
Menopause Modifies the Association of Leukocyte
Telomere Length with Insulin Resistance and
Inflammation

Abraham Aviv, Ana Valdes, Jeffrey P. Gardner, Rami Swaminathan, Masayuki Kimura, and Tim D. Spector

Twin Research and Genetic Epidemiology Unit (A.V., T.D.S.) and Department of Chemical Pathology (R.S.), St. Thomas’
Hospital, London SE1 7EH, United Kingdom; and Department of Pediatrics (A.A., J.P.G., M.K.), Hypertension Research
Center, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey 07103

Context: Leukocyte telomere length is inversely correlated with age,
insulin resistance, serum leptin, and smoking.

Objective: We explored whether menopausal status modifies the
relations between leukocyte telomere length and insulin resistance.
In addition, we examined the effect of menopause on the relation
between leukocyte telomere length and C-reactive protein (CRP), an
index of inflammation.

Design: This was an observational cohort study.

Setting: The study setting was community based.

Participants: A total of 1517 women aged 18–79 yr selected only for
belonging to a twin pair and representative of the general population
participated in the study.

Main Outcome Measure: Leukocyte telomere restriction fragment
length (TRFL) was measured.

Results: Insulin resistance (expressed in the homeostasis model as-
sessment), leptin, and CRP were inversely correlated with leukocyte
TRFL in premenopausal but not postmenopausal women. Insulin
resistance, CRP, but not leptin independently accounted for variation
in white blood cell TRFL in premenopausal women.

Conclusions: Menopausal status impacts leukocyte telomere length
and its relation with insulin resistance and inflammation in women.
(J Clin Endocrinol Metab 91: 635–640, 2006)

INCREASED ADIPOSITY IS associated with a rise in sys-
temic inflammation (1–4) and oxidative stress (5, 6). Both

processes may accelerate telomere erosion in leukocytes be-
cause inflammation enhances the turnover rate of leukocytes
and oxidative stress heightens the loss of telomeric repeat per
cell replication (7). Such mechanisms provide a potential
explanation for findings of accelerated leukocyte telomere
attrition with a rise in insulin resistance and a gain in the
body mass index (BMI) in a longitudinal study (8) and the
inverse correlations of leukocyte telomere length with insu-
lin resistance (unpublished data), serum leptin, and BMI (9)
in cross-sectional analyses of relatively large populations.
What’s more, it appears that leukocyte telomere dynamics
(telomere length and attrition rate) are influenced not by the
body mass per se but by mechanisms linked to obesity, ex-
pressed in elevated insulin resistance and leptin levels.

There are considerable age-dependent reconfigurations of
both insulin resistance and adiposity, which, in women, are
further modified by the menopausal status. For instance,

glucose intolerance is increased not only with the redistri-
bution of body fat toward more central obesity but also due
to fat accumulation in skeletal muscle and liver, a phenom-
enon associated with mitochondrial dysfunctions (10–14).
These changes may alter insulin-dependent glucose regula-
tion. Moreover, whereas insulin resistance primarily relates
to visceral fat, leptin levels are predominantly a function of
sc fat (15–17).

Given that the postmenopausal state is frequently marked
by increased central obesity (18), the interrelation between
leukocyte telomeres dynamics with both insulin resistance
and leptin may differ in postmenopausal vs. premenopausal
women. Although previous works have observed that insu-
lin resistance (8) and leptin (9) were inversely correlated with
age-adjusted telomere length, the question is whether these
two variables, which are linked to adiposity, independently
account for variation in leukocyte telomere length. In addi-
tion, because insulin resistance is a state of increased inflam-
mation (1–3), we examined in this work the interrelation
between leukocyte telomere length and C-reactive protein
(CRP), the plasma concentration of which increases with
inflammation (19, 20). Our main goal was to examine the
effect of menopausal status (women 50 yr old or younger vs.
women older than 50 yr) on the relations of leukocyte telo-
mere length with insulin resistance, serum leptin, and CRP
in a large female cohort and explore which of these variables
independently accounts for variation in telomere length
among individuals.
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Subjects and Methods
Subjects

We studied 1517 Caucasian female twins (aged 18–79 yr) from the St.
Thomas’ (Twins UK) Adult Twin Registry. They were ascertained from
the general population and shown to be comparable with age-matched
population singletons (21, 22). These unselected twins have been re-
cruited since 1992 using twin registers and national media campaigns
and used in a wide variety of studies (23). Historically the cohort is
predominantly female, and measurements were performed preferen-
tially on dizygotic twins as part of ongoing genetic studies. All women
provided informed consent approved by The St. Thomas’ Hospital Re-
search Ethics Committee. A recent communication reported leukocyte
telomere length in relation to BMI, leptin, and cigarette smoking in a
subset of this cohort (9).

For all practical purposes, by the age of 50 yr, most women have
reached menopause. We therefore characterized women according to
age 50 yr or younger as premenopausal and women older than 50 yr as
postmenopausal. In this cohort, the subset of women for which age at
natural menopause (at least 1 yr since the last period) could be accurately
determined (excluding surgical menopause) was 715, with the median
age at menopause 50 yr (mean 48.5, sd 4.8).

General considerations

Means and ranges of quantitative phenotypes in Twins UK are nor-
mally distributed and similar to the age-matched general population in
the United Kingdom (22). Zygosity was determined by standardized
questionnaire and confirmed by DNA fingerprinting.

Biochemical measurements

Blood sample collection for determination of fasting insulin and glu-
cose was as described by de Lange et al. (23). Fasting insulin was de-
termined by immunoassay (Abbott Laboratories Ltd., Maidenhead, UK)
and glucose measured on Ektachem 700 multichannel analyzer, using an
enzymatic colorimetric slide assay (Johnson and Johnson Clinical Di-
agnostic Systems, Amersham, UK). Insulin resistance was evaluated
using the homeostasis model assessment (HOMA-IR), calculated as
(fasting insulin � glucose)/22.5 (23). Plasma leptin concentration was
determined after an overnight fast using a RIA (Linco Research, St.
Louis, MO). CRP assays were performed by an ELISA method, which
has a lower detection limit of 0.15 mg/liter and a coefficient of variation
of 8.7% at 0.5 mg/liter. Subjects with levels above 10 mg/liter were
excluded because this indicated clinically relevant infection inflamma-
tion or malignancy.

Measurement of the mean terminal restriction fragment
length (TRFL)

Measurements were performed as previously described (8). Briefly,
DNA samples were checked for integrity on 0.8% agarose gel. They were
then digested overnight with restriction enzymes HinfI (10 U) and RsaI
(10 U) (Roche, Indianapolis IN). DNA samples (3 �g each) and four DNA
ladders (1 kb DNA ladder plus � DNA/HindIII fragments; Invitrogen,
Carlsbad, CA) were resolved on a 0.5% agarose gel (20 cm � 20 cm) at

50 V (GNA-200; Pharmacia Biotech, Uppsala, Sweden). After 16 h, the
DNA was depurinated for 15 min in 0.25 n HCl, denatured 30 min in
0.5 mol/liter NaOH per 1.5 mol/liter NaCl, and neutralized for 30 min
in 0.5 mol/liter Tris (pH 8)/1.5 m NaCl. The DNA was transferred for
1 h to a positively charged nylon membrane (Roche) using a vacuum
blotter (Appligene; Oncor, Gaithersburg, MD). The membranes were
hybridized at 65 C with the telomeric probe [digoxigenin 3�-end-labeled
5�-(CCTAAA)3] overnight in 5� saline sodium citrate (SSC), 0.1% Sar-
kosyl, 0.02% sodium dodecyl sulfate, and 1% blocking reagent (Roche).
The membranes were washed three times at room temperature in 2�
SSC and 0.1% sodium dodecyl sulfate each for 15 min and once in 2�
SSC for 15 min. The digoxigenin-labeled probe was detected by the
digoxigenin luminescent detection procedure (Roche) and exposed on
x-ray film. The autoradiographs were scanned and the TRFL signal
digitized between molecular weight (MW) of 1–20 kb. The mean TRF
length was then calculated accordingly. Conversion of the OD vs. DNA
migration distance to OD (adjusted for background)/MW vs. MW
yielded a new histogram from which the mean TRFL was calculated. We
routinely resolve each DNA sample in duplicate (on different gels). If the
difference between the duplicates is more than 5%, a third measurement
is performed and the mean of two results less than 5% apart is taken.

Statistical analysis

Univariate and multivariate ANOVAs were used to compare the
characteristics of women aged 50 yr or younger with women older than
50 yr. Standard multiple linear regression techniques were used to assess
the correlation of TRFL with the individual factors listed in Table 1
including age and other covariates as indicated. Natural log-trans-
formed leptin, insulin, glucose, HOMA-IR, and CRP values were used
for all statistical analyses. Because twin-pair data are not independent
observations, we examined the correlation between TRFL vs. the various
factors, taking an independent sample each time, i.e. a subset of samples
composed of a random twin from each pair. This bootstrap procedure
was carried out 100 times, and the mean test statistic was used to assess
statistical significance where indicated. S-Plus 6.0 (Insightful Corp., Bas-
ingstoke, UK) software was used.

Results
General characteristics

Table 1 displays major characteristics of premenopausal
(age 50 yr or younger), postmenopausal (age older than 50
yr), and both combined. There was an approximately 20-yr
difference in the mean age between postmenopausal and
premenopausal women. The BMI, fasting insulin, glucose,
HOMA-IR, leptin, and CRP were all higher in postmeno-
pausal than premenopausal women. Whereas 26.5% of
women 50 yr or younger smoked, only 15.2% of women older
than 50 yr were still smokers. Ex-smokers comprised 49.9%
of women 50 yr or younger and 51.0% of women older than
50 yr.

TABLE 1. Descriptive statistics of study participants

Parameter
All samples (n � 1517) Age � 50 yr (n � 833) Age � 50 yr (n � 683)

Pa

Mean SD Mean SD Mean SD

Age (yr) 48.03 12.68 38.31 8.28 58.96 6.18
BMI (kg/m2) 24.99 4.69 24.60 4.78 25.39 4.56 0.0004
Insulin (�U/ml) 7.85 6.43 7.14 4.46 8.74 8.20 2 � 10�5

Glucose (mmol/liter) 4.57 0.96 4.40 0.59 4.78 1.24 1 � 10�11

HOMA-IRb 1.63 1.70 1.41 0.98 1.90 2.30 2 � 10�8

Leptin (ng/ml) 17.08 12.67 15.65 11.90 18.62 13.29 7 � 10�5

CRP (mg/liter) 2.13 2.15 1.84 2.17 2.39 2.10 4 � 10�6

There were nine singletons and 754 twin pairs.
a Comparing women aged 50 yr or younger with those aged older than 50 yr.
b (Fasting insulin � glucose)/22.5.
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TRFL parameters

The overall yearly rate of leukocyte TRFL attrition was
20.5 � 1.1 bp (r � �0.385, P � 1 � 10�62). The yearly TRFL
attrition for premenopausal women and postmenopausal
women were, respectively, 22.1 � 2.9 and 20.2 � 4.1 bp.

Table 2 displays the leukocyte TRFL without and with
adjustment for age, smoking, and BMI. These adjustments
were undertaken based on our previous observations that
leukocyte TRFL was inversely correlated with not only age

but also BMI and cigarette smoking (8, 9). Without adjust-
ments, TRFL was shorter by 390 bp in postmenopausal than
premenopausal women, but this difference largely disap-
peared after adjustment for age, smoking, and BMI.

Correlations among HOMA-IR, leptin, and BMI

For both pre- and postmenopausal women, there were
strong positive correlations between ln-HOMA-IR and ln-
leptin (Fig. 1). Strong positive correlations were also ob-

TABLE 2. Descriptive statistics of TRFL

TRFL parameters (kb)
All samples Age � 50 yr Age � 50 yr

Pa

Mean SD Mean SD Mean SD

Unadjusted 7.06 0.67 7.24 0.67 6.85 0.62 1 � 10�25

Age adjusted 7.06 0.67 7.03 0.65 7.10 0.61 0.19
Age, smoking adjusted 7.06 0.64 7.03 0.64 7.09 0.60 0.21
Age, BMI adjusted 7.06 0.66 7.02 0.65 7.10 0.62 0.15
Age, smoking, BMI adjusted 7.06 0.64 7.03 0.65 7.10 0.61 0.18

a Comparing women aged 50 yr or younger to those aged older than 50 yr.

FIG. 1. The relationships among ln-HOMA-IR, ln-leptin, and the BMI. The r2 between ln-leptin and BMI for all samples using the best nonlinear
model (ln-leptin � ln-BMI) was only slightly better (0.58) than the linear model used in the figure (0.55).
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served for ln-HOMA-IR and ln-leptin with BMI (Fig. 1).

Correlations of CRP with HOMA-IR and leptin

There were strong correlations of ln-CRP with both ln-
HOMA-IR and ln-leptin for women 50 yr or younger, women
older than 50 yr, and all women combined (Table 3).

Associations of TRFL with indices of insulin resistance,
leptin, and CRP

Table 4 summarizes the relations of age- and smoking-
adjusted TRFL with indices of glucose regulation (fasting
insulin, glucose, and HOMA-IR), leptin, and CRP in pre- and
postmenopausal women. Age- and smoking-adjusted TRFL
was inversely correlated with indices of glucose regulation
in premenopausal but not postmenopausal women. Age-
and smoking-adjusted TRFL was also inversely correlated
with leptin in premenopausal women. This relation was of
borderline significance in the postmenopausal women. For
the premenopausal women, the relations between age- and
smoking-adjusted TRFL and indices of glucose regulation
were considerably more robust than those between TRFL
and leptin. Age- and smoking-adjusted TRFL was inversely
correlated with CRP in premenopausal but not postmeno-
pausal women.

Given the high correlations among HOMA-IR, leptin, and
CRP, we performed multiple stepwise regression analysis,
including in the model the following independent variables:
age, smoking history, ln-HOMA-IR, ln-leptin, and ln-CRP
(Table 5). For premenopausal women, age, smoking, ln-
HOMA-IR, ln-CRP, but not ln-leptin independently ac-
counted for variation in TRFL. For postmenopausal women,
age and smoking but not ln-HOMA-IR, ln-leptin, and ln-CRP
independently accounted for variation in TRFL.

To further ascertain that age or its interaction was not a
confounder for the TRFL findings, we also explored within
twin pair differences for discordant pairs. For 204 pairs (114
aged 50 yr or younger, 90 aged older than 50 yr) discordant

for HOMA-IR (top and bottom quartiles of the HOMA-IR
distribution), the twin with low HOMA-IR had on average
183 bp longer telomeres than the twin with high HOMA-IR
(7.01 � 0.08 vs. 7.20 � 0.08 kb, P � 0.10) among women aged
50 yr or younger. However, among women aged older than
50 yr, the twins with low HOMA-IR had telomeres 40 bp
shorter (6.72 � 0.10 vs. 6.67 � 0.10 kb, P � 0.77) than the twin
with high HOMA-IR. Although the differences are not sta-
tistically significant, the data are consistent with the results
from the multiple linear regressions.

Discussion

The central findings of the present work were as follows:
insulin resistance, leptin, and CRP were inversely correlated
with leukocyte telomere length in premenopausal but not
postmenopausal women. In addition, the underlying mech-
anisms that accounted for variation in leukocyte telomere
length in premenopausal women appeared to relate to in-
sulin resistance and inflammation (CRP) rather than leptin.
The question then is: what are the factors that might explain
these enigmatic differences between pre- and postmeno-
pausal women?

Neither insulin nor glucose is likely to be the factor that
mechanistically connects insulin resistance with leukocyte
telomere dynamics. Rather, the states of insulin resistance
and adiposity, expressed by inflammation and perhaps ox-
idative stress (1–5), probably modify leukocyte telomere
attrition.

One potential explanation for the altered relation between
insulin resistance and leukocyte telomere length in post-
menopausal women is aging itself. As women get older, the
underlying reasons for their insulin resistance might be less
related to the body mass and adiposity per se. Such a trans-
formation would weaken the relation between leukocyte
telomere dynamics and insulin resistance. For instance,
studying lean (BMI � 25 kg/m2) elderly and young volun-
teers, Peterson et al. (14) observed marked insulin resistance

TABLE 3. Correlations of CRP with insulin resistance and leptin

Factor
All samples Age � 50 yr Age � 50 yr

Correlations
with ln-CRPa

Pb Correlations
with ln CRPa

Pb r Pb

ln-HOMA-IRa 0.2669 5.27 � 10�18 0.2760 6.22 � 10�11 0.2162 2.13 � 10�6

ln-Leptina 0.4219 1.86 � 10�44 0.4263 2.07 � 10�23 0.3758 2.22 � 10�11

a In the natural logarithm scale.
b Adjusted for nonindependence between twins in pairs.

TABLE 4. Correlations of TRFL with insulin resistance, leptin, and CRP

Factor
All Samples Age � 50 yr Age � 50 yr

Correlations
with TRFLa

Pb Correlations
with TRFLa

Pb Correlations
with TRFLa

Pb

ln-Insulinc �0.069 0.023 �0.144 0.002 �0.003 0.51
ln-Glucosec �0.032 0.260 �0.114 0.005 �0.010 0.50
ln-HOMA-IRc �0.062 0.054 �0.149 0.001 0.021 0.56
ln-Leptinc �0.069 0.021 �0.083 0.037 �0.066 0.071
ln-CRPc �0.050 0.078 �0.110 0.017 �0.016 0.62

a Age- and smoking-adjusted TRFL.
b Adjusted for non independence between twins in a pair.
c In the natural logarithm scale.
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in the elderly, which arose from a decline in insulin-mediated
glucose metabolism in skeletal muscle, associated with a
considerable reduction in mitochondrial oxidative activity
and phosphorylation. These findings indicate that indepen-
dent of adiposity, aging itself contributes to insulin resis-
tance, and they point to an aging-related shift in the mech-
anisms behind insulin resistance.

Another alternative explaining the absent association be-
tween leukocyte telomere length and insulin resistance in
postmenopausal women is the dramatic decline in ovarian
steroid hormones, particularly estrogen, during the post-
menopausal period. Estrogen may be linked to leukocyte
telomere dynamics through its antiinflammatory and anti-
oxidant attributes and its ability to stimulate telomerase, a
reverse transcriptase that elongates telomere ends (24).

Estrogen is a potent antiinflammatory agent because it
lowers the production of cytokines, including the proinflam-
matory TNF� (25–28). Depending on tissues examined, in-
sulin resistance may arise from or be caused by oxidative
stress (29–32). One of the factors that defend against oxida-
tive stress is estrogen (32–34). The antioxidant activity of
estrogen may also mediate its antidiabetic property (35).
Estrogen serves as an antioxidant by mechanisms that are not
fully elucidated but appear to be exerted via membrane/
cytoplasmic receptors (36). Estrogen stimulates the mito-
chondrial superoxide dismutase (Mn-SOD) and glutathione
peroxidase (Gpx) (32), two powerful enzymes engaged in the
metabolism of reactive oxygen species. Because neither Mn-
SOD nor Gpx has an estrogen-responsive element in its pro-
moter regions, a direct genomic effect in this stimulation is
unlikely.

In contrast to Mn-SOD and Gpx, the catalytic subunit of
telomerase (TERT) promoter possesses not only an estrogen-
response element (37) but also binding sites for a number of
transcription factors, including nuclear factor-�B (NF�B)
(38). Telomerase comprises, in addition to TERT, a RNA
subunit (24). Whereas the RNA subunit is constitutively ex-
pressed in most cells, the activity of the enzyme correlates
with the expression of TERT. Estrogen stimulates telomerase
via TERT and through other posttranscriptional modifica-
tions that include Akt protein kinase, a downstream medi-
ator of phosphoinositol 3-kinase (PI3K) (39, 40). The PI3K
mode of telomerase activation is particularly relevant in that
estrogen stimulates the PI3K/Akt cascade and induces the
association of NF�B with TERT in different cell types, in-
cluding lymphocytes (41–43). In addition, estrogen induces
the Akt-dependent endothelial nitric-oxide synthase (44) to
increase nitric oxide production and stimulate telomerase
activity (45). These effects may explain telomere dynamics in

cells possessing estrogen receptors (45, 46). Because estro-
gen-mediated up-regulation of Mn-SOD and Gpx expres-
sions is also through the NF�B (32), the hormone may exert
some of its antioxidant effects and stimulate telomerase
through the same cellular pathways.

The postmenopausal period would therefore dramatically
recast some of the key variables that affect leukocyte telo-
mere dynamics. Not only the drop in estrogen but also the
redistribution of body fat centrally would alter leukocyte
telomere attrition because fat is the source of both leptin and
other adipocytokines that impact both inflammation and
insulin resistance (47, 48). Subsequently the changing nature
of insulin resistance with age would further modify its link
to leukocyte telomere dynamics. In this regard, the fact that
CRP accounted independently of insulin resistance for vari-
ation in leukocyte telomere length in premenopausal women
suggests that the effect of inflammation on leukocyte telo-
mere dynamics goes above and beyond that of insulin
resistance.

Because leukocyte telomere length is a record of their
replicative history and the cumulative burden of inflamma-
tion and oxidative stress over the life of the individual, meno-
pause might alter the trajectory of telomere attrition and
thereby offset the relations between telomere length and
indices of insulin resistance and inflammation observed dur-
ing the premenopausal period. This tenet can be explored by
longitudinal studies of leukocyte telomere dynamics, which
may enrich our understanding of the role of menopause in
the biology of human aging.
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