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HESX1/Hesx1 is a member of the paired-like class of homeobox
genes and is essential for pituitary and forebrain develop-
ment. Mice with a targeted homozygous deletion of the Hesx1
show severe central nervous system defects, absence of optic
vesicles, and a very small anterior pituitary gland. This phe-
notype is similar to the abnormalities observed in the human
disorder called septo-optic dysplasia, a syndromic form of
congenital hypopituitarism. To date, four missense mutations
in the human HESX1 have been described in individuals with
phenotypes ranging from severe septo-optic dysplasia, rela-
tively mild combined pituitary hormone deficiency (CPHD),
to isolated GH deficiency. Here we report a Japanese patient
with CPHD (GH, TSH, LH, FSH, and ACTH deficiency) due to
a novel sporadic HESX1 mutation. Brain magnetic resonance

imaging examination revealed hypoplastic anterior pituitary,
ectopic posterior lobe, and left optic nerve hypoplasia. Mo-
lecular analysis identified the insertion of a heterozygous mu-
tation (306/307ins AG) in the exon 2 of the HESX1. This mu-
tation changes a reading frame and introduces a premature
stop codon soon after the mutation site. Therefore, this mu-
tation would be predicted to generate a protein lacking the
carboxyl-terminal homebox domain (DNA-binding domain)
and cause the disease. Family analysis demonstrated that nei-
ther of the patient’s parents harbored this mutation, indicat-
ing that the mutation had arisen de novo. In conclusion, a de
novo heterozygous frameshift mutation in exon 2 of the HESX1
causes severe CPHD with optic nerve hypoplasia in a human.
(J Clin Endocrinol Metab 88: 45–50, 2003)

THE ANTERIOR PITUITARY gland develops from a
midline structure contiguous with the primordium

of the ventral diencephalon (1). After proliferation from a
well defined growth plate, different cell types arise in a
distinct spatial and temporal fashion and undergo a highly
selective determination and differentiation (2, 3). There-
after, numerous cells in the pituitary gland are specialized
to produce and secrete specific hormones, such as GH,
PRL, TSH, LH, FSH, and ACTH (1– 4). Failure of these
trophic cells to differentiate and/or proliferate during em-
bryogenesis accounts for congenital pituitary disorders
that range in severity from panhypopituitarism to milder
forms in which one or more of the hormone-secreting cells
are absent, causing isolated or combined pituitary hor-
mone deficiency (CPHD) (3–5).

Over the last decade, many transcription factors involved
in pituitary development in humans and mice have been
characterized, including POUF1/Pit1, PROP1/Prop1, SF-1/
Sf-1, PITX2/Pitx2, NeuroD1, GATA-2, LHX3/Lhx3, TPIT/
Tpit, and HESX1/Hesx1 (6–17). Among these factors,
HESX1/Hesx1 derived from a homeobox gene expressed in

embryonic stem cell is known to play an important role in the
development of the optic nerve as well as the anterior pitu-
itary gland (8, 16, 17). Hesx1 is intimately involved in or-
chestrating the expression of other factors involved in pitu-
itary organogenesis (17). During mouse embryogenesis,
Hesx1 expression is localized to the prospective forebrain
tissue, which later develops into Rathke’s pouch. Conse-
quently, Hesx1 expression has been reported in all of the
hormone-secreting cell types of the anterior pituitary. In
addition, Hesx1 expression is more widespread than that of
other pituitary-specific transcription factors (8, 16, 17). Ho-
mozygous Hesx1 gene knockout mice show dramatic central
nervous system defects, including absence of the optic ves-
icles and a small anterior pituitary gland (17). These pheno-
types are very similar to the abnormalities observed in a
human disorder called septo-optic dysplasia (SOD) (18–20).
A number of patients with SOD and other patients with a
variety of pituitary disorders were screened, and to date four
different missense mutations in seven patients have been
reported that are responsible for severe SOD, relatively mild
CPHD, or isolated GH deficiency (17, 21, 22). Here, we report
the identification of a novel heterozygous insertion mutation
in the HESX1 in a Japanese patient with sporadic pituitary
and optic nerve hypoplasia.

Abbreviations: CPHD, Combined pituitary hormone deficiency;
MRI, magnetic resonance imaging; SOD, septo-optic dysplasia.
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Materials and Methods
Pituitary hormone assessment

Free T4, free T3, and TSH levels were determined by a commercially
available chemiluminescent immunoassay (Ciba Corning, Inc., Med-
field, MA). Serum cortisol was measured by RIA (Amerlex RIA, Ortho
Clinical Diagnostics Co., Tokyo, Japan). Plasma ACTH was deter-
mined by radioimmunometric assay (ACTH IRMA Mitsubishi, Tokyo
Mitsubishi Chemical Co., Tokyo, Japan). GH provocative tests were
performed using arginine (0.5 g/kg, iv; Morinaga Co., Tokyo, Japan),
insulin-induced hypoglycemia (0.05 U/kg, iv; Eli Lilly & Co., Indi-
anapolis, IN), and GHRH (1 �g/kg, iv; Sumitomo Pharma Co., Osaka,
Japan). GH levels were determined by RIA (Dai-Ichi Radioisotope
Co., Tokyo, Japan). LH and FSH were measured in response to GnRH
(2 �g/kg, iv; Tanabe Pharma Co., Tokyo, Japan). LH and FSH levels
were determined by time-resolved fluoroimmunoassay (Delphia,
Wallac, Inc., Turku, Finland).

DNA amplification and sequence analysis

Informed consent to participate in the study was obtained from the
parents. Genomic DNA was extracted from peripheral leukocytes as
described previously (23). Each exon of HESX1 was amplified by PCR
using primers previously described (17). The PCR conditions con-
sisted of 9 min at 94 C, followed by 30 cycles of 30 sec at 94 C, 30 sec
at 52 C, and 30 sec at 72 C in a Perkin-Elmer Gene Amp PCR System
2400 thermal cycler (PE Applied Biosystems, Foster City, CA). After
amplification, the PCR products were purified from low melting
agarose gel (23), and the purified products were sequenced directly
with an ABI PRISM Dye Terminator Cycle Sequencing Kit and an ABI
373A automated fluorescent sequencer (PE Applied Biosystems) from
both strands (23).

To confirm the mutation, the PCR products were subcloned into pCR
2.1 vector (Invitrogen, San Diego, CA). The resulting construct was used

to transform Escherichia coli strain JM109 (Promega Corp., Madison, WI).
Both strands of positive clones were sequenced with the same primers
using PCR.

Case Report

The patient is a 2-yr-old Japanese boy born at 40 wk gestation
by vaginal delivery to nonconsanguineous parents. The pregnancy
and delivery were without complications. His birth weight was
2764 g (�0.8 sd for the Japanese population), and length was 46.5 cm
(�1.7 sd for the Japanese population). Ten hours after birth he pre-
sented with apnea and cyanosis and was found to be hypoglycemic
(0.78 mmol/liter). Physical examination showed a small penis and
bilateral undescended testes. Intravenous glucose infusion was
started to maintain normoglycemia. As he had a small penis and
hypoglycemia, he was suspected of having congenital hypopituitar-
ism and was referred to our hospital at 14 d of age for further
endocrinological evaluation. At this time his hypoglycemic episodes
resolved, and he did not reveal failure to thrive. His baseline serum
free T4, free T3, and TSH levels were low (3.2 pmol/liter, 1.2 pmol/
liter, and 0.87 �U/ml, respectively). His serum cortisol level was 6.5
nmol/liter, and plasma ACTH was 2.2 pmol/liter (Table 1). Repeated
measurements of serum cortisol and plasma ACTH concentrations
remained low. Brain magnetic resonance imaging (MRI) examination
at 20 d of age revealed a hypoplastic anterior pituitary, ectopic pos-
terior lobe, and left optic nerve hypoplasia (Fig. 1). Hypothyroidism
was evident, and replacement therapy of thyroid hormone was
commenced. Hydrocortisone (5 mg/d) was also initiated to avoid the
consequences of adrenal insufficiency. After initiation of treatment,
he grew well, but by 5 months of age his growth gradually deceler-
ated. At 7 months of age, arginine, insulin-induced hypoglycemia,
and GHRH stimulations were performed. Arginine and insulin
tolerance tests showed low stimulated GH levels; however, serum GH
increased after GHRH stimulation (Table 1). It was speculated

TABLE 1. Endocrinological findings

Normal range Normal range (basal)

Free T4 (pmol/liter)a 3.2 9.0–21.9 LH (IU/liter)b GnRH stimulation 0.0630.21 0.083–1.950
Free T3 (pmol/liter)a 1.2 3.4–6.3 FSH(IU/liter)b GnRH stimulation 0.0730.84 0.293–1.645
TSH (�U/liter)a 0.87 0.3–3.50
GH (�g/liter)b

Insulin-induced hypoglycemia 0.6933.1 ACTH (pmol/liter)a 2.2 3.88–7.82
Arginine stimulation 1.435.1 Cortisol (nmol/liter)a 6.5 213–672
GHRH stimulation 2.3336.1

a These values were determined at 7 d of age as described in Materials and Methods.
b These stimulation tests were performed at 7 months of age, and these values were measured as described in Materials and Methods.

FIG. 1. A, Sagittal image showing a hy-
poplastic anterior pituitary (arrow) and
an ectopic posterior lobe (arrowhead). B,
Coronal image demonstrating left optic
nerve hypoplasia (lt).
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that these findings represent a combined hypothalamic-pituitary
defect. LH and FSH levels after GnRH stimulation did not increase
(Table 1). GH replacement therapy was commenced at this stage,
and the patient responded well (Fig. 2). At 2 yr of age his body weight
is 10.2 kg, and his height is 80.8 cm (�1.0 sd for normal Japanese
boys).

Gene sequencing results

We identified a heterozygous two-base insertion in exon 2 of HESX1
(306/307insAG; Fig. 3). This mutation (TTGAAAAGAGAGTTG-
AGT3TTGAAAAGAGAGAGTTGAGT) may have occurred by slipped
strand mispairing (24). The insertion altered an open reading frame

FIG. 2. Growth curve of the patient.
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introducing a stop codon in the following codon (Fig. 3). DNA sequenc-
ing on the opposite strand also identified the identical mutation. We then
subcloned PCR products and sequenced. Tencolonies had the mutant
alleles, and seven had the wild-type alleles (data not shown). Fifty
normal Japanese subjects did not harbor this mutation. Family analysis
demonstrated that neither of his parents harbored the insertion, indi-
cating that the mutation had arisen de novo.

Discussion

We present a sporadic case of a Japanese patient who had
a heterozygous insertion mutation of HESX1. It is clear that
the affected patient has a de novo insertion mutation, because
neither parent exhibits mutation, and the DNA sequence
shows that he does not have loss of heterozygosity at HESX1.

As our patient showed hypoglycemia soon after birth and
had micropenis, he was suspected to have GH, LH, and FSH
deficiencies, which were later confirmed by provocative
tests. In addition, laboratory findings indicated hypothy-
roidism caused by TSH deficiency. Unlike previous reported
patients with heterozygous HESX1 mutations (21, 22), it is
likely that our case also had ACTH deficiency. Hypoglyce-
mia at birth or in the first months of life is the most common
complaint leading to early diagnosis of GH deficiency (25,

26). However, it has been reported that ACTH/cortisol de-
ficiency often accompanies congenital GH deficiency with
hypoglycemia (26). In addition, the corticotrophs are the first
hormone-producing cells of the pituitary to reach terminal
differentiation and expression of proopiomelanocortin starts
in corticotrophs on about d 12.5 of embryonic development
in the anterior pituitary of the mouse (15, 27). Hesx1 expres-
sion begins on d 8.5 of mouse embryogenesis, and its ex-
pression is later spread to all of the hormone-secreting cell
types of the anterior pituitary (17). In homozygous Hesx1
knockout mice, a striking dysmorphogenesis is evident after
d 11.5 of mouse embryogenesis (17). Taken together, these
data suggest that HESX1/Hesx1 may influence corticotroph
differentiation, resulting in ACTH deficiency that requires
further investigation in these types of patients.

We identified a frameshift mutation, resulting in a pre-
mature stop codon in exon 2 of HESX1. To date, HESX1
mutations have been found in seven patients from five kin-
dreds with various clinical presentations of pituitary hor-
mone deficiency and MRI findings; however, all of these
were missense mutations (Table 2). One mutation (R160C)
was identified as homozygous in siblings with a severe form

FIG. 3. A, Schematic representation of the HESX1 gene. Boxes denote numbered exons. Four previously reported missense mutations and the
mutation in this study (italics) are displayed. The insertion altered an open reading frame, introducing a stop codon in the following codon (circle)
Asterisks indicate heterozygous mutations. Only the R160C mutation was identified in the homozygous state. B, A schema of the protein and
functional domains of HESX1. C, Insertion of AG in exon 2 (306/307insAG). This insertion introduces a stop codon in the following codon.

48 J Clin Endocrinol Metab, January 2003, 88(1):45–50 Tajima et al. • Clinical Case Seminar

D
ow

nloaded from
 https://academ

ic.oup.com
/jcem

/article/88/1/45/2845997 by guest on 23 April 2024



of SOD and panhypopituitarism, and in vitro analysis re-
vealed that the R160C mutant may act as a null allele (17). In
contrast, patients with the other three mutations of the
HESX1 gene (Q6H, S170L, and T181A) were heterozygous
and had variable degrees of hypopituitarism, ranging from
isolated GH deficiency to CPHD (21). Three patients with
S170L showed highly variable phenotypes in terms of the
presence of MRI findings and optic nerve hypoplasia (21, 22).
It is speculated that milder phenotypic expression in het-
erozygotes compared with homozygotes is due to a gene
dosage effect. This is supported by the finding that the ma-
jority of heterozygous Hesx1 knockout mice do not have a
severe phenotype (17, 21). In our patient the degree of CPHD
and MRI findings was milder than in the homozygous case,
but was more severe than in the heterozygous patients. The
exact mechanism for this is unknown. As mentioned, gene
dosage-related phenotypic differences may be an explana-
tion for this. Alternatively, as our mutation produces a pre-
mature stop codon in exon 2, the mutant protein will lack a
carboxyl-terminally truncated protein of 102 amino acids;
however, the amino-terminal region of the mutant may be
translated. Brickman et al. (22) have shown that the amino-
terminal region (a minimal 36 amino acids) of Hesx1 contains
a repressor/dimerization domain. It is plausible that the
mutant N-terminal protein generated in this patient exerts a
dominant negative or modulator effect by interacting with
the wild-type protein, causing the disease. This requires fur-
ther study.

In conclusion, our results indicate that a de novo heterozy-
gous insertion mutation introducing a premature codon in
exon 2 of HESX1 causes pituitary and optic nerve hypoplasia
and severe CPHD. Further identification of the HESX1 mu-
tations will expand our understanding of the clinical heter-
ogeneity and inheritance patterns of hypopituitarism.
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