisms
of osteoporosis. There is a necessity for studies in humans
to further examine the impact of the gut microbiota com-
position on the risk of osteoporosis. We caution that the
incidence and mechanisms of osteoporosis in females are
largely different from that in males, and thus, sex specificity
should be taken into consideration when designing future
MGWASs for osteoporosis.

Multiomics studies for gut microbiota
Although metagenomic sequencing can provide in-

formation about the genetic makeup of the bacteria
present in the microbiome, it cannot identify the particular
genes that are actively expressed within the metagenome.
Recently, there has been an increased focus to develop
assays that analyze theRNA, protein expression, and small-
molecule metabolites of the gut microbiota to provide
useful information regarding meta-transcriptomics, meta-
proteomics, and meta-metabolomics (89–91). Integrating

Table 2. Bioinformatics Tools for 16S rRNA Gene–Sequencing and Metagenomic Shotgun–Sequencing
Studies

Tools Main Function Reference Web Site/Note

DADAa Denoising 107 sites.google.com.site/dadadenoiser
Denoisera Denoising 108 qimme.org
ChimeraSlayera Chimera detection 109 microbiomeutil.sourceforge.net
DECIPHERa Chimera detection 110 decipher.cee.wisr.edu
UCLUSTa OTU clustering 111 www.drive5.com/usearch
CD-HIT-OTUa OTU clustering 112 weizhing-laboratory.ucsd.edu/cd-hit/otu
Mothura ALL three stepsc 113 Mothur.org
QIIMEa ALL three stepsc 114 qimme.org
MetaIDBAb Assembly 115 For short reads (75–150 bp)
MEGANb Binning 116 Compositional-based
PhyloPythiaSb Binning 117 Similarity-based
MetaClusterb Binning 118 Both compositional-based and similarity-based
MetaGeneAnnotatorb Functional annotation 119 metagene.nig.ac.jp/
METAREPb Functional annotation 120 jcvi.org/metarep/

aBioinformatics tools for 16S rRNA gene–sequencing studies.
bBioinformatics tools for Metagenomic shotgun–sequencing studies.
cAll three steps included in the general workflow of analysis for 16S rRNA gene–sequencing data.
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multiple layers of omics from the gut microbiota will
provide a more comprehensive and systematic under-
standing of how themicrobiotamay affect certain aspects of
host physiology such as bone metabolism (92).The simul-
taneous advances in multiomics studies for both humans
and the gut microbiota offer opportunities for combining
studies of host omics with that of the gut microbiome (93).

Several recent studies have demonstrated that the gut
microbiota composition may be influenced by the host
genome (94, 95), and there is also a growing appreciation
for the role of epigenetic regulation of the host–microbiota
interactions (96). Gut-microbial byproductsmay affect the
methylation status of the host genome and in turn lead
to transcriptomic alterations that can modify the risk of
phenotypic trait expression (97, 98). Therefore, the gut
microbiota may act as an important mediator of host
gene environment interactions. Further exploration through
integrative multiomics and network analysis studies is
needed to elucidate the full range of these interactions
as they relate to bone health and other complex human
diseases.

Translational potential of gut microbiota
The apparent association between the gut microbiota

and bone metabolic processes suggests that the charac-
terization and identification of important gut microbiota
features may have great clinical potential. Remarkably,
several recent studies (21, 22, 25, 99) have shown that
distinctions in the gut microbiota composition may be
used to distinguish between individuals having differ-
ential disease status with high statistical power based on
the area under the curve metric (area under the receiver
operating characteristic curve), a common indicator to
evaluate sensitivity and specificity (Table 3). Therefore, it
is conceivable that the gutmicrobiotamay furnish effective
biomarkers in the diagnosis/prognosis of bone diseases and
other phenotypic traits.

Currently, the majority of therapeutic efforts targeting
the gut microbiota have been focused around the
preventative/protective effects provided by probiotics
and prebiotics (100, 101). These types of treatments
have been successfully tested in clinical interventions for
dozens of human diseases, including obesity (102), ul-
cerative colitis (103), atopic diseases of children (104),
hypercholesterolemia (105), and autism (106). Narrow-
spectrum antibiotics directed toward the gut microbiota
and their byproducts are believed to hold great promise
as amicrobiome-based therapy (100, 101). Although there
has not yet been much focus to assess the success of
microbiome-based therapies in the treatment of bone-
related diseases, it is possible that in the future the iden-
tification of those microbiota important for the regulation
of bone metabolism may serve as therapeutic targets.
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15. Tremaroli V, Bäckhed F. Functional interactions between the gut
microbiota and host metabolism.Nature. 2012;489(7415):242–249.

16. Belkaid Y, Hand TW. Role of the microbiota in immunity and
inflammation. Cell. 2014;157(1):121–141.

17. Kennedy PJ, Cryan JF, Dinan TG, Clarke G. Kynurenine pathway
metabolism and the microbiota-gut-brain axis. Neuropharma-
cology. 2017;112(Pt B):399–412.

18. Turnbaugh PJ,HamadyM,Yatsunenko T, Cantarel BL, DuncanA,
Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, Egholm M,
Henrissat B, Heath AC, Knight R, Gordon JI. A core gut micro-
biome in obese and lean twins. Nature. 2009;457(7228):480–484.
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Moya A. Metagenomics of human microbiome: beyond 16s
rDNA. Clin Microbiol Infect. 2012;18(Suppl 4):47–49.

90. Young JC, Pan C, Adams RM, Brooks B, Banfield JF, Morowitz
MJ, Hettich RL. Metaproteomics reveals functional shifts in
microbial and human proteins during a preterm infant gut col-
onization case. Proteomics. 2015;15(20):3463–3473.

91. Vernocchi P, Del Chierico F, Putignani L. Gut microbiota pro-
filing: metabolomics based approach to unravel compounds
affecting human health. Front Microbiol. 2016;7:1144.

92. Mondot S, Lepage P. The human gut microbiome and its dys-
functions through themeta-omics prism.AnnNYAcad Sci. 2016;
1372(1):9–19.

93. SporA,KorenO, LeyR.Unravelling the effects of the environment
and host genotype on the gut microbiome. Nat Rev Microbiol.
2011;9(4):279–290.

94. Goodrich JK,Waters JL, Poole AC, Sutter JL, KorenO, Blekhman
R, Beaumont M, Van Treuren W, Knight R, Bell JT, Spector TD,
Clark AG, Ley RE. Human genetics shape the gut microbiome.
Cell. 2014;159(4):789–799.

95. Wang J, Thingholm LB, Skieceviciene J, Rausch P, Kummen M,
Hov JR, Degenhardt F,Heinsen FA, RühlemannMC, Szymczak S,
Holm K, Esko T, Sun J, Pricop-Jeckstadt M, Al-Dury S, Bohov P,
Bethune J, Sommer F, Ellinghaus D, Berge RK, Hübenthal M,
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Nöthlings U, Karlsen TH, Baines JF, Franke A. Genome-wide
association analysis identifies variation in vitamin D receptor and
other host factors influencing the gut microbiota. Nat Genet.
2016;48(11):1396–1406.

96. Alenghat T, Artis D. Epigenomic regulation of host-microbiota
interactions. Trends Immunol. 2014;35(11):518–525.

97. Putignani L, Dallapiccola B. Foodomics as part of the host-
microbiota-exposome interplay. J Proteomics. 2016;147:3–20.

98. Cortese R, Lu L, Yu Y, Ruden D, Claud EC. Epigenome-
Microbiome crosstalk: a potential new paradigm influencing
neonatal susceptibility to disease. Epigenetics. 2016;11(3):
205–215.

99. Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G,
AlmeidaM, ArumugamM, Batto JM, Kennedy S, Leonard P, Li J,
Burgdorf K, Grarup N, Jørgensen T, Brandslund I, Nielsen HB,
Juncker AS, Bertalan M, Levenez F, Pons N, Rasmussen S,
Sunagawa S, Tap J, Tims S, Zoetendal EG, Brunak S, Clément K,
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