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Context: In preclinical models, inhibitors of 3-hydroxy-3-methylglu-
taryl-coenzyme A reductase have been shown to positively affect bone
remodeling balance. Observational studies and secondary analyses
from lipid-lowering trials have yielded inconsistent results regarding
the effect of these agents on bone mineral density and fracture risk.

Objective: Our objective was to determine whether clinically signif-
icant skeletal benefits result from hydroxymethylglutaryl-coenzyme
A reductase inhibition in postmenopausal women.

Design and Setting: We conducted a prospective, randomized, dou-
ble-blind, placebo-controlled, dose-ranging comparative clinical trial
at 62 sites in the United States.

Participants: Participants included 626 postmenopausal women
with low-density lipoprotein cholesterol levels of at least 130 mg/dl
(3.4 mmol/liter) and less than 190 mg/dl (4.9 mmol/liter), and lumbar
(L1–L4) spine bone mineral density T-score between 0.0 and �2.5.

Intervention: Once-daily placebo or 10, 20, 40, or 80 mg atorvastatin
was administered.

Main Outcome Measures: We assessed percent change from base-
line in lumbar (L1–L4) spine bone mineral density with each dose of
atorvastatin compared with placebo.

Results: At 52 wk, there was no significant difference between each
atorvastatin and placebo group or change from baseline at any tested
dose of atorvastatin or placebo in lumbar (L1–L4) spine bone mineral
density. Nor did atorvastatin produce a significant change in bone
mineral density at any other site. Changes in biochemical markers of
bone turnover did not differ significantly between each atorvastatin
and placebo group. All doses of atorvastatin were generally well tol-
erated, with similar incidences of adverse events across all dose
groups and placebo.

Conclusions: Clinically relevant doses of atorvastatin that lower
lipid levels had no effect on bone mineral density or biochemical
indices of bone metabolism in this study, suggesting that such oral
agents are not useful in the prevention or treatment of osteoporosis.
(J Clin Endocrinol Metab 92: 4671–4677, 2007)

BOTH OSTEOPOROSIS AND dyslipidemia are highly
prevalent, clinically important, chronic medical prob-

lems. Currently, the aminobisphosphonates constitute the
most important drug class for the treatment of osteoporosis.
These agents act predominantly to decrease bone resorption
by inhibition of the farnesyl diphosphate synthase step in the
mevalonic acid pathway (1, 2). 3-Hydroxy-3-methylglutaryl-
coenzyme A (HMG-CoA) reductase inhibitors (statins) in-
hibit the same pathway at an earlier point (3) and may also
antagonize osteoclasts by increasing expression of osteopro-
tegerin (4, 5). Statins may also enhance osteoblast activity by

increasing synthesis of bone morphogenetic protein-2 (6, 7).
In vitro and animal studies have demonstrated that statins,
including atorvastatin, can both increase bone formation by
osteoblasts and decrease bone resorption by osteoclasts (6,
8–13). However, some experiments in oophorectomized an-
imals have not increased bone mass (14).

The publication of these findings led several groups to
examine data from observational studies in which some of
the patients took statins. Some of these analyses suggested a
possible beneficial effect on osteoporosis or fracture risk (15–
28). However, several other studies, including the Women’s
Health Initiative, failed to demonstrate any such effect (29–
32), and one report of early effects was not confirmed by
observations extended to 1 yr (33). The possibility of bias in
nonrandomized trials is considerable, and one group con-
cluded that the apparent effect of statins was attributable to
unmeasured confounding factors (34). Authors of observa-
tional studies have consistently called for prospective con-
trolled trials. The authors of a recent metaanalysis found
some evidence for reduced hip fracture risk, but not in pro-
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spective studies, and found little or no effect on biomarkers
and bone mineral density (BMD) (35). This analysis was
limited by the small size of the controlled trials available.
Relatively small prospective studies of the effect of simva-
statin have suggested either small effects on BMD or indices
of bone turnover (36, 37) or no effect on BMD or bone re-
modeling biomarkers (38), and a small, short-term study
demonstrated no effect of atorvastatin on bone turnover
markers (39).

In view of the considerable therapeutic implications of
even a modest beneficial effect of atorvastatin or similar
drugs on bone metabolism in humans at clinical doses, we
undertook a prospective, randomized, double-blind, place-
bo-controlled trial to determine whether atorvastatin, across
the range of clinical doses, compared with placebo had any
effects on bone mineral density and biochemical markers of
bone turnover in postmenopausal women with modest el-
evations of low-density lipoprotein cholesterol (LDL-C).

Subjects and Methods

This was a multicenter, randomized, double-blind, placebo-con-
trolled study conducted at 62 sites in the United States. Institutional
review board approval was obtained for each site, and each participant
gave written informed consent.

Subjects

The study enrolled 626 women, aged 40–75 yr, with LDL-C levels of
at least 130 mg/dl (3.4 mmol/liter) and less than 190 mg/dl (4.9 mmol/
liter). At screening, lumbar spine BMD was required to be between 0.0
and 2.5 sd below the mean for young adult Caucasian women (�0.772
g/cm2 and �1.047 g/cm2 by Hologic densitometers). All individuals
were postmenopausal, as demonstrated by serum estradiol levels of less
than 110 pmol/liter (30 pg/ml) and FSH levels of more than 30 IU/liter.

Patients were excluded if they were treated with any of the following
within 3 months (or as specified) before screening: any lipid-lowering
medication, systemic hormone therapy (6 months), or other drugs af-
fecting bone metabolism, including vitamin D (more than 1000 IU daily),
calcitonin, hormone therapy or selective estrogen receptor modulators,
bisphosphonates (within 12 months), sodium fluoride, or chronic sys-
temic or inhaled glucocorticoids. Patients with a clinical history of di-
abetes mellitus, coronary heart disease, or any medical disease known
to be associated with development of metabolic bone disease (e.g. bone
marrow disease, hereditary disorders of calcium or mineral metabolism,
untreated or inadequately treated endocrine disorders, severe rheuma-
toid arthritis, or a history of malignancy within the past 5 yr) were also
excluded. After publication of the third National Cholesterol Education
Program Adult Treatment Panel (NCEP ATP III) guidelines in 2001 (40),
patients who presented with two or more cardiovascular risk factors and
an LDL-C of at least 160 mg/dl (4.1 mmol/liter) were not included.

Study design

The study incorporated a 2-wk screening phase, followed by 52 wk
of randomized treatment. Eligible participants were randomly assigned
to receive once-daily doses of atorvastatin (10, 20, 40, or 80 mg) or
matching placebo according to a computer-generated pseudo-random
code using the method of random permuted blocks. Patients in each
group received calcium and vitamin D supplementation in the form of
tablets containing 500 mg elemental calcium and 200 IU vitamin D, taken
twice daily. All patients were instructed to follow the NCEP ATP III Step
I (40) or a comparable diet.

The primary endpoint was percent change in areal lumbar spine BMD
(L1–L4, following International Society of Clinical Densitometry official
positions for skeletal site selection) (41), measured by dual-energy x-ray
absorptiometry (DXA) at baseline and at wk 52 or completion. Second-
ary endpoints included percent change in femoral neck, trochanter, and
total proximal femoral areal BMD measured by DXA at baseline and wk

52. In addition, lumbar spine L1–L2 volumetric BMD was measured by
quantitative computed tomography (QCT) in a subset of patients at
selected investigative sites. Percent changes from baseline to wk 26 were
also evaluated. All centers used Hologic densitometers (models QDR-
1000, QDR-2000, 2000, 4500, or Delphi). Centralized bone density inter-
pretation and quality control were carried out by Synarc Inc. (Portland,
OR).

Biochemical and safety measurements

Serum samples for biochemical markers of bone metabolism and lipid
biomarkers and second-void urine specimens were collected after a 10-
to 14-h fast. To minimize variability due to diurnal variation, subjects
were instructed to report between 0600 and 1000 h at all visits. Bone
biomarkers included serum N-telopeptide of type I collagen (Ostex
International, Seattle, WA; now Wampole, MA), serum C-telopeptide of
type I collagen (Elecsys 2010; Roche Diagnostics, Indianapolis, IN), os-
teocalcin (Elecsys 2010; Roche Diagnostics), bone-specific alkaline phos-
phatase (Quidel, San Diego, CA), N-terminal propeptide of procollagen
type I (Elecsys 2010; Roche Diagnostics), and urinary deoxypyridinoline
(Quidel). Samples for bone biomarkers were stored at or below �70 C
until they were analyzed in batches, including all samples from each
subject. Serum lipid markers included total cholesterol, LDL-C [by
Friedewald estimation unless triglycerides were �400 mg/dl (4.5
mmol/liter), then determined directly by ultracentrifugation], triglyc-
erides (glycerol blanked), and high-density lipoprotein cholesterol
(HDL-C) (chemical precipitation by dextran sulfate/MgCl2). Cholesterol
and triglyceride measurements employed Centers for Disease Control
and Prevention (CDC) standardized enzymatic methods on the Hitachi
911 analyzer (Roche Diagnostics). All bone marker and lipid measure-
ments were performed at Pacific Biometrics, Inc. (Seattle, WA). In ad-
dition, standard hematological and biochemical safety measurements
were performed.

All treatment-emergent adverse events (AEs), including adverse drug
reactions, illnesses with onset during the study, or exacerbation of pre-
existing illnesses, were reported, regardless of treatment group or sus-
pected causal relationship to study drug. Serious AEs, regardless of
treatment group or suspected relationship to drug, were reported im-
mediately and were defined as any adverse drug experience that was
life-threatening or resulted in death, inpatient hospitalization, or sig-
nificant disability/incapacity. Events that required medical or surgical
intervention to prevent one of these outcomes could also be classed as
serious AEs. Safety was also assessed by clinical laboratory measure-
ments [including hemograms, aspartate aminotransferase, alanine ami-
notransferase, and creatine phosphokinase (CPK)]) in addition to phys-
ical examinations, vital signs, and electrocardiograms.

Statistical methods

The a priori sample size projection of 575 participants (115 per treat-
ment group) was estimated to provide approximately 90% power to
detect a 2.0% treatment-related difference in lumbar spine BMD between
atorvastatin and placebo, assuming a sd of 3.5% and a dropout rate of
approximately 20%. Hypothesis testing was controlled for multiple com-
parisons (four active treatments and a placebo) via Dunnett’s method,
and all tests were two sided and were conducted at a 5% significance
level. All analyses, tables, listings, and plots were produced using the
SAS statistical software.

Three patient populations were identified for purposes of analysis:
the efficacy-evaluable (per-protocol) population consisting of subjects
who met all evaluability criteria determined before unblinding and
database lock, those for whom follow-up data were obtained within 1
month of the scheduled wk-52 visit, and those who took at least 80% of
their study drug. Because the purpose of this study was to optimize the
ability to detect differences between groups rather than evaluate overall
therapeutic effect, efficacy results for the per-protocol population were
considered to be of primary interest and are presented herein. The
modified intent-to-treat (ITT) population comprised all individuals who
received at least one dose of study medication and had both a baseline
and at least one post-baseline BMD measurement. The results for all
efficacy endpoints were similar for both the per-protocol and modified
ITT populations. The safety population included all subjects that re-
ceived at least one dose of study medication.
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The principal analyses of efficacy were comparisons of the differences
in percent changes from baseline to the end of the study (52 wk) between
each atorvastatin treatment group and the placebo group; percent
changes from baseline to wk 26 were also evaluated. For BMD mea-
surements, an analysis of covariance model adjusted for treatment,
center, and baseline value was used to assess treatment differences from
placebo at each visit, based on comparisons of least squares (LS) means.
Percent responders (defined as those patients with any positive change
in BMD from baseline) and dose response (linear regression) were also
assessed. For bone markers, 10% trimmed means of percent changes and
95% confidence intervals (CI) are reported. Further comparisons were
carried out on rank-transformed percent changes from baseline, using
linear model methodology, including O’Brien’s procedure to determine
the overall treatment effect on multiple markers combined and separate
analysis on each bone marker alone. Blood lipid parameters were an-
alyzed using the same methods used for BMD on percent change data.
The proportion of patients with LDL-C of 130 mg/dl (3.4 mmol/liter)
or less was compared between each treatment vs. placebo using Pear-
son’s �2 test. Due to the exploratory nature of the study, no adjustments
were made for multiple endpoints, except that multiple comparisons of
atorvastatin vs. placebo LS means in linear models were performed
using Dunnett’s method.

For reporting purposes, investigator terms describing AEs were
coded to standard preferred terms based on the Coding Symbols for
Thesaurus of Adverse Reaction Terms (COSTART) dictionary and were
characterized by intensity and relationship to study drug. Consistent
with usual practice, abnormal laboratory values of more than three times
the upper limit of normal for hepatic transaminases (aspartate amino-
transferase and alanine aminotransferase) and more than 10 times the
upper limit of normal for CPK at two consecutive measurements ob-
tained 4–10 d apart were predefined as clinically important.

Results
Baseline characteristics

As shown in Fig. 1, a total of 626 women were randomized
to one of the five treatment groups, of whom 604 actually
received at least one dose of study medication. Of these, 167
(27.6%) discontinued prematurely and 437 (72.4%) com-
pleted the study through the final visit. The most common
reason for discontinuation was withdrawn consent or loss of
the subject to follow-up (n � 87, 13.9%). The per-protocol,

modified ITT, and overall safety populations comprised 318,
482, and 604 individuals, respectively. Patient demographics
and baseline characteristics are presented in Table 1. There
were no clinically important differences between groups in
any of the baseline characteristics. Medications taken before
study start and during the study were similar between treat-
ment groups.

Effect on BMD

There were no significant differences between any dose of
atorvastatin and placebo for percent changes in the lumbar
spine (L1–L4) BMD measured by DXA from baseline to 52 wk
(Fig. 2 and Table 2). Furthermore, there was no significant
difference between treatments at wk 26 and no significant
change from baseline to wk 26 or 52 for any treatment group.
Approximately 39–53% of patients in each treatment group
were responders (positive change in lumbar spine, L1–L4,
BMD). However, there was no significant difference between
atorvastatin and placebo responder rates, and the overall
dose-response relationship was not significant. Furthermore,
there were no significant differences between groups with
respect to changes in secondary BMD endpoints, including
LS volumetric BMD (QCT) and the femoral DXA measure-
ments from baseline to 26 or 52 wk. There were no significant
within-group changes, with the exception of a borderline
decrease in total proximal femur BMD within the placebo
group at wk 52 (Table 2).

Effects on biochemical markers of bone metabolism

Measurements of the biochemical markers of bone metab-
olism failed to demonstrate any significant differences be-
tween the atorvastatin and placebo groups for percent
change from baseline to wk 52 (Table 2) or wk 26. Within
individual groups, some reductions (95% CI � 0) were ob-
served, but there was no clear pattern of dose dependence.

FIG. 1. Study flow chart.
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Multivariate analysis of the overall treatment effect of all
markers compared with placebo was nonsignificant for all
doses of atorvastatin.

In exploratory analyses, we found no evidence of differ-
ential treatment effects on bone markers between patients
younger and older than 62 yr (data not shown).

Effect on lipids

As anticipated from the well-characterized effects of ator-
vastatin, the mean total cholesterol, LDL-C, and triglyceride
levels decreased from baseline to wk 52 for each of the ator-
vastatin groups in terms of percent change, and these dif-
ferences were statistically significant compared with the pla-

cebo group (Fig. 3). The mean HDL-C levels were not
significantly different in terms of percent change between
baseline and wk 52 within treatment groups or between
atorvastatin and placebo groups (Fig. 3).

Safety evaluation

Overall, atorvastatin was well tolerated, consistent with
the product labeling and previous publications. Serious AEs
were reported in 12 patients (placebo, n � 3; atorvastatin 10
mg n � 1, 20 mg n � 4, 40 mg n � 2, 80 mg n � 2), of which
none was considered to be related to study treatment, and
only one led to permanent study drug discontinuation (ator-
vastatin 80 mg, hemorrhagic stroke). There were no deaths
or cases of rhabdomyolysis during the study.

The incidences of the most frequently reported treatment-
emergent AEs are summarized in Table 3. The most fre-
quently reported treatment-related AE was myalgia (four,
five, 10, five, and three cases reported for 10, 20, 40, and 80
mg atorvastatin and placebo, respectively). We did not ob-
serve CPK elevations above the predefined threshold in any
patient. Hepatic transaminase elevations exceeding the pre-
defined thresholds were observed in two patients, both of
whom were receiving atorvastatin (40 and 80 mg), and both
discontinued treatment. All laboratory abnormalities were
followed up and resolved by the end of the study.

Discussion

We found no evidence that systemic atorvastatin admin-
istration produced any significant effect on bone mass or
markers, despite highly provocative reports that statins,
when used in experimental systems, affected both bone for-
mation and bone resorption in the direction of a positive
remodeling balance (6, 8–12). Although the orally adminis-

FIG. 2. Lumbar spine (L1–L4) BMD by DXA: mean percent change
from baseline (efficacy evaluable population).

TABLE 1. Demographic and baseline characteristics

Placebo, n � 119
Atorvastatin

10 mg, n � 118 20 mg, n � 121 40 mg, n � 124 80 mg, n � 122

Age (yr) 58.8 (7.6) 58.6 (6.5) 59.2 (6.7) 59.4 (7.0) 57.8 (6.7)
Race
No. of white subjects (%) 107 (89.9) 108 (91.5) 98 (81.0) 110 (88.7) 105 (86.1)
No. of years menopausal 13.3 (8.3) 11.8 (8.2) 11.6 (8.1) 12.8 (8.7) 11.3 (7.9)
Weight (kg) 73.8 (15.3) 72.7 (15.0) 72.6 (13.5) 74.6 (15.0) 73.0 (12.6)
Ex-smoker or current smoker, n (%) 55 (46.2) 56 (47.5) 50 (41.3) 62 (50) 62 (50.8)
Lumbar spine (L1–L4) BMD (g/cm2) by DXAa 0.91 (0.087) 0.92 (0.084) 0.92 (0.079) 0.93 (0.083) 0.91 (0.086)
Lumbar spine (L1–L2) BMD (g/cm3) by QCTb 111.88 (29.500) 127.52 (22.932) 124.13 (21.992) 120.64 (21.195) 125.21 (18.523)
Total hip BMD (g/cm2) by DXAa 0.84 (0.109) 0.87 (0.100) 0.85 (0.108) 0.87 (0.099) 0.87 (0.103)
Total cholesterola

mg/dl 244.8 (21.7) 241.2 (19.8) 242.2 (21.0) 245.2 (21.8) 242.4 (23.0)
mmol/liter 6.3 (0.6) 6.2 (0.5) 6.3 (0.5) 6.3 (0.6) 6.3 (0.6)

LDL-Ca

mg/dl 159.1 (16.9) 154.8 (16.5) 158.0 (17.9) 155.4 (17.0) 155.6 (15.5)
mmol/liter 4.1 (0.4) 4.0 (0.4) 4.1 (0.5) 4.0 (0.4) 4.0 (0.4)

Triglyceridesa

mg/dl 141.2 (61.6) 124.7 (53.1) 139.9 (59.5) 143.2 (70.3) 152.6 (83.3)
mmol/liter 1.6 (0.7) 1.4 (0.6) 1.6 (0.7) 1.6 (0.8) 1.7 (0.9)

HDL-Ca

mg/dl 57.5 (11.0) 61.6 (14.7) 56.2 (13.9) 61.1 (15.2) 56.4 (12.3)
mmol/liter 1.5 (0.3) 1.6 (0.4) 1.5 (0.4) 1.6 (0.4) 1.5 (0.3)

Numbers represent mean (SD) values unless specified otherwise.
a Mean (SD) values for the efficacy evaluable population.
b Mean (SD) values for the efficacy-evaluable population (from selected sites only) (total n � 47; placebo, n � 11; atorvastatin 10 mg, n �

11; 20 mg, n � 11; 40 mg, n � 6; 80 mg, n � 8).
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tered doses employed in humans result in much lower ex-
posure than the relatively high concentrations that were used
in those experiments, and orally administered statins un-
dergo a first-pass effect, the reports of a possible clinical
benefit from such medications, although not consistent, war-
ranted a prospective controlled trial. We conducted such a
study using the entire clinical dosage range of atorvastatin
(10–80 mg), the most widely prescribed of these medications,
to determine whether an effect on any measurement of BMD
or an effect on bone metabolism could be detected and, if so,
to determine whether a dose-response relationship existed.
As far as we are aware, this prospective, randomized con-
trolled clinical trial is unique in employing a range of doses
to determine whether there is an effect of HMG-CoA reduc-
tase inhibition on bone metabolism. We found no such effects
over 52 wk of treatment on lumbar (L1–L4) spine BMD by
DXA, lumbar (L1–L2) spine BMD by QCT, total hip BMD by
DXA, or biochemical markers of bone metabolism, although
the expected lipid-lowering effect was apparent. Although
we could not exclude the possibility of subtle effects over

many years, all medications that have been shown to be
beneficial for the prevention or treatment of osteoporosis
have produced measurable effects on several of these
endpoints.

Case-control analyses have suggested potential benefits of
statins in reducing the risk of fracture (17–19, 23, 28). How-
ever, the association between fracture risk and the level of
statin exposure differed across these studies, and in two of
the studies, potentially confounding factors such as body
mass index were inadequately controlled (17, 18). In addi-
tion, either the effects of statins on BMD or bone turnover
were not assessed in these studies or changes in BMD were
not associated with the risk of fracture (23). Subsequent stud-
ies have not supported this association between fracture risk
reduction and statin use (29–31, 42).

Several studies have investigated the effects of statins on
BMD in hyperlipidemic patients but were limited by the
absence of a randomized, controlled design and have yielded
inconsistent findings (29, 30, 36, 43–45). The data from the
current trial are consistent with those of a smaller random-
ized, controlled trial in which simvastatin showed no benefit
on BMD and biochemical bone markers in a similar popu-
lation of women (38). Both studies enrolled postmenopausal
women with low BMD and moderately elevated LDL-C and
randomized them in a double-blind fashion to either a statin
or placebo. The potential effects of statins on bone turnover
were thereby assessed prospectively in a well-characterized
target population using a well-matched control group.

At the time of study initiation, no clinical data were avail-
able on the effects of atorvastatin (or statins in general) on
BMD; therefore, statistical considerations were based on in-
formation available from selective estrogen receptor modu-
lators. After controlling for multiple comparisons (four ac-
tive treatments vs. placebo), approximately 90 patients per
treatment group were calculated to have 90% power to detect
an assumed difference of 2.0% between active and placebo,
with a sd of 3.5% and a dropout rate of approximately 20%.
However, this was a conservative assumption regarding the
sd for the distribution of percent change from baseline val-

FIG. 3. Serum lipids: mean difference (atorvastatin vs. placebo) per-
cent change from baseline at wk 52 (efficacy evaluable population).

TABLE 2. Percent change from baseline to wk 52 (last observation carried forwarda) in BMD and markers of bone metabolism (per-
protocol population)

% change from baseline

Placebo, n � 67
Atorvastatin

10 mg, n � 59 20 mg, n � 65 40 mg, n � 67 80 mg, n � 60

Lumbar spine (L1–L4) BMD by DXA,
LS mean (95% CI)

0.16 (�0.51, 0.84) �0.26 (�0.98, 0.45) �0.38 (�1.05, 0.30) �0.44 (�1.12, 0.23) �0.03 (�0.75, 0.69)

Lumbar spine (L1–L2) BMD by QCT,b
LS mean (95% CI)

2.36 (�2.96, 7.68) �3.95 (�8.97, 1.06) �1.93 (�7.17, 3.30) 0.11 (�6.74, 6.96) �3.43 (�9.41, 2.54)

Total femoral BMD by DXA, LS
mean (95% CI)

�0.74 (�1.43, �0.04) �0.58 (�1.31, 0.15) �0.55 (�1.25, 0.15) �0.51 (�1.20, 0.19) �0.06 (�0.81, 0.68)

sNTX, 10% trimmed mean (95% CI) �3.68 (�8.54, 1.18) �3.50 (�8.24, 1.24) 0.02 (�5.86, 5.89) �6.54 (�10.05, �3.03) �5.04 (�9.98, �0.09)
sCTX, 10% trimmed mean (95% CI) �4.18 (�14.77, 6.41) �1.92 (�8.58, 4.74) 3.96 (�6.45, 14.36) �4.47 (�12.25, 3.31) �1.14 (�10.50, 8.22)
Osteocalcin, 10% trimmed mean

(95% CI)
�4.38 (�10.39, 1.64) �4.44 (�10.52, 1.64) �2.88 (�8.78, 3.02) �5.32 (�10.88, 0.24) �10.56 (�15.70, �5.43)

BSAP, 10% trimmed mean (95% CI) �2.74 (�6.44, 0.97) 0.55 (�3.25, 4.35) �1.34 (�6.06, 3.38) �0.80 (�4.76, 3.16) �1.18 (�5.41, 3.05)
P1NP, 10% trimmed mean (95% CI) �7.04 (�12.89, �1.19) �0.25 (�7.15, 6.64) �1.20 (�8.86, 6.45) �1.63 (�9.53, 6.27) �10.29 (�16.65, �3.92)
DPD, 10% trimmed mean (95% CI) 0.83 (�5.19, 6.85) �3.44 (�9.37, 2.48) 1.88 (�3.62, 7.38) �1.19 (�6.70, 4.32) �5.81 (�10.62, �1.01)

For all measurements, the P value for the difference between each atorvastatin group and placebo was nonsignificant using Dunnett’s method
in linear models. BSAP, Bone-specific alkaline phosphatase; DPD, urinary deoxypyridinoline; P1NP, procollagen type I N propeptide; sCTX,
serum C-telopeptide; sNTX, serum N-telopeptide.

a No values were imputed due to the definition of the per-protocol population, who required follow-up data within 1 month of the wk-52 visit.
b A subset of the efficacy evaluable population from selected sites only was analyzed for lumbar spine (L1–L2) BMD by QCT (total n � 47;

placebo, n � 11; atorvastatin 10 mg, n � 11; 20 mg, n � 11; 40 mg, n � 6; 80 mg, n � 8).
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ues, and based on the results obtained, the actual sd was in
the range 2.5–2.8%. Recalculating the power assuming a sd
of 3% with 60 subjects in each treatment group (as in the
per-protocol analysis) yields a power of more than 85% for
each comparison. Therefore, the power to detect a treatment
difference of 2.0% in the per-protocol analysis with a sd of
2.8% would be consistent with the original power estimate.

As expected, consistent with data from previous studies
(46), atorvastatin therapy decreased total cholesterol, LDL-C,
and triglycerides in a dose-dependent fashion in this pop-
ulation of postmenopausal women with dyslipidemia. No
changes in HDL-C were observed in any treatment group,
although HDL-C levels were relatively high in all groups at
baseline. Atorvastatin was well tolerated at all doses, and
overall safety was comparable to placebo. The reported in-
cidence of serious AEs did not increase significantly with
higher doses, and only two patients were reported to have
clinically meaningful abnormal laboratory liver function
tests with atorvastatin treatment, which were resolved by the
end of the study. Thus, our findings were generally consis-
tent with labeled product-safety information.

Despite the in vitro data suggesting that statins inhibit
bone-resorption and enhance osteoblast activity (6), no ef-
fects on bone metabolism were observed in our study. After
absorption, statins are biotransformed in the liver with a high
hepatic first-pass clearance, resulting in a substantial lipid-
lowering effect but a low systemic exposure to unbound
pharmacologically active drug (47). The observed lack of
effect of atorvastatin on BMD and bone biomarkers may
therefore have been the result of low statin uptake into bone
tissue. The maximum doses of the currently available med-
ications in this class are limited by tolerability and safety
considerations. Therefore, it is unlikely that substantially
higher systemic doses of oral HMG-CoA reductase inhibitors
could be employed clinically. Thus, our findings do not sup-
port a role for conventional doses of atorvastatin in the pre-
vention or treatment of postmenopausal osteoporosis.
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