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Background and Aims: The liver is the main source and insulin the main regulator of IGF binding
protein 1 (IGFBP-1) in humans. Here we examined how serum IGFBP-1 concentrations are related
to directly measured hepatic insulin sensitivity and liver fat content in humans.

Methods: We measured fasting serum (fS) IGFBP-1 concentrations and liver fat content by proton
magnetic resonance spectroscopy in 113 nondiabetic subjects. In addition, hepatic insulin sensi-
tivity was measured using the euglycemic hyperinsulinemic clamp (insulin 0.3 mU/kg�min) tech-
nique in combination with the infusion of �3-(3)H�glucose in 78 subjects.

Results: fS-IGFBP-1 concentrations were inversely related to liver fat content (r � �0.38, P �

0.0001). Of circulating parameters, fS-IGFBP-1 was better correlated to hepatic insulin sensitivity
(r � 0.48, P � 0.0001) than fS-insulin (r � �0.42, P � 0.0001), fS-C-peptide (r � �0.41, P � 0.0002),
fS-triglyceride (r � �0.33, P � 0.003), or fS-high-density lipoprotein cholesterol (r � 0.30, P � 0.007).
In multiple linear regression analyses, body mass index (P � 0.0001) and fS-IGFBP-1 (P � 0.008), but
neither age nor gender, were independently associated with hepatic insulin sensitivity (P � 0.0001
for ANOVA). Neither fS-insulin nor fS-C-peptide were independent determinants of hepatic insulin
sensitivity after adjusting for age, gender, and body mass index.

Conclusions: fS-IGFBP-1 is inversely correlated with liver fat and is an obesity-independent and
liver-specific circulating marker of hepatic insulin sensitivity. (J Clin Endocrinol Metab 93:
4867–4872, 2008)

It is well established that nonalcoholic fatty liver disease
(NAFLD) is an independent predictor of type 2 diabetes, the

metabolic syndrome, cardiovascular disease, and advanced liver
disease (1). Hepatic fat accumulation is tightly linked to hepatic
insulin resistance and characterized by decreased ability of in-
sulin to suppress hepatic glucose and triglyceride-rich very low-
density lipoprotein particle production in the liver (1). This in
turn leads to hyperglycemia, hypertriglyceridemia, and a low
high-density lipoprotein (HDL) cholesterol concentration. He-
patic insulin resistance is thus likely to be a core component of the
metabolic syndrome (2).

When estimated using proton magnetic resonance spectros-
copy (1H-MRS), every third adult has a fatty liver (3). There is a
need to identify novel specific markers of hepatic fat because

1H-MRS is not available in clinical practice, and current markers
of hepatic steatosis, such as serum (S)-alanine aminotransferase
(ALT), S-aspartate aminotransferase (AST), fasting serum (fS)-
insulin, and fS-C-peptide, are both insensitive and unspecific (4).
Assessment of hepatic insulin sensitivity by state-of-the-art
methodology requires prolonged insulin and glucose infusions in
combination with glucose tracer. Because these measurements
are complicated and costly, they also cannot be used in routine
clinical practice. fS-insulin concentrations are often used as a
marker of hepatic insulin sensitivity, but they are influenced by
insulin resistance in tissues other than the liver, as well as by
insulin clearance and insulin secretion.

IGF binding protein 1 (IGFBP-1) belongs to a six-member
family of IGFBPs that modulate the bioavailability of IGF-I (5).
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We have previously shown that insulin decreases IGFBP-1 con-
centrations acutely in vivo (6). The liver has been shown to be the
main site of production of IGFBP-1 in humans (7). Previous
studies have shown that serum IGFBP-1 concentrations are neg-
atively related to indirect estimates of insulin resistance, such as
homeostatic model assessment of insulin resistance (HOMA-IR)
(8–10), and positively related to whole-body insulin sensitivity
measured using the euglycemic hyperinsulinemic clamp tech-
nique (11–13). The associations between serum IGFBP-1 con-
centrations, liver fat, and directly measured hepatic insulin sen-
sitivity have not been examined previously.

In the present study, we measured liver fat using 1H-MRS,
serum IGFBP-1 concentrations, and other features of insulin re-
sistance in 113 nondiabetic subjects. Hepatic insulin sensitivity
was measured directly by use of a prolonged low-dose (0.3 mU/
kg�min) insulin infusion in combination with �3-3H�glucose.

Subjects and Methods

Subjects and study design
A total of 113 nondiabetic subjects were recruited using the following

inclusion criteria: 1) age 18 to 60 yr; 2) no known acute or chronic disease
based on history, physical examination, and standard laboratory tests
(blood counts, serum creatinine, TSH, electrolyte concentrations and
electrocardiogram); 3) alcohol consumption less that 20 g/d; and 4) no
evidence of hepatitis A, B, or C, autoimmune hepatitis, clinical signs or
symptoms of inborn errors of metabolism, or history of use of toxins or

drugs known to induce hepatitis. The study protocol was approved by the
ethics committee of the Helsinki University Central Hospital. Baseline
characteristics of these subjects were included in a recent large analysis
of liver fat in subjects with and without the metabolic syndrome (4).

Insulin action on glucose rate of appearance (Ra; hepatic insulin sen-
sitivity) was measured directly in 78 subjects using a prolonged low-dose
euglycemic hyperinsulinemic clamp to optimize conditions for measur-
ing hepatic insulin sensitivity (14). Characteristics of these subjects have
been reported previously (15).

Insulin action on glucose Ra

Hepatic insulin sensitivity was measured using a 6-h euglycemic hy-
perinsulinemic clamp. At 0800 h, after an overnight fast, two indwelling
catheters were placed in an antecubital vein and retrogradely in a heated
hand vein for infusion of glucose, insulin, and �3-3H�glucose and for
sampling of arterialized venous blood. To determine Ra under basal and
hyperinsulinemic conditions, �3-3H�glucose was infused in a primed (20
�Ci), continuous (0.2 �Ci/min) fashion for a total of 360 min. Baseline
blood samples were taken for measurement of fasting serum insulin and
glucose concentrations and for biochemical measurements �fS-IGFBP-1,
fS-insulin, fS-C-peptide, fasting plasma glucose, glycosylated hemoglo-
bin 1c (HbA1c), S-ALT, S-AST, fS-triglycerides, fS-HDL and fS-low-
density lipoprotein (LDL) cholesterol, and fS-free fatty acids (FFAs)�.
After 120 min, insulin was infused in a primed continuous (0.3 mU/
kg�min) fashion. Plasma glucose was maintained at 5 mmol/liter (90
mg/dl) until 360 min using a variable rate infusion of 20% glucose (16).
Blood samples for measurement of glucose specific activity and FFA
concentrations were taken at 90, 100, 110, and 120 min in the basal state
and at 15- to 30-min intervals during the last 2 h of the insulin infusion.
Serum free insulin concentrations were measured at 0, 120, 150, 180,
240, and 360 min. S-IGFBP-1 concentrations during the insulin infusion
were measured at 360 min. Glucose specific activity was determined as

TABLE 1. Characteristics of study subjects

Women Men P value

n 49 64
Age (yr) 43 � 1 41 � 1 NS
Body composition

BMI (kg/m2) 30.2 � 0.5 26.6 � 0.5 �0.0001
% Fat 35.2 � 0.4 20.8 � 0.7 �0.0001
Waist (cm) 101 � 2 96 � 2 0.042
Hip (cm) 109 � 1 100 � 1 �0.0001
Waist-to-hip ratio 0.93 � 0.01 0.96 � 0.01 0.008
Subcutaneous fat (cm3) 5100 � 220 2630 � 150 �0.0001
Intraabdominal fat (cm3) 1340 (1060–1790) 1320 (790–2150) NS
Liver fat (%) 5.0 (3.0–11.0) 3.5 (2.0–14.5) NS

Serum insulin and IGFBP-1
fS-insulin (mU/liter) 9.0 (6.0–14.0) 7.0 (5.0–10.0) NS
fS-C-peptide (nmol/liter) 0.86 (0.61–1.05) 0.66 (0.43–0.92) NS
fS-IGFBP-1 (�g/liter) 18 (10–27) 16 (12–23) NS

Glycemic parameters
fP-glucose (mmol/liter) 5.8 � 0.1 5.6 � 0.1 NS
HbA1c (%) 5.6 � 0.1 5.5 � 0.1 NS

Serum lipids
fS-triglycerides (mmol/liter) 1.55 � 0.11 1.75 � 0.23 NS
fS-HDL cholesterol (mmol/liter) 1.31 � 0.05 1.33 � 0.04 NS
fS-LDL cholesterol (mmol/liter) 3.23 � 0.11 3.15 � 0.12 NS
fS-FFA (�mol/liter) 708 � 27 627 � 27 0.040

Blood pressure
Systolic (mm Hg) 124 (113–132) 132 (120–144) NS
Diastolic (mm Hg) 78 (70–80) 83 (78–94) �0.0001

Liver enzymes
S-ALT (U/liter) 26 (19–40) 32 (21–35) NS
S-AST (U/liter) 25 (22–36) 29 (24–38) NS

Data are shown as mean � SEM or, for nonnormally distributed data, as median (25th-75th percentiles). FP, Fasting plasma; LDL, low-density lipoprotein.
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previously described (16). Glucose Ra was calculated using the Steele
equation, assuming a pool fraction of 0.65 for glucose and a distribution
volume of 200 ml/kg for glucose. Glucose Ra during the last 2 h of the
insulin infusion was used to determine the percentage and absolute sup-
pressions of endogenous glucose production by insulin.

Liver fat content (1H-MR spectroscopy)
Localized single voxel (2�2�2 cm3) proton spectra were acquired

using a 1.5-T whole-body system (Siemens Magnetom Vision, Erlangen,
Germany), which consisted of a combination of whole-body and loop
surface coils for radio frequency transmitting and signal receiving. T1-
weighted high-resolution magnetic resonance imaging scans were used
for localization of the voxel of interest within the right lobe of the liver.
1H-MRS measurements of the liver fat were performed in the middle of
the right lobe of the liver at a location that was individually determined
for each subject; vascular structures and sc fat tissue were avoided when
selecting the voxel. Subjects lay on their stomachs on the surface coil,
which was embedded in a mattress to minimize abdominal movement
due to breathing. The single voxel spectra were recorded using the stim-
ulated-echo acquisition mode sequence, with an echo time of 20 msec, a
repetition time of 3000 msec, a mixing time of 30 msec, and 1024 data
points over 1000 kHz spectral width with 32 averages. Water-suppressed
spectra with 128 averages were also recorded to detect weak lipid signals.
A short echo time and long repetition time were chosen to ensure a fully
relaxed water signal, which was used as an internal standard. Chemical
shifts were measured relative to water at 4.80 ppm. The methylene signal,
which represents intracellular triglyceride, was measured at 1.4 ppm.
Signal intensities were quantified by using an analysis program, VAPRO-
MRUI (http://www.mrui.uab.es/mrui/). Spectroscopic intracellular tri-
glyceride content (liver fat) was expressed as a ratio of the area under the
methylene peak to that under the methylene and water peaks (�100 �
liver fat percentage). This measurement has been validated against his-
tologically determined lipid content (15, 17). When measured by proton
spectroscopy, normal liver fat is approximately 5% (3). All spectra were
analyzed by physicists who were unaware of any of the clinical data. The
reproducibility of repeated measurements of liver fat in nondiabetic sub-
jects studied on two separate occasions by the same reader in our labo-
ratory is 11% (4).

Measurements of body composition
Intraabdominal and sc fat content were determined by magnetic res-

onance imaging as previously described (4). The percentage body fat was
determined using bioelectrical impedance analysis (BioElectrical Imped-
ance Analyzer System, model number BIA-101A; RJL Systems, Detroit,
MI). Waist circumference was measured midway between spina iliaca
superior and the lower rib margin, and hip circumference was measured
at the level of the greater trochanters.

Analytical procedures, calculations, and other
measurements

Serum IGFBP-1 concentrations in the fasting state and during the last
hour of insulin infusion were determined by an in-house RIA using a
polyclonal antibody and human IGFBP-1 as a standard (18). The intra-
and interassay coefficients of variance are 3 and 10%, respectively.
Plasma glucose concentrations were measured in duplicate with the glu-
cose oxidase method using Beckman Glucose Analyzer II (Beckman In-
struments, Fullerton, CA). HbA1c was measured by HPLC using the fully
automated Glycosylated Hemoglobin Analyzer System (Bio-Rad, Rich-
mond, CA). Serum free insulin concentrations were measured with the
Auto-DELFIA kit (Wallac, Turku, Finland), and C-peptide concentra-
tions by RIA. fS-HDL cholesterol and fS-triglyceride concentrations
were measured with enzymatic kits from Roche Diagnostics using an
autoanalyzer (Roche Diagnostics Hitachi, Hitachi Ltd., Tokyo, Japan).
S-ALT and S-AST activities were determined as recommended by the
European Committee for Clinical Laboratory Standards. S-FFA concen-
trations were measured as previously described (15). The HOMA-IR

index was calculated using the following formula: HOMA-IR � fasting
insulin (milliunits per liter) � fasting glucose (millimoles per liter)/
22.5 (19).

Statistical analyses
Nonnormally distributed data were used after logarithmic trans-

formation. The unpaired Student’s t test was used to compare mean
values between women and men. Analysis of covariance was used to
adjust for age, gender, and BMI. Correlation analyses were performed
using Pearson’s rank correlation coefficient. Analysis of covariance
was used to compare slopes of regression lines and intercepts between
women and men. Multiple linear regression analyses were used to
determine sources of variation in fS-IGFBP-1, fS-insulin, and fS-C-
peptide concentrations. Data are shown as mean � SEM or, for non-
normally distributed data, as median followed by the 25th and 75th
percentiles. Calculations were made using GraphPad Prism version
4.00 for Windows (GraphPad Software, San Diego, CA) and SPSS
15.0 for Windows (SPSS, Chicago, IL). A P value of less than 0.05 was
considered statistically significant.

Results

Subject characteristics (Table 1)
The men and women were comparable with respect to age.

Women had higher BMI, waist circumference, waist-to-hip ra-
tio, percentage whole-body fat, and sc fat volume than men, but
intraabdominal and liver fat were comparable between the
groups. fS-triglyceride, HDL and LDL cholesterol, HbA1c, and
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FIG. 1. The relationship between the percentage suppression of hepatic glucose
and serum IGFBP-1 concentrations by insulin (A) and between liver fat content
and fS-IGFBP-1 (B). Open circles denote women, and filled circles denote men.
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liver enzyme concentrations were comparable between women
and men, as were fS-insulin and fS-IGFBP-1 concentrations.

Circulating markers of the suppression of hepatic
glucose production by insulin

The percentage suppression of endogenous glucose produc-
tion by insulin was closely correlated with the percentage S-
IGFBP-1 concentrations of the basal levels during the insulin
infusion (P � �0.55, P � 0.0001, Fig. 1). The percentage sup-
pression of endogenous glucose production by insulin was also
significantly correlated with fS-insulin (r � �0.42, P � 0.0001,
Fig. 2), HOMA-IR (r � �0.43, P � 0.0001), fS-C-peptide (r �

�0.41, P � 0.0002, Fig. 2), fS-triglyceride (r � �0.33, P �

0.003, Fig. 2), fS-HDL cholesterol (r � 0.30, P � 0.007), fS-ALT
(r � �0.32, P � 0.004, Fig. 2), and fS-FFA (r � �0.24, P �

0.032, Fig. 2) concentrations. Of circulating parameters mea-
sured in fasting serum, fS-IGFBP-1 was the best correlate of he-
patic insulin sensitivity (r � 0.48, P � 0.0001, Fig. 2).

The relationships between liver fat, fS-IGFBP-1, the
suppression of S-IGFBP-1 by insulin, and fS-insulin and
fS-C-peptide concentrations

fS-IGFBP-1 concentrations were inversely related to liver
fat content (r � �0.38, P � 0.0001, Fig. 1). The percentage
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S-IGFBP-1 of the basal levels during the insulin infusion was
positively related to liver fat content (r � 0.36, P � 0.001). This
relationship did not persist statistically significant after adjusting
for age, gender, and BMI �r � �0.17, not significant (NS)�. fS-
IGFBP-1 concentrations below 16 �g/liter corresponded to a
fatty liver (liver fat � 5.6%) (3). The relationship between liver
fat and other circulating markers were as follows: fS-insulin (r �

0.57, P � 0.0001), fS-C-peptide (P � 0.57, P � 0.0001), fS-
triglycerides (r � 0.41, P � 0.0001), fS-HDL cholesterol (r � �

0.37, P � 0.0001), fS-ALT (r � 0.58, P � 0.0001), and fS-FFA
(r � 0.13, NS).

Hepatic insulin sensitivity and IGFBP-1: effects of age,
gender, and BMI or waist

To examine further the impact of age, gender, and BMI on the
relationships between hepatic insulin sensitivity and fS-IGFBP-1,
fS-insulin, and fS-C-peptide, multiple linear regression analyses
were employed. fS-IGFBP-1 but neither fS-insulin nor fS-C-pep-
tide concentrations were independently associated with hepatic
insulin sensitivity (Table 2). Of other variables, BMI was an
independent correlate of hepatic insulin sensitivity in all models.
The results remained essentially unchanged if BMI was replaced
by waist (Table 2). In a model including waist, fS-insulin, fS-
ALT, and fS-IGFBP-1 concentrations as independent variables,
only fS-IGFBP-1 concentrations were independent determinants
of hepatic insulin sensitivity (Table 2). Use of liver fat percentage
instead of fS-ALT did not change the results.

Discussion

In the present study, we examined whether serum concentrations
of IGFBP-1, which is produced mainly by the liver in humans (7),
are related to liver fat content and hepatic insulin sensitivity.
Liver fat and hepatic insulin sensitivity were measured using
state-of-the-art methodology in a relatively large number of non-
diabetic subjects. The data show that fS-IGFBP-1 concentrations
are inversely related to liver fat content and that fS-IGFBP-1
concentrations are closely and independently related to hepatic
insulin sensitivity. In addition, IGFBP-1 was a better correlate of
hepatic insulin sensitivity than fS-insulin or fS-C-peptide con-
centrations, or any other circulating parameter measured. How-
ever, even the best model explained only 42% of the variation in
hepatic insulin sensitivity.

IGFBP-1 has been shown to modify the short-term effects of
IGFs (20). Insulin in turn acutely suppresses hepatic production
of serum IGFBP-1 (6, 21), which increases bioavailability of IGFs
(22). The exact function of IGFBP-1 is unknown. Tissue-specific
overexpression in the liver is associated with abnormalities in
brain development, reduced body weight gain, reduced fecun-
dity, and kidney damage (23). In human studies, low circulating
IGFBP-1 concentrations have been linked with increased risk of
macrovascular disease in several studies, but there is no evidence
for a cause-and-effect relationship (24). Thus, although IGFBP-1
is unique among known markers of hepatic insulin resistance in
that it is regulated by insulin and predicts worsening of glucose
tolerance (25), it has not yet been established as a cause of either
abnormal glucose metabolism or cardiovascular disease.

Previous studies have suggested that fS-IGFBP-1 concentra-
tions are related to insulin sensitivity measured using HOMA-IR
(8–10) or whole-body insulin sensitivity measured using the eu-
glycemic hyperinsulinemic clamp and an insulin infusion rate of
1 mU/kg�min (11–13). The latter reflects mainly peripheral in-
sulin sensitivity (14). Because glucose tracers were not used (11–
13), it was not possible to distinguish between hepatic and pe-
ripheral insulin sensitivity. The associations between fS-IGFBP-1
and hepatic insulin sensitivity have not previously been studied.
Use of a prolonged low-dose insulin infusion enables accurate
assessment of interindividual variation in hepatic insulin sensi-
tivity (14). Here we show that fasting IGFBP-1 is a marker of
hepatic insulin sensitivity in nondiabetic subjects independent of
age, gender, BMI, and fS-insulin concentrations.

Paradoxically, serum concentrations of IGFBP-1 have been
reported to be increased in patients with hepatocellular carci-
noma and liver cirrhosis (26, 27). Liver fat decreases once cir-
rhosis develops (28). In addition, insulin resistance in patients
with cirrhosis is peripheral rather than hepatic (29). The rela-
tionships between IFGBP-1 and other liver diseases have not
been previously examined in humans. In the present study, we
investigated how IGFBP-1 concentrations change in NAFLD, the
most prevalent liver abnormality in the general population (3).
Currently available markers of NAFLD, such as S-ALT and
S-AST, are poor correlates of liver fat content (4). Thus, novel
liver-specific markers of hepatic fat accumulation are needed. In
the present study, liver fat content was quantitated, using the
most accurate method available to date, and related to serum

TABLE 2. The multivariate regression model searching for the
independent determinants of hepatic insulin sensitivity

R2 (P value for the model)
Independent

variable P

42% (P � 0.0001) Age NS
Gender NS
BMI �0.0001
fS-IGFBP-1 0.008

36% (P � 0.0001) Age NS
Gender NS
Waist 0.041
fS-IGFBP-1 �0.0001

37% (P � 0.0001) Age NS
Gender NS
BMI �0.0001
fS-Insulin NS

22% (P � 0.0001) Age NS
Gender NS
Waist 0.027
fS-Insulin NS

36% (P � 0.0001) Age NS
Gender NS
BMI �0.0001
fS-C-peptide NS

20% (P � 0.0001) Age NS
Gender NS
Waist 0.032
fS-C-peptide NS

28% (P � 0.0001) Waist NS
fS-insulin NS
fS-ALT NS
fS-IGFBP-1 0.004

Dependent variable: hepatic insulin sensitivity.
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IGFBP-1 concentrations. The results suggest that IGFBP-1 is in-
versely related to liver fat content in nondiabetic subjects.

We conclude that fS-IGFBP-1 is a novel marker of hepatic
insulin sensitivity independent of age, gender, and BMI in this
population of nondiabetic subjects. fS-IGFBP-1 concentrations
reflected hepatic insulin sensitivity better than fS-insulin or C-
peptide concentrations. In addition, we found that liver fat con-
tent is inversely related to fS-IGFBP-1. The data thus suggest that
measurement of IGFBP-1 could provide a simple and reliable
estimate of hepatic insulin sensitivity in humans.

Acknowledgments

We gratefully acknowledge Mia Urjansson, Katja Tuominen, Inga-Lena
Wivall-Helleryd, and Elvi Sandberg for excellent technical assistance;
Satu Vehkavaara, Robert Bergholm, Anneli Seppälä-Lindroos, Aila
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