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Context: Adipose tissue in obese individuals is characterized by reduced capillary density and
reduced oxygenation.

Objective: Our objective was to test whether hypoxia is associated with reduced antilipolytic effect
of insulin.

Participants, Design, and Setting: Twenty-one lean and obese individuals participated in this
cross-sectional study at a university-based clinical research center.

Intervention: In all subjects, in situ adipose tissue (AT) oxygenation [AT oxygen partial pressure
(ATpO2)] was measured with a Clark electrode, insulin sensitivity as well as basal and insulin-
suppressed lipolysis (continuous infusion of (2H5)glycerol) were measured during a euglycemic-
hyperinsulinemic clamp, and abdominal sc AT biopsies were collected to assess fat cell size (Coulter
counting of osmium-fixed cells), capillary density (by staining of histological sections), and gene
expression (by quantitative RT-PCR).

Main Outcome Measure: In situ ATpO2 was evaluated.

Results: The ability of insulin to suppress lipolysis (percent) was positively correlated with insulin
sensitivity (r � 0.43; P � 0.05), ATpO2 (r � 0.44; P � 0.05), vascular endothelial growth factor mRNA
(r � 0.73; P � 0.01), and capillary density (r � 0.75; P � 0.01).

Conclusion: These results indicate that low capillary density and ATpO2 in AT are potentially
upstream causes of AT dysfunction. (J Clin Endocrinol Metab 95: 4052–4055, 2010)

Obesity is accompanied by insulin resistance in mul-
tiple organs including muscle, liver, and adipose

tissue (AT) (1). There are multiple contributors to in-
sulin resistance including AT hypoxia (2). Obese hu-
mans have reduced AT oxygen partial pressure (ATpO2),
which is positively correlated with local inflammation
(3). The reduced ATpO2 in obese adult humans may be
due to decreased capillary density (rarefaction) in AT
(3). Hypoxia interferes with insulin action in rodent
models of obesity and cultured human adipocytes (4 –
6). Insulin, apart from its action in muscle and liver,

inhibits lipolysis and efflux of nonesterified fatty acid in
AT. Failure of insulin to suppress lipolysis has been
proposed as one link between obesity and insulin resis-
tance (7). In humans, however, reduced ATpO2 does
not correlate with whole-body insulin sensitivity as
measured during a high-dose hyperinsulinemic-eugly-
cemic clamp (3) designed to measure skeletal muscle
insulin sensitivity (8).

Given the role of insulin to suppress lipolysis in AT and
that hypoxia leads to insulin resistance in vitro, we hy-
pothesized that reduced ATpO2 in situ would be associ-
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ated with reduced whole-body suppression of AT lipolysis
by insulin.

Subjects and Methods

Twenty-one lean, obese, and type 2 diabetes mellitus subjects
were recruited as previously described (3). Subjects were ex-
cluded for previous use of thiazolidinediones or drugs known to
affect lipid metabolism or body weight. The protocol was ap-
proved by our Institutional Review Board, and all volunteers
gave written informed consent.

Body composition was measured by dual-energy x-ray ab-
sorptiometry (QDR 4500; Hologic, Inc., Waltham, MA). As de-
tailed previously, approximately 2 g sc AT was obtained by li-
posuction, 5 cm from the umbilicus (3). Mean fat cell size of sc
abdominal AT was measured by Coulter counting of osmium-
fixed cells (9), and ATpO2 was measured with a combined ox-
ygen and temperature probe (micro Clark type electrode with a
thermocouple, catalog item CC1.P1; Integra Lifesciences Corp.,
Plainsboro, NJ) inserted at 1 cm depth (3).

A euglycemic-hyperinsulinemic clamp
and glycerol turnover were performed af-
ter an overnight fast and a 3-d standard-
ized diet. Baseline blood samples were
obtained for substrate and hormone con-
centrations and background isotope en-
richments. A primed continuous infusion
of [2H5]glycerol (0.1 mg/kg � min; Cam-
bridge Isotope Laboratories, Andover, MA)
was started and continued for 360 min. Af-
ter 240 min, a euglycemic (�90 mg/dl), hy-
perinsulinemic (80 mU/m2 � min) clamp
was conducted for 120 min. Exogenous glu-
cose disposal was calculated during the final
30 min of the clamp. The rate of appearance
of glycerol (enrichment of [2H5]glycerol)
was calculated from isotopic enrichment in
four baseline and insulin-stimulated blood
samples as previously described (10). Lipol-
ysis was assessed as percentage change in
rate of appearance of glycerol from the
basal to insulin-stimulated state. The clin-
ical characteristics, insulin sensitivity,
ATpO2, and vascular endothelial growth
factor (VEGF) have been previously re-
ported (3).

Paraffin-embedded AT was incubated in
tetraethylrhodamine isothiocyanate-conju-
gated lectin from Ulex europaeus (10 �g/ml)
(catalog item L4889; Sigma-Aldrich, St.
Louis, MO) and lectin-fluorescein isothio-
cyanate conjugate from Griffonia simplici-
folia (25 �g/ml) (catalog item L2895; Sigma-
Aldrich) for 30 min. Images were taken
with a Zeiss Axioplan 2 upright microscope
and microvessels counted using MBF Im-
ageJ Bundle software (microvessel den-
sity � number of microvessels per square
millimeter of section area, averaged across
six to 10 images).

Human total RNA was isolated by column purification
(QIAGEN, Valencia, CA). VEGF sequences were AGCCTT-
GCCTTGCTGCTCT (forward), ACCTCCACCATGCCAAGT-
GGTCCC (probe), and TCCTTCTGCCATGGGTGC (reverse).
Quantitative RT-PCR was performed on a ABI PRISM 7900 with
Cyclophilin-� as housekeeping gene.

Comparisons between lean, obese nondiabetic, and obese type
2 diabetic were tested with ANOVA. Relationships between lipol-
ysis and measures of AT oxygenation were modeled with linear
regression. Analyses were controlled for sex and race. If the sex and
race interaction terms were not significant, these terms were re-
moved. Analyses were conducted using JMP (version 5.0.1; SAS,
Cary, NC).

Results

The clinical characteristics are presented in supplemen-
tal Table 1 (published on The Endocrine Society’s Jour-
nals Online web site at http://jcem.endojournals.org).
Mean fat cell size was negatively correlated with VEGF

FIG. 1. Pearson correlation between suppression of lipolysis and insulin sensitivity for glucose
disposal (A); AT oxygenation, ATpO2 (B); VEGF (C); and capillary density by image analysis (D).
Males are represented by squares and females by circles: white for lean, gray for obese
without type 2 diabetes, and black for obese with type 2 diabetes. AU, Arbitrary units.
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mRNA (r � �0.70; P � 0.008) and capillary density (r �
�0.67; P � 0.01) but not with ATpO2. Glycerol turnover
during fasting (glycerol appearance, micromoles per kilo-
gram fat mass per minute) was positively correlated with
ATpO2 (r � 0.48; P � 0.05) but not with VEGF or cap-
illary density (r � 0.30; P value not significant). Insulin
suppressed glycerol turnover (glycerol appearance, micro-
moles per kilogram fat mass per minute) was inversely
correlated with VEGF (r � �0.55; P � 0.05) and only
marginally with capillary density (r � �0.50; P � 0.06)
but not with ATpO2 (r � 0.01; P value not significant).
Insulin suppression of lipolysis was lower in obese vs. lean
(44 � 3 vs. 59 � 15%, P � 0.05) and correlated with
whole-body glucose disposal rate (r � 43; P � 0.05; Fig.
1A) and fat cell size (r � 0.53; P � 0.06). Insulin suppres-
sion of lipolysis was positively correlated with ATpO2 (r �
0.44; P � 0.05; Fig. 1B), VEGF mRNA (r � 0.73; P �
0.01; Fig. 1C), and capillary density (r � 0.75; P � 0.01;
Fig. 1D). Sex and race were not significant contributors to
suppression of lipolysis.

Discussion

AT dysfunction consisting of infiltration of macrophages
and inflammation (11), impaired regulation of lipolysis
(12), and disordered secretion of adipokines (13) is rec-
ognized as a precursor to diabetes (14) and cardiovascular
disease (15). Recent data in cell culture systems (4, 5),
animal models (4, 6), and humans (3) suggest that AT
hypoxia lies upstream of AT dysfunction. In this study, we
explored the role of ATpO2 in the dysregulation of adipose
lipolysis that occurs in diabetes as evidence of decreased
sensitivity to insulin-suppressed lipolysis in human sc AT.
Low ATpO2 was associated with decreased whole-body
lipolysis as measured by glycerol turnover. The ability of
insulin to suppress lipolysis was defective in subjects with
a low ATpO2, and impaired lipolysis was associated with
low AT capillary density and low VEGF mRNA. Taken
together, these results implicate AT rarefaction and
ATpO2 as potentially causative for AT dysfunction.

These results have implications for the treatment of AT
inflammation and impaired lipolysis commonly described in
obesityandinsulinresistance.StrategiestoincreaseATblood
flow by drugs blocking angiotensin II, a potent vasoconstric-
tor shown to be up-regulated in obesity (16), may improve
AT oxygenation and possibly lipolysis. The observed reduc-
tion in AT VEGF and capillary rarefaction suggests that the
reducedATpO2 doesnot elicit anangiogenic response. Strat-
egies that increase AT angiogenesis might be employed to
increase ATpO2 and reverse the dysfunctional AT.

In summary, low ATpO2 is associated with a reduced
insulin suppression of glycerol turnover, a hallmark of

dysfunctional AT. These results provide new insight into
the origins of AT dysfunction in obesity and suggest that
defective angiogenesis might lie upstream of AT insulin
resistance and therefore type 2 diabetes.
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G, Teboul M, Massiéra F, Sharma AM 2003 The adipose-tissue
renin-angiotensin-aldosterone system: role in the metabolic syn-
drome? Int J Biochem Cell Biol 35:807–825

Sign up for eTOC alerts today  
to get the latest articles as soon as they are online.

http://jcem.endojournals.org/subscriptions/etoc.shtml

J Clin Endocrinol Metab, August 2010, 95(8):4052–4055 jcem.endojournals.org 4055

D
ow

nloaded from
 https://academ

ic.oup.com
/jcem

/article/95/8/4052/2597582 by guest on 23 April 2024


