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Context: The primary goals of genome-wide association studies (GWAS) are to discover new mo-
lecular and biological pathways involved in the regulation of bone metabolism that can be lev-
eraged for drug development. In addition, the identified genetic determinants may be used to
enhance current risk factor profiles.

Evidence Acquisition: There have been more than 40 published GWAS on skeletal phenotypes,
predominantly focused on dual-energy x-ray absorptiometry-derived bone mineral density (BMD)
of the hip and spine.

Evidence Synthesis: Sixty-six BMD loci have been replicated across all the published GWAS, con-
firming the highly polygenic nature of BMD variation. Only seven of the 66 previously reported
genes (LRP5, SOST, ESR1, TNFRSF11B, TNFRSF11A, TNFSF11, PTH) from candidate gene association
studies have been confirmed by GWAS. Among 59 novel BMD GWAS loci that have not been
reported by previous candidate gene association studies, some have been shown to be involved in
key biological pathways involving the skeleton, particularly Wnt signaling (AXIN1, LRP5, CTNNB1,
DKK1, FOXC2, HOXC6, LRP4, MEF2C, PTHLH, RSPO3, SFRP4, TGFBR3, WLS, WNT3, WNT4, WNT5B,
WNT16), bone development: ossification (CLCN7, CSF1, MEF2C, MEPE, PKDCC, PTHLH, RUNX2,
SOX6, SOX9, SPP1, SP7), mesenchymal-stem-cell differentiation (FAM3C, MEF2C, RUNX2, SOX4,
SOX9, SP7), osteoclast differentiation (JAG1, RUNX2), and TGF-signaling (FOXL1, SPTBN1, TGFBR3).
There are still 30 BMD GWAS loci without prior molecular or biological evidence of their involve-
ment in skeletal phenotypes. Other skeletal phenotypes that either have been or are being studied
include hip geometry, bone ultrasound, quantitative computed tomography, high-resolution pe-
ripheral quantitative computed tomography, biochemical markers, and fractures such as vertebral,
nonvertebral, hip, and forearm.

Conclusions: Although several challenges lie ahead as GWAS moves into the next generation, there
are prospects of new discoveries in skeletal biology. This review integrates findings from previous
GWAS and provides a roadmap for future directions building on current GWAS successes. (J Clin
Endocrinol Metab 97: E1958–E1977, 2012)
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Abbreviations: AUC, Area under the curve; BMD, bone mineral density; BMI, body mass
index; BR, buckling ratio; CDCV, common disease/common variants; CI, confidence in-
terval; CNV, copy number variant; DXA, dual-energy x-ray absorptiometry; EU, European
descent; FN, femoral neck; GEFOS, The Genetic Factors for Osteoporosis Consortium;
GWAS, genome-wide association study; GXG, gene-by-gene; HSA, hip structure analysis;
LD, linkage disequilibrium; LS, lumbar spine; MAF, minor allele frequency; MHC, major
histocompatibility complex; NSA, neck-shaft angle; NW, narrowest width; pQCT, periph-
eral quantitative computed tomography; SNP, single nucleotide polymorphism; WB, whole
body.
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In the last 5 yr, the study of genetics of complex diseases
has seen a meteoric rise in scope. In contrast to Men-

delian diseases caused by a mutation in a single gene, mul-
tiple genes and environmental factors contribute to these
complex phenotypes. Identifying the relevant genes associ-
ated with complex diseases has been difficult, in part because
each causal gene only makes a small contribution to overall
heritability (1). The study of genetic variants associated with
complex phenotypes using a genome-wide association study
(GWAS) approach has certain advantages over other ap-
proaches, because GWAS: 1) has greater statistical power
than using linkage studies to identify common, low-pen-
etrance, disease-susceptible variants (2); 2) has higher reso-
lution mapping with millions of single nucleotide polymor-
phisms (SNPs) genotyped across the genome to narrow
down the disease-susceptible locus into a single gene or even
a single sequence variant instead of a linkage ‘locus’ that
includes 10 to 100 genes; 3) uses an “agnostic” approach (3)
not requiring prior knowledge of the molecular involvement
of candidate genes in the pathophysiology of diseases, which
opens up opportunities for novel gene discovery; and 4) of-
fers the prospect of shortening the time and effort required to
discover new genetic determinants for complex diseases.
There are several milestones that made GWAS efforts feasi-
ble: 1) the phenomenon of linkage disequilibrium (LD) (4, 5)
was established in the human genome; 2) evidence for the
concept of the “common disease/common variants”
(CDCV) hypothesis (6); 3) completion of the International
HapMap Project (7, 8) (for common sequence variants with
minor allele frequency � 1%) and more recently the 1000
Genomes Project (9) [for a deeper resolution of both com-
mon and rare sequence variants (10, 11) as well as structural
variants (12)] created a catalog of genetic sequence variants
across thehumangenome;4)high-throughput technologies
with accurate genotyping calling algorithms (13, 14) for
genotyping hundreds of thousands to millions of SNPs
in parallel were developed at a cost that made it possible
to genotype large numbers of individuals who have been
phenotypically well-characterized; and 5) statistical
analysis methods have been developed to impute mil-
lions of SNP not actually genotyped based on LD struc-
ture of reference populations (15, 16) and to test vari-
ant-phenotype associations efficiently (17). GWAS
have proliferated so dramatically that a web site hosted
by the National Human Genome Research Institute has
been created to catalog the findings (http://genome.gov/
GWAStudies) (18).

GWAS of Skeletal Phenotypes

Predominance of the bone mineral density (BMD)
phenotypes

Since the first GWAS on skeletal phenotypes was pub-
lished in 2007 (19), there have been more than 40 pub-

lished GWAS on skeletal phenotypes. The study of skeletal
phenotypes over the past 5 yr has been predominantly
focused on dual-energy x-ray absorptiometry (DXA)-de-
rived BMD of the hip and spine. DXA-derived BMD is one
of the single most important and the strongest predictors
of subsequent osteoporotic fracture in both men and
women. The ultimate phenotype of the aging skeleton is
the low-trauma osteoporotic fracture; however, there are
considerable challenges to studying this phenotype given
the etiological heterogeneity, the quality of fracture as-
sessment, and the difficulty in identifying gene-environ-
ment interactions. On the other hand, DXA-derived BMD
measurements are relatively straightforward. The scan-
ning equipment is widely available, and there are only two
primary manufacturers of DXA equipment, which is a key
consideration when replicating the genetic association
findings in independent samples. In addition, for complex
traits with polygenic effects, a GWAS approach usually
requires considerably large sample sizes (due to the strin-
gent genome-wide significant � level and moderate effect
size) tobeable to identify SNP-trait associations.BMDhas
been the most logical choice for GWAS because DXA-
derived BMD has been measured in a large number of
existing epidemiological studies with DNA samples.

In this review, we primarily focused on GWAS of BMD
at different skeletal sites, such as the lumbar spine (LS)
(19–30), femoral neck (FN) (19, 23–31), total hip (20–22,
28), whole body (WB) (32), wrist (33), radius (34), tibia
(34), and cortical volumetric BMD of the tibia by periph-
eral quantitative computed tomography (pQCT) (35) as
well as hip structure analysis (HSA) (19, 26, 36, 37), hip
fracture (38), and Paget’s disease of bone (39, 40). The
characteristics of selected GWAS are described in Tables
1 and 2.

Study design
To avoid reporting false-positive findings that are com-

monly found in candidate gene association studies, for this
review, we only included GWAS that performed replica-
tion analyses. The design of a typical GWAS involves mul-
tiple stages (Fig. 1). The first stage is usually a genome-
wide discovery effort that relies on association analyses of
hundreds of thousands of genotyped SNPs or millions of
imputed SNPs. The second stage is a replication stage to
replicate top associated SNP in an equal or larger inde-
pendent sample or samples. This standard study design
provides robust association results and avoids potential
false-positive findings, although nonreplication may rep-
resent false-negative findings resulting from heterogeneity
between discovery studies and replication studies.

Except for a handful of studies in East Asian popula-
tions (25, 29, 34, 38), most of the GWAS have involved
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Caucasian samples of European descent (EU). Most of the
EU studies genotyped SNPs using DNA chips with ap-
proximately 300K to 550K SNPs. A set of genotyping
quality-control processes is typically employed to exclude
low-quality SNPs, such as those with a low genotyping call
rate, a significant deviation from Hardy-Weinberg equi-
librium, SNPs with excessive autosomal heterozygosity,
etc. Inadequate quality control procedures may introduce
false-positive findings (41), as shown in a recent GWAS
(42). Additional efforts are typically made to avoid con-
founding due to the presence of population substructure,
which may cause false-positive results due to the difference
of allele frequencies in subethnic groups of study samples
(43). Possible population substructure is handled by either
excluding ethnic outliers (44) or adjusting individuals’ an-
cestral genetic background using methods, such as prin-
cipal component analysis (PCA) of genotypes (45), in the
association analyses. Some GWAS also apply genome con-
trol to adjust the �GC inflation factor for potential popu-
lation stratification (46, 47).

With the concept of indirect association and the CDCV
hypothesis, GWAS benefit greatly from LD (4, 5), which
is the correlation between the genotyped SNPs on each
array and other untyped nearby causal alleles. Compared
with the HapMap Phase II reference panel [Utah residents
with Northern and Western European Ancestry from the
Centre d’Etude du Polymorphism Humain (CEPH)
collection] (7), the coverage, which is the percentage of

information of the common variation [minor allele fre-
quency (MAF) � 5%] in the human genome that is cap-
tured by genotyped SNP on the DNA chips, is approxi-
mately 65 to 85% (at LD index, r2 � 0.8) (3, 48). Thus,
commercial chip designs potentially capture the majority
of common genetic variation in EU populations. It was
also recognized that African-derived populations have
greater genetic diversity and lower levels of LD, requiring
a greater density of SNP to provide genome-wide coverage
of common variation.

To be able to directly compare association results of the
same SNP across studies with different DNA chips, of
large-scale GWAS (27, 28, 30, 34, 35, 40) also have im-
puted approximately 2 million additional untyped com-
mon SNPs (MAF � 5%) based on the LD structure in EU
populations. This gain in study efficiency and power
through pooling association results of the same imputed
SNPs is achieved without additional genotyping and thus
permits more comprehensive association studies with cur-
rent products at no extra cost.

The majority of GWAS of skeletal phenotypes have
studied samples with mixed populations of premeno-
pausal women, postmenopausal women, and men with a
wide age range (18–99 yr), although the average age is
usually 50 yr or greater. There is a general belief that it is
likely to be sex-specific genetic variants conferring sus-
ceptibility to osteoporosis, and the genetic regulation of
bone growth at younger ages and bone loss after peak bone

FIG. 1. GWAS design.
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TABLE 1. Published GWAS of BMD phenotypes (up to April 1, 2012)

First author (Ref.)

GWAS discovery stage

Traits Race
Age (yr),

mean (range)
No. of samples

(% female) SNP Covariates

BMD
Kiel (19) LS, FN, hip EU 62.5 (29–86) 1,141 (57%) 100 K Sex, age, age2, BMI, height, smoking, physical

activity, cohorts, estrogenic status (female)
Styrkarsdottir (20) LS, hip EU 63.6 (18–98) 5,861 (87%) 300 K Sex, age, weight

Styrkarsdottir (21) LS, hip EU 64.0 (18–99) 6,865 (87%) 300 K Sex, age, weight

Richards (23)
(GEFOS)

LS, FN EU 59.9 (18–?) 2,094 (100%) 314 K Sex, age

Timpson (32) WB EU 9.9 (?) 1,518 (51%) 315 K Sex
Xiong (22) LS, hip EU 50.3 (?) 1,000 (50%) 379 K Sex, age, weight, height

Guo (31) FN EU 50.3 (?) 983 (50%) 342 K Sex, age, weight
Tan (33) Wrist EU 50.3 (?) 1,000 (50%) 379 K Sex, age
Koller (24) LS, FN EU 33.2 (25–45) 1,524 (100%) 548 K Age, weight
Paternoster (35) Cortical BMD

at tibia
EU 17.1 (13–25) 1,934 (28%)# 2.4 M imputed Sex, age, weight, height

Hsu (26) (GEFOS) LS, FN EU 60.8 (29–86) 3,569 (57%) 433 K Sex, age, age2, cohorts, estrogenic status (female)
Duncan (28) (GEFOS) Hip, FN, LS EU ? (55–85) Hip or FN BMD Z �

�1.5: 900
(100%); Z � 1.5:
1,055 (100%)

2.5 M imputed Age, age2, weight, centers

Cho (34) Radius, tibia Asian
Korean

52.2 (40–69) 8,842 (53%) 2.1 M imputed Sex, age, area

Kung (25) LS, FN Asian
Chinese

50.0 (?) LS or FN BMD, lowest
10%: 424 (100%);
highest 10%:
376 (100%)

488 K Age, weight

Kou (29) Osteoporosis Asian
Japanese

60.2 (?) LS or FN BMD, T �
�2.5: 157
(100%); T � �2.5:
1,557 (52%)

224 K N.A.

Rivadeneira (27)
(GEFOS)

LS, FN EU 60.9 (18–96) 19,195 (74%)# 2.5 M imputed Sex, age, weight

Estrada (30) (GEFOS) LS, FN EU 59.6 (?–96) 32,961 (70%)# 2.5 M imputed Sex, age, weight

(Continued)

N.A., Not available; GDPD, Genetic Determinants of Paget’s Disease Consortium; BUA, Broadband ultrasound attenuation.

Samples: #, Total number of samples from several independent studies. A meta-analysis was applied to estimate effect size and P values of either
discovery stage or replication stages. Gene/loci: *, The most significant signal was for a SNP located in the intergenic regions of two nearby genes
�gene1–gene2*� or a nearby gene �gene1*�. Phenotype-specific results: We highlighted phenotype-specific results in each study if there was more than
one phenotype tested in that particular study. For example, in Styrkarsdottir et al., 2008, two skeletal sites were tested (“Traits” column). ZBTB40-WNT4
locus was associated with both LS and total hip BMD. However, MHC region was only associated with LS BMD. We listed MHC region as “MHC(LS)” to
highight that it was only associated with LS BMD. We listed MHC region as “MHC(LS)” to show it was associated with LS BMD.
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TABLE 1. Continued

First author (Ref.)
Replication stage,

samples (% female)#

Replicated GWAS findings

Osteoporotic fractures
[gene: OR (95% CI)]

Previously reported candidate
genes Novel GWAS genes/loci

BMD
Kiel (19) N.A.

Strykarsdottir (20) 7,925 (79%)# ESR1-C6orf97, TNFRSF11B-
COLEC10*, TNFSF11-AKAP11*

ZBTB40-WNT4*, MHC (LS) ZBTB40-WNT4*: 1.15
(1.07–1.25) MHC: 1.09
(1.02–1.16) LRP4: 1.11
(1.03–1.19) SPTBN1:
1.11 (1.05–1.17)

Styrkarsdottir (21) 8,510# (83%)# TNFRSF11A (hip)*, SOST (hip)* MHC (LS), SP7-AAAS (LS)*, MARK3
(hip)

SOST*: 1.10 (1.04–1.17)

Richards (23)
(GEFOS)

6,463# (88%)# LRP5 (LS), TNFRSF11B-COLEC10* LRP5: 1.3(1.09–1.52)

Timpson (32) 4,178 (49%) SP7-AAAS*
Xiong (22) 4,925 (63%)#, 2,955

(51%)#, Chinese 908
(0%) Tobago

TGFBR3 (spine), ADAMTS18 (hip)

Guo (31) 2,557 (55%) PTH-FAR1* IL21R
Tan (33) 1,626 (51%) Chinese SOX6*
Koller (24) 669 (100%) African Am CATSPERB (FN)
Patermoster (35) 2,803 (52%) 15.5 yr 1,052

(0%) 78.7 yr
TNFSF11*

Hsu (26) (GEFOS) 7,721 (72%)# TNFRSF11B-COLEC10 (LS)* WLS*(LS), SOX6 (LS)
Duncan (28) (GEFOS) FN, LS BMD 20,898

(100%)#
TNFRSF11B-COLEC10*, TNFSF11-

AKAP11 (LS)*
WNT4 - ZBTB40 (FN)*, MEF2C (FN)*,

SOX6 (FN)*, FLJ42280 (FN), GALNT3
(FN), RSPO3-RPS4XP9 (FN)*

GALNT3: vertebral
fractures, 0.89
(0.80–0.99);
osteoporotic fractures,
0.92 (0.85–0.99)

Cho (34) Heel BMD 7,861 Korean FAM3C (radius and heel)

Kung (25) LS or FN BMD Chinese 456
(100%) lowest 10%
264(100%) highest 10%
BMD 3,465 (100%)#,
Chinese 13,913 (81%)#,
EU

JAG1 (LS) JAG1, 0.7 (0.57–0.93)

Kou (29) LS or FN BMD T � �2.5
Japanese Cases: 2,092
(100%)#, Controls: 3,114
(85%)#

FONG FONG, 1.25 (1.16–1.35)

Rivdeneira (27)
(GEFOS)

N.A. 5 loci (bold genes below) 15 loci (bold genes below)

Estrada (30) (GEFOS) BMD, 50,933 (77%)#;
fractures: cases, 31,016
(?); controls, 102,444 (?)

C6orf97-ESR1, LRP5, SOST*,
TNFSF11-AKAP11,
TNFRSF11A, TNFRSF11B

ABCF2, ANAPC1 (FN), ARHGAP1-LRP4,
AXIN1, C12orf23, C17orf53-HDAC5,
C18orf19 (FN), C7orf58 (LS), CDKAL1-
SOX4* (LS), CPN1, CRHR1-MAPT-
WNT3, CTNNB1*, DCDC5*, DHH-
RHEBL1*, DNM3 (FN), ERC1-WNT5B*,
FAM9B-FAM9A (LS), LEKR1, FOXL1*,
FUBP3, GALNT3, GPATCH1-WDR88-
LRP3, HOXC4-HOXC6, IDUA, INSIG2*
(LS), JAG1, KCNMA1* (LS), KLHDC5-
PTHLH* (FN), LIN7C* (LS), MARK3,
MBL2-DKK1*, MEF2C* (FN), MEPE,
MPP7 (LS), NTAN1, PKDCC (FN), PTX4-
CLCN7*, RPS6KA5, RSPO3*, SALL1-
CYLD* (FN), SIDT1-KIAA2018 (FN),
SLC25A13*, SMG6, SOX6*, SOX9*
(FN), SP7, SPTBN1*, SUPT3H-RUNX2,
TXNDC3-STARD3NL*, WLS,
WNT4*, WNT16-FAM3C, XKR9-
LACTB2* (FN), ZBTB40*

P � 5 � 10�8

C18orf19 (FAM210A),
DKK1, LRP5, MEPE,
SLC25A13, SPTBN1;
P � 5 � 10�4

C17orf53, CTNNB1,
DCDC5, FUBP3,
RPS6KA5, SOST,
STARD3NL, WNT4,
WNT16, ZBTB40
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mass may be different. Nevertheless, most GWAS have
been done with all available participants to maximize sam-
ple size, and thus statistical power. A few exceptions have
included GWAS focused on children (32), teenagers (35),
premenopausal women (24), postmenopausal women
(25, 28), and adult women (23) only. However, the rela-
tively smaller sample sizes of these subsets of individuals
have limited the statistical power in the discovery stage.

New biological insights of BMD
To date, 66 BMD GWAS loci were replicated. The

“replicated” GWAS loci are defined as: 1) SNPs with ge-
nome-wide significant associations at the discovery stage
and with study-wide statistical significance at the replica-
tion stage; 2) SNPs without genome-wide significant as-
sociations at the discovery stage, but with genome-wide
significant associations when meta-analyzing discovery
and replication stages together; or 3) SNPs near genome-
wide significant associations at the discovery stage, but
achieving study-wide statistical significance at the repli-
cation stage after applying multiple testing adjustment.
The genome-wide significant cutoff P value (�-level) var-
ied among studies (� � 6 � 10�7 to 5 � 10�8), depending
on the number of SNPs genotyped and imputed, and also
depending on the methods that were applied for correcting
multiple testing. During the replication stage, statistical

significance cutoff P values were corrected for the number
of SNP that were included in the replication analysis. The
annotation of the top associated SNPs as being in a gene
or a locus is somewhat problematic because, in many in-
stances, the top associated SNPs might be assigned to mul-
tiple genes or may lie in intergenic regions. In Tables 1 and
2, we reannotated the SNPs based on human genome ref-
erence GRch37.3 and assigned SNP to a locus as follows:
1) top SNPs located within a known gene; 2) top SNPs
located in multiple genes (such as ESR1-C6orf97); 3) top
SNP located in the intergenic regions with two nearby
genes existing less than 100 kb [such as TNFRSF11B-
COLEC10* (where the asterisk indicates that a SNP is
outside the gene)]; 4) top SNPs located in the intergenic
regions with only one gene within 100 kb away (such as
SOX6*); or 5) authors specified gene annotation based on
a specific reason. For example, Albagha et al. (39) assigned
the top SNP associated with Paget’s disease as being in the
CSF1 locus, despite the fact that it was located far away
from the CSF1 gene and closer to a nearby gene, EPS8L3.
The annotation to the CSF1 gene was based on the obser-
vation that there was a recombination “hotspot” between
the top SNP and the EPS8l3 gene.

Among the 66 BMD GWAS loci, only seven previously
reported genes (LRP5, SOST, ESR1, TNFRSF11B,

TABLE 2. Published GWAS of other skeletal phenotypes (up to April 2012)

First author, year
(Ref.)

GWAS discovery stage

Traits Race
Age (yr),

mean (range)
No. of samples

(% female) SNP Covariate

Others
Guo (38) Hip fracture East Asian

Chinese
69.5 (55–80) Cases: 350 (65%)

Controls:
350 (51%)

281 K Sex, age, weight, height

Albagha (39) Paget’s
disease

EU ? No SQSTM1
mutations Case:
692 (?) Cotrol:
1001 (?)

294 K N.A.

Albagha (40), GDPD Paget’s
disease

EU ? No SQSTM1
mutations; cases,
692 (?); controls,
2,699 (?)

2.5 M imputed Sex

Kiel (19) HSA, BUA EU 62.5 (29–86) 1,141 (57%) 100 K See the first record
Liu (36) Proximal

femur size
EU 50.3 (?) 1,000 (50%) 379 K Age, age2, weight, height

Zhao (37) HSA EU 50.3 (?) 987 (50%) 379 K Sex, age, weight, height, age2*sex

Hsu (26) (GEFOS) HSA EU 60.8 (29–86) 3,421 (57%) 433 K Sex, age, age2, BMI, height, cohorts,
estrogenic status

(Continued)

Samples: #, Total number of samples from several independent studies. A meta-analysis was applied to estimate effect size and P values of either
discovery stage or replication stages. Gene/loci: *, The most significant signal was for a SNP located in the intergenic regions of two nearby genes
�gene1–gene2*� or a nearby gene �gene1*�. Phenotype-specific results: We highlighted phenotype-specific results in each study if there was more
than one phenotype tested in that particular study. For example, in Styrkarsdottir et al., 2008, two skeletal sites were tested (“Traits” column).
ZBTB40-WNT4 locus was associated with both LS and total hip BMD. However, MHC region was only associated with LS BMD. We listed MHC
region as “MHC(LS)” to highight that it was only associated with LS BMD. We listed MHC region as “MHC(LS)” to show it was associated with LS
BMD.
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TNFRSF11A, TNFSF11, and PTH) from candidate gene
association studies were confirmed by GWAS. It is some-
what surprising that only a handful of candidate genes out
of almost 100 previously reported associated candidate
genes (from Ref. 49–53 review papers and PubMed
searches) were confirmed by GWAS, and candidate genes,
such as VDR, MTHFR, IGF1, IL6, CYP19 genes, etc.,
were not confirmed by GWAS. This phenomenon is not
unusual in GWAS of other complex traits or phenotypes
such as type 2 diabetes and blood pressure. Several potential
explanations include: 1) false-negative findings of GWAS
due to the very stringent genome-wide significant cutoff; 2)
inadequate statistical power to identify those previously re-
ported associations with modest genetic effects; 3) genetic
heterogeneity in subpopulations within the GWAS meta-
analysis (e.g. different geographic locations and different
principal characteristics), making it more difficult to detect
genetic variant-phenotype associations; 4) genetic effects
with strong gene-gene and gene-environmental interactions;
andcertainly, 5) false-positive findingsofprevious candidate
gene association studies with small sample size and without
appropriate replication.

Among 59 novel BMD GWAS loci that were not re-
ported by previous candidate gene association studies,
several have been shown to be involved in key biological
pathways involving the skeleton, particularly Wnt signal-
ing (AXIN1, LRP5, CTNNB1, DKK1, FOXC2,

HOXC6, LRP4, MEF2C, PTHLH, RSPO3, SFRP4,
TGFBR3, WLS, WNT3, WNT4, WNT5B, WNT16);
bone development: ossification (CLCN7, CSF1, MEF2C,
MEPE, PKDCC, PTHLH, RUNX2, SOX6, SOX9, SPP1,
SP7); mesenchymal-stem-cell differentiation (FAM3C,
MEF2C, RUNX2, SOX4, SOX9, SP7); osteoclast differ-
entiation (JAG1, RUNX2); and TGF-signaling (FOXL1,
SPTBN1, TGFBR3). We also found knockout mice
(Mouse Genome Informatics database) with skeletal phe-
notypes represented by genes in the top GWAS findings, in-
cluding GALNT3, AXIN1, CLCN7, CTNNB1, CYLD,
DKK1, FOXL1, HOXC6, IBSP, IDUA, LRP4, MEPE, PK-
DCC,PTHLH,RUNX2,RSPO3,SOST,SOX6,SOX9,SP7,
SPP1,TGFBR3,andWLS.Humanmonogenicsyndromesdis-
playing skeletal phenotypes (OMIM database) were found for
CLCN7, GALNT3, JAG1, LRP4, PTHLH, SOST, SOX9,
SP7, and WNT3.

There are still 30 BMD GWAS loci without prior mo-
lecular or biological knowledge of their involvement in
skeletal phenotypes. These novel loci include 1p36.2
(ZBTB40*), 1q24.3 (DNM3), 2p16.2 (SPTBN1*), 2q13
(ANAPC1), 2q33.1 (FONG), 3q13.2 (SIDT1-KIAA2018),
3q25.31 (LEKR1), 7p14.1 (TXNDC3-STARD3NL*),
7q21.3 (SLC25A13*), 7q36.1 (ABCF2), 8q13.3 (XKR9-
LACTB2), 9q34.11 (FUBP3), 10p11.23 (MPP7), 10q22.3
(KCNMA1*), 10q24.2 (CPN1), 11p14.1 (LIN7C*),
11p14.1 (DCDC5*), 12q13.2 (DHH-RHEBL1*), 12q23.3

TABLE 2. Continued

First author (Ref.)
Replication stage,

samples (% female)#

Replicated GWAS significant findings

Osteoporotic fractures
[gene: OR (95% CI)]

Previously reported candidate
genes Novel GWAS genes/loci

Others
Guo (38) Chinese cases: 390 (71%);

controls: 516 (64%); hip
BMD, 2,955 (51%)#;
Chinese, 7,007 (57%)# EU

ALDH7A1 ALDH7A1: 2.25 (1.72–2.94)

Albagha (39) Cases, 481 (?); controls,
520 (?)

TNFRSF11A* CSF1*, OPTN Paget’s disease, 1.46 (1.30–
1.63) � 1.82 (1.61–2.04)

Albagha (40), GDPD Cases, 1,474 (45%)#;
controls, 1,671 (47%)#

TNFRSF11A* CSF1*, OPTN, PML, RIN3,
NUP205, TM7SF4

Paget’s disease, 1.34 (1.25–
1.45) � 1.72 (1.57–1.87)

Kiel (19) N.A.
Liu (36) 1,216 (100%)

Zhao (37) 1,488 (56%), 2,118 (47%)
Chinese

RTP3 (BR)

Hsu (26) (GEFOS) 5,077 (67%)# RAP1A (NW), TBC1D8 (NSA),
OSBPL1A (NW)
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(C12orf23), 14q32.12 (RPS6KA5), 14q32.12 (CATSPERB),
14q32.32 (MARK3), 16p11 (IL21R), 16p13.11 (NTAN1),
16q23 (ADAMTS18), 17p13.3 (SMG6), 17q21.31
(C17orf53-HDAC5), 18p11.21 (C18orf19 as FAM210A),
19q13.11 (GPATCH1-LRP3), and Xp22.31 (FAM9B). We
performed bioinformatics analyses to characterize the biologi-
cal functions of these genes and to ascertain whether they may
play a role in skeletal biology. Figure 2 shows the biological
functional networks for these 66 BMD GWAS loci that were
created based on pathways and/or functional groups (Fig. 2,
genes grouped in boxes except for the red box) from KEGG,
Biocarta, and IPAIngenuity (canonicalpathwayandGeneOn-
tology only). The edges (lines) connecting genes within each
box,connecting“boxes”toeachother,orconnectinga“circle”
to a “box” represent the significant relationships and/or gene-
gene interactions (P�0.05afterBonferroni correction)among
nodes that were estimated by using GRAIL (54). GRAIL is a
tooltoexaminerelationshipsbetweengenesindifferentdisease-
associated loci. Obviously, skeletal biology pathways (boxes
with orange border) are highly interrelated. We also observed
significant interactions between the functional groups that are
unrelatedtoskeletalbiology(blueboxes,redbox,andredcircle)

and the functional groups that are related to skeletal biology
such as the interactions between “ossification” and “behavior
and nervous systems” and interactions between the “Wnt sig-
naling”pathwayand“behaviorandnervoussystems.”Wealso
found that several transcription regulators (such as NOTCH1,
FUBP3,HOXC4,andSUPT3H)atthenucleusorplasmamem-
branes were significantly interacting with molecules in the Wnt
signaling pathway, suggesting their potential involvement in
skeletal phenotypes via the Wnt signaling pathway. MAP/mi-
crotubule affinity-regulating kinase 3 (protein product of
MAPK3 gene) may also be involved in skeletal phenotypes via
the Wnt signaling pathway. BMD GWAS loci were also en-
riched in “protein kinase signaling,” “cancer-genetic disor-
ders,” and “reproductive-genetic disorders.” However, for
these gene-sets, no obvious relations and/or interactions with
skeletal biological pathways were found. The genes in the red
boxesdidnothavesignificant interactionswithanyothergenes
amongthe66BMDGWASlocibasedonavailabledatabasesof
molecular interactions and biological pathways. Thus, GWAS
have provided significant numbers of novel hypotheses and
have elucidated the functional implications for skeletal metab-
olism that will bring new insights into skeletal biology.

FIG. 2. Biological pathways and functional interaction network analyses for BMD GWAS loci. Molecular pathways and functional gene groups
were obtained from KEGG, Biocarta, and the Ingenuity knowledge database (canonical pathways and gene ontology). We performed a gene-set
enrichment analysis on 66 BMD GWAS loci. Boxes with orange borders are skeletal pathways or skeletal gene groups. Blue boxes are other
pathways or gene groups. Genes in red boxes and red circles may be involved in known biological pathways but were not enriched (P � 0.05) in
any pathways/gene groups among 66 BMD GWAS loci. The edges (lines) connecting genes, boxes, or circles are represented as functional
interactions among genes with P values �0.05 (after multiple testing corrections) from GRAIL analyses.
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Age, sex, skeletal sites, or ethnicity-specific BMD
GWAS loci

Three GWAS were performed in younger individuals
including children (WB BMD) (32), teenagers (cortical
volumetric BMD at the tibia) (35), and premenopausal
women (LS and FN BMD) (24). SNP rs1021188 located
near TNFSF11 (RANKL) was associated with cortical
volumetric BMD in teenagers. The association signal of
this SNP was independent from SNP in and near this gene
that have been reported by other GWAS of LS and FN
BMD in adult samples. The CATSPERB (24) locus was
associated with FN BMD in premenopausal women only.
The CATSPERB locus is about 500 kb away from the
RPS6KA5 (30) locus, which was associated with both FN
and LS BMD in adult men and women. The FONG (29)
locus was associated with BMD in an East Asian Japanese
population only. On the other hand, the JAG1 (25) and
FAM3C (34) loci were associated with BMD in both East
Asian populations and EU populations. Skeletal site-spe-
cific BMD GWAS loci have also been found (Tables 1 and
2). We have highlighted phenotype-specific results in each
study if more than one phenotype was tested in that par-
ticular study. For example, in Styrkarsdottir et al. (20),
two skeletal sites, LS and total hip BMD, were tested (Ta-
bles 1 and 2, traits column). The ZBTB40-WNT4 locus
was associated with both LS and total hip BMD. However,
the major histocompatibility complex (MHC) region was
only associated with LS BMD. We listed MHC region as
“MHC(LS)” to highlight that it was only associated with
LS BMD. Most of the published GWAS on skeletal phe-
notypes did not have adequate power to test sex-specific
genetic effects. Estrada et al. (30) performed sex-specific
association analyses and tested the sex-specific effects us-
ing a conservative heterogeneity test. They only found one
GWAS locus in Xp22.31 (near FAM9B) to be male-spe-
cific in its association with LS BMD. However, the imbal-
ance in sample size between women and men and the con-
servative heterogeneity test limited the ability of this study
to identify sex-specific findings. A formal genome-wide
SNP-sex interaction meta-analysis study (55) was recently
published (refer to Gene-by-sex interactions for details).

Skeletal phenotypes other than DXA BMD
In addition to DXA BMD, one study performed GWAS

on cortical volumetric BMD at the tibia by pQCT (35).
Devices such as pQCT measure cross-sections of bone
(cortical or trabecular bone) and offer the opportunity to
examine different skeletal compartments within a bone,
which is impossible when using two-dimensional DXA.
For example, the SNP rs1021188 in the TNFSF11
(RANKL) gene was associated with cortical volumetric
BMD, and the SNP was independent from a previously

identified SNP that was associated with DXA BMD
(rs9594738) (21) in the same RANKL region. This result
indicates allelic heterogeneity at the RANKL locus. SNP
rs1021188 was also associated with increased endosteal
circumference, which indicates that RANKL may regulate
endosteal expansion.

As shown in Table 1, several studies have performed
GWAS on hip geometry measures (19, 26, 36, 37), includ-
ing cortical thickness, buckling ratio (BR), cross-sectional
area, femoral neck-shaft angle (NSA), the width of the
femoral neck at the narrowest point (NW), femoral neck
length, and proximal femur size in EU populations. Ge-
nome-wide significant associations with NW were found
for SNP located on chromosomes 1p13.2 (RAP1A) and
18q11.2 (OSBPL1A) (26). Genome-wide significant as-
sociations with femoral NSA were found for SNPs located
on chromosome 2q11.2 (TBC1D8) (26). A polymorphism
within the RTP3 gene was associated with BR in both EU
and Chinese populations (37). Hsu et al. (26) found that:
1) the RAP1A gene was predicted to be causally linked
with bone phenotypes in B6xC3H F2 intercross mice; 2)
an eSNP (rs494453) located in intron 2 of the RAP1A gene
was also found to be significantly associated with RAP1A
gene expression in human primary osteoblasts; and 3)
RAP1A expression differed across osteoblast maturation,
suggesting that the RA1PA gene is a promising gene as-
sociated with femoral neck structure. RAP1A is a GTPase
that mediates calcium signal transduction and has been
found to mediate activities of c-Jun N-terminal kinase.
Therefore, variants in the RAP1A gene may change the
activities of c-Jun N-terminal kinase, which in turn affects
osteoblast maturation.

Paget’s disease of bone is a late-onset metabolic bone
disease characterized by focal areas of increased bone re-
modeling primarily due to increased activity of oste-
oclasts. Paget’s disease of bone affects approximately 8%
of older men and approximately 5% women in EU pop-
ulations. Mutations in the SQSTM1 gene are the most
common genetic causes of classic Paget’s disease of bone,
accounting for 10 to 50% of cases that run in families and
5 to 30% of cases in which there is no family history of the
disease. To understand whether common variants also
contribute to Paget’s disease, Albagha et al. (39, 40) con-
ducted a GWAS on Paget’s disease patients without
SQSTM1mutations.CommonSNPlocatednearTNFRSF11A
(RANK) and the CSF1 gene, and within the OPTN, PML,
RIN3, NUP205, and TM7SF4 genes were genome-wide sig-
nificantly associated with Paget’s disease. The risk (per-allele
odds ratio) of Paget’s disease ranged from 1.34 [95% confi-
dence interval (CI), 1.25–1.45] to 1.72 (95% CI, 1.57–1.87),
which is larger thantheeffect sizesassociatedwithosteoporotic
fracture that have been reported by GWAS in EU populations.
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CSF1 and TM7SF4 were found to be involved in osteoclast
differentiation.

Effect size and explaining variation in skeletal
phenotypes

In most of the GWAS of common phenotypes reported
so far, the percentage of variance explained by all GWAS
loci is modest. Of all the skeletal phenotypes, the GWAS
of Paget’s disease yielded the greatest percentage of risk
explained [�13% of familial risk of Paget’s disease (40)].
The strongest effect of a single SNP was reported by a
GWAS in Chinese populations (22). A SNP in the
ADAMTS18 gene explained approximately 3.8% of total
variation in hip BMD, and another SNP in the TGFBR3
gene explained 1.2% of total variance in LS BMD (22). On
the other hand, in GWAS in EU populations, most of the
SNPs only account for 0.09 to 0.5% of the BMD variance.
Rivadeneira et al. (27) estimated that all of the 20 BMD
GWAS loci together only explained approximately 2.9%
of the total genetic variance in LS BMD and approxi-
mately 1.9% of the total genetic variance in FN BMD in
an EU population. As reported by the largest GWAS meta-
analysis of BMD so far, combining all 56 BMD GWAS loci
together only explained approximately 5.8% of the total
genetic variance in FN BMD (30), which suggests that
GWAS findings to date have not accounted for the ma-
jority of genetic variance in BMD despite the relatively
large sample sizes with necessary power to determine
modest genetic effects. This mystery of “missing herita-
bility” is commonly found in many other complex traits
and phenotypes (56). Other examples included a finding
of 12.5% of the variance in heritability of body height
(by180 GWAS loci) (57), 4% of the variance in heritability
of body mass index (BMI) (32 GWAS loci) (58), and 16%
of the variance in heritability of ulcerative colitis (47
GWAS loci) (59). The challenges of missing heritability are
discussed in the section below: Missing low-frequency
variants, rare variants, and structural variants.

Attempts have been made to estimate the contribution of
genetic variants to the risk for osteoporosis and osteoporotic
fracture using the BMD GWAS loci. A simulation study also
suggested that genetic profiling could enhance the predictive
accuracy of fracture prognosis estimated only by clinical risk
factors (such as sex, FN BMD, history of prior fracture, falls
during the past 12 months, and age) and help to identify
high-risk individuals (60). The Genetic Factors for Osteopo-
rosis consortium (GEFOS) performed a receiver operating
characteristics analysis and estimated the area under the
curve (AUC) for osteoporosis (T-score � �2.5) and osteo-
porotic fracture in a prospective study in 2836 postmeno-
pausal Danish women aged 55–86 yr (30). As shown in Fig.
3, age and weight alone predicted osteoporosis with an AUC

of 75% (95% CI, 73–77%). The 56 BMD GWAS loci to-
gethershowedsignificant,butmodest,predictiveabilitywith
an AUC of 59% (95% CI, 56–62%). Adding GWAS loci
together with age and weight did not substantially increase
the predictive ability with an AUC of 76% (95% CI, 74–
78%); however, AUC analyses evaluating the improvement
in model fit with the addition of a new risk factor are insen-
sitive to change. A similar pattern was observed for fracture
prediction with a smaller AUC. Despite extremely low P val-
ues (P � 5 � 10�8) and many SNP that were genome-wide
significantly associated with BMD, the identified genetic risk
loci fromGWASdonot seemtobeable topredict individuals
with low BMD or osteoporotic fracture after taking into
account age and weight.

Fracture risks
To date, only one GWAS of fracture in a small case-

control sample (discovery stage, 350 hip fracture cases and
350 age-matched controls) of a Chinese elder population
has been published (38). SNP rs13182404 within the
ALDH7A1 gene on Chr5q31 was genome-wide signifi-
cantly associated with hip fracture with a P value of 2.1 �
10�9 after combining discovery and replication stages
with a total sample size of 740 hip fracture cases and 866
controls. The risk (per-allele odds ratio) of hip fracture
was 2.25 (95% CI, 1.72–2.94), which is the largest effect
size associated with osteoporotic fracture that has been
reported by GWAS of skeletal phenotypes.

While conducting GWAS of BMD, several studies also ex-
aminedSNP-fractureassociations for their top findings (Tables

FIG. 3. The area under receiver operating characteristics (ROC)
curves of genetic risk scores predicting the risk of osteoporosis
(T-score � �2.5) in 2836 postmenopausal EU women
(Supplementary Fig. 8, Ref. 30).
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1 and 2). Among 68 BMD GWAS loci, 21 loci were also asso-
ciatedwithfracturerisk.Theyarelocatedonchromosome1p36
(ZBTB40-WNT4), 2q24-q31 (GALNT3), 2q33.1 (FONG),
3p21 (CTNNB1), 4q21.1 (MEPE), 6p21.3 (MHC), 7p14-p13
(STARD3NL), 7q21.3 (SLC25A13), 7q31 (WNT16),
9q34.11 (FUBP3), 10q11.2 (DKK1), 11p11.2 (LRP4),
11p14.1(DCDC5),11q13.4(LRP5),2p21(SPTBN1),14q31-
q32.1 (RPS6KA5), 17q11.2 (SOST), 17q21.31 (C17orf53),
18p11.21 (C18orf19, recently named FAM210A), and
20p12.1-p11.23 (JAG1). These loci are statistically sig-
nificant after Bonferroni correction for multiple testing.
The majority of these findings were from our recent pub-
lication that attempted to validate GWAS signals for BMD
in 31,016 osteoporotic fracture cases and 102,444 con-
trols from more than 40 study cohorts who were part of
the GEFOS/GENOMOS consortium framework (30).
JAG1 (25), FONG (29), and ALDH7A1 (38) loci were
found to be associated with fracture risk in East Asian
populations only. The risk (per-risk allele odds ratio) of
osteoporotic fracture ranged from 1.05 (95% CI, 1.02–
1.08) for an SNP (risk allele frequency, 67%) located in
C17orf53 locus (30) to 1.43 (95% CI, 1.08–1.75) for an
SNP (risk allele frequency, 69%) located in the JAG1 gene
(25). To compare the magnitude of effect size across
GWAS for each SNP, we flipped the allele and reported the
odds ratio of the risk allele, instead of the minor allele in
the populations. In this case, both variants in the
C17orf53 locus and the JAG1 gene were actually associ-
ated with a decreased risk of osteoporotic fracture because
their risk alleles are the “major” alleles (allele frequency �
50%) and the “minor” alleles were associated with an
increased risk of osteoporotic fracture. For the remaining
loci, most of the per-risk allele odds ratios are less than 1.1,
especially in the EU populations, which indicates that the
individual effects of these BMD GWAS loci on the risk of
osteoporotic fracture is modest. This contrasts with the
observation that lower DXA BMD explains 10 to 50% of
osteoporotic fracture risk, depending on sex, age, and the
population studied. In all cases, the SNP-fracture associ-
ation showed the same effect direction as the SNP-BMD
association (decreasing BMD and increased risk of frac-
ture). One notable finding from these GWAS is that vari-
ants in the OPG-RANK-RANKL pathway (TNFRSF11B,
TNFRSF11A, and TNFSF11 genes) have not been found
to be associated with osteoporotic fracture, despite the
fact that variants in the OPG-RANK-RANKL pathway
(osteoclastogenesis) are the most consistent findings asso-
ciated with BMD across different studies and populations.

Notwithstanding some of the above inconsistencies re-
lating GWAS findings from BMD and those from osteo-
porotic fracture, the BMD GWAS top findings that have
been associated with osteoporotic fractures seem to pre-

dominantly involve bone morphology (LRP4, GALNT3,
DKK1) and development, such as mineralization (WNT4,
MEPE) and differentiation of osteoblasts (CTNNB1,
DKK1, LRP5, WNT4, SOST) and osteoclasts (JAG1,
CTNNB1). Several genes are in the Wnt/�-catenin signal-
ing pathway, including CTNNB1, DKK1, LRP5, SOST,
WNT4, and WNT16. Some are also involved in diabetic
nephropathy or glucose metabolism disorders, including
CTNNB1, DKK1, LRP5, SLC25A13, WNT4, and
WNT16 genes. For the remaining genes, further elucida-
tion of their involvement in biological function and/or
processes related to skeletal metabolism is needed.

Structural variation and skeletal phenotypes
In addition to SNP, copy number variants (CNVs) con-

stitute a substantial fraction of genomic variability (61)
and affect 20% of the variation in gene expression (62,
63). A CNV, usually larger than 1 kb of DNA length, is a
structural variation of genomic sequence that results in the
cell having an abnormal number of copies of a DNA seg-
ment. Several studies have estimated CNVs from the DNA
chips that were used to genotype SNP and performed ge-
nome-wide CNV association analyses for hip fracture
(64), hip geometry (65, 66), and BMD (65). A common
CNV deletion (76.8% of subjects with homozygous de-
letions) covering the UGT2B17 gene was associated with
hip fracture in a case-control study comprising 350 Chi-
nese hip fracture cases and 350 age- and sex-matched con-
trols as the discovery stage and an independent Chinese
sample with 399 hip fracture cases and 400 controls as
replication (64). Compared to individuals with deletions
of both copies of the UGT2B17 gene, individuals carrying
at least one copy of the UGT2B17 were at increased risk
for hip fracture odds ratio of 1.58 (95% CI, 1.12–2.22).
However, this association was not replicated in a subse-
quent study with 1347 elderly Caucasian women (34.1%
of subjects with homozygous deletions) (67), again high-
lighting the need for robust replication in studies with
smaller sample sizes like this.

Outstanding Challenges and New
Directions

Within just a 5-yr period, more than 60 novel loci have
been identified by GWAS of skeletal phenotypes. The
GWAS approach offers the prospect of shortening the time
and effort required to discover new genes for osteoporosis
compared with previous attempts to use traditional link-
age or candidate gene association studies. The newly dis-
covered GWAS genes enhance our current understanding
of biological mechanisms underlying the skeletal pheno-
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types and can provide “prioritized hypotheses” for biol-
ogists to further characterize gene functions and for sci-
entists to develop new treatment, early diagnosis, and even
prevention strategies for skeletal disorders. Despite the
promise of novel discoveries for genes associated with
skeletal phenotypes, the mystery of missing heritability
(56) raises doubt about the value of GWAS and dampens
the hope of some day using GWAS to develop personalized
medicine for treatments. Explanations for this missing
heritability have been suggested, including: 1) inadequate
sample size to detect variants with smaller effect; 2) com-
mon SNPs as surrogate markers poorly linked to causal
variants/functional variants; 3) allelic heterogeneity with
multiple independent variants at the same locus; 4) rarer
variants (minor allele frequency � 1%) that are poorly
detected by current genotyping arrays; 5) other structural
variations; and 6) inadequate accounting for gene-gene
and gene-environment interactions. In the following sec-
tions, we discuss challenges that are commonly encoun-
tered in GWAS and potential strategies to overcome those
challenges. We also present some of the new directions
being undertaken.

Sample size does matter
In one of the largest GWAS efforts to date for the height

phenotype, 180 loci were discovered. With a sample size
of 500,000 with effect sizes equal to or greater than those
identified so far, studies estimated that about 42% of the
phenotypic variance for height can be explained by all the
autosomal common SNP on currently commercial DNA
chips (68), and approximately 680 GWAS loci are asso-
ciated with height (57). According to these estimations,
current GWAS remain underpowered to detect statistical
signals of all associated common variants. To identify
these variants with modest effects, as mentioned previ-
ously, GWAS requires large samples of well-phenotyped
individuals with available genotyping. Because most com-
mon variants have smaller effect sizes, even the largest
GWAS of BMD with a sample size close to 33,000 subjects
in the discovery stage (30), 56 replicated GWAS loci only

explained approximately 5.8% of the
total genetic variance in FN BMD.
Greater power will require even larger
sample sizes. Figure 4 graphically dis-
plays this relationship between sample
size and the number of replicated
GWAS loci. Thus, as the sample sizes of
the discovery stage have grown, the
number of replicated GWAS loci has
grown exponentially (Fig. 4, left panel).
Studies with smaller sample sizes had
reported only a handful of replicated
GWAS loci. It is encouraging that less

than a doubling of sample size from Rivadeneira et al. (27)
to Estrada et al. (30) more than doubled the number of
replicated GWAS loci that were identified (Tables 1 and
2). Nevertheless, it is likely that other sequence variants
not achieving genome-wide significance levels may also be
true-positive findings. Follow-up of these loci is likely to
yield new insights into bone metabolism. However, in-
creasing sample size will not lead to the discovery of all the
missing heritability by the current CDCV approach. As an
example of height, all of the autosomal common SNP only
explain up to half of the heritability of height (68).

To have sufficient power to determine genome-wide
significant associations for BMD phenotypes, ongoing ef-
forts are attempting to bring all the major cohort studies
with genotyping and phenotyping together for the discov-
ery phases of GWAS meta-analyses of skeletal phenotypes,
as well as assembling a group of cohorts with phenotyping
data and DNA that could be used for de novo genotyping
of the top findings of the GWAS meta-analyses. Thus,
GEFOS (www.gefos.org) and the Genetic Markers for Os-
teoporosis (GENOMOS) (www.genomos.eu) consortia
were established to maximize the samples available for
large GWAS meta-analyses with replication. Cohorts
from around the world can participate in this joint col-
laboration to find novel genes contributing to the devel-
opment of osteoporosis.

Bayesian approach
Compared with the usual test statistics (frequentist),

the Bayesian approach may have advantages in GWAS.
Because interpretation of the usual association P values
estimated from frequentist approaches crucially depends
on sample size and MAF, using P values requires a signif-
icant threshold that should be more stringent with in-
creased sample size, which is contrary to common prac-
tice. The Bayesian approach, on the other hand, provides
an alternative to the P value for assessing the consistency
of a set of data with a null hypothesis (69). In addition, a
Bayesian approach can easily incorporate prior knowl-

FIG. 4. Relation between sample size and number of GWAS loci identified. The blue line is
the linear trajectory (linear regression excluded the study with the largest sample size); and
the red line is the exponential trajectory (exponential regression included the study with
largest sample size).
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edge such as functional and biological information into
the models because SNP with functional implications are
more likely to be associated with disease status. A Bayes
factor, defined as the ratio of the probability of the data
under the null and alternative hypotheses, is commonly
used as an indicator of the observed dataset that is more
likely under alternative hypothesis. A handful of GWAS
have been performed using Bayesian approaches (16, 70,
71). However, due to its computational intensity and dif-
ficulty in specifying prior distributions for all of the un-
known parameters in the model, the Bayesian approach is
not widely used (72). Several Bayes factor approximations
to P values have been proposed such that a Bayesian ap-
proach may be an alternative approach of existing fre-
quentist methods in the future (72).

Heterogeneity across study cohorts
One potential limitation of growing sample sizes of

GWAS meta-analyses is the possibility of heterogeneity
across the large number of studies. Meta-analysis has be-
come a routine part of GWAS, and yet meta-analysis only
provides optimum power to find effects that are homoge-
neous across cohorts. The heterogeneity of information
(ancestral genetic background, covariates, genotypes, and
phenotypes) not only affects statistical power, but also
increases the potential for false-positive findings (73). This
makes it imperative to harmonize information across co-
horts to the largest extent possible.

Statistical methods exist to retrospectively examine po-
tential heterogeneity between studies or between different
phenotypic measurement assays or devices (74, 75). A
“Forest plot” can be used to visualize the heterogeneity of
effects (76). When heterogeneity exists, appropriate sta-
tistical methods, such as random-effects or mixed-effects
meta-analysis should be applied (73, 77). Fixed-effects
meta-analysis is commonly used in the GWAS setting.
However, fixed-effects meta-analysis assumes that the ge-
netic effects are the same across the different studies. Al-
though, fixed-effects meta-analysis provides narrower
confidence intervals and significantly lower P values for
the variants than random-effects meta-analysis, when het-
erogeneity is present, fixed-effects meta-analysis inflates
the type-I error (73). On the other hand, the random-ef-
fects (77) or mixed-effects meta-analysis assumes that the
mean effect (of each SNP) in each study is different, and the
means are usually assumed to be chosen from a Gaussian
distribution. The variance of that Gaussian distribution
(the amount of between-study heterogeneity) is estimated
by the model.

In addition, heterogeneity not only affects statistical
power and produces potentially false-positive findings in

GWAS discovery, but also reduces the prediction accuracy
of diseases (such as fracture risk) when applying genetic
risk scores to a population that is in a heterogeneous en-
vironment (gene-by-environmental interactions) and/or
heterogeneous genetic background. When planning stud-
ies, researchers should work together to create standard-
ized procedures that can apply to many cohorts to collect
medical information and to measure covariates and phe-
notypes. Toward this end, the PhenX project has provided
a “toolbox” of phenotypes that have been well-validated
(https://www.phenx.org).

Missing low-frequent variants, rare variants, and
structural variants

With the limitation of current genome-wide genotyping
density, GWAS efforts have focused on common SNPs
(MAF � 5%). Most of the identified common SNPs are
not likely to be the causal or functional SNPs. The missing
heritability suggests that a small proportion of a large
number of common causal variants and a larger propor-
tion of a small number of rare causal variants will con-
tribute to the health of a human individual. Causal vari-
ants that are not in LD with the genotyped markers (such
as the majority of the common SNP in a DNA chip) are
likely to be rare (�1%) and uncommon (�5%) variants
(78, 79). There is still considerable debate over three hy-
potheses that potentially explain this missing heritability:
1) synthetic associations (associations of multiple variants
with a phenotype) with only multiple rare causal variants
represent a significant proportion of associations detected
in GWAS (80, 81); 2) a combination of both common and
rare causal variants that are not in high LD with genotyped
SNP on the current generation SNP arrays represent a
significant proportion of the associations detected in
GWAS; or 3) the CDCV hypothesis is still valid, but sam-
ple sizes are still too small (82).

Rare variants are predicted to exhibit stronger effect
sizes than common variants, consistent with the view that
functional allelic variants are subject to purifying selection
pressure (83). Recent studies have identified clusters of
rare variants related to complex traits (84–86) such as
serum lipids (87), type 1 diabetes, sporadic epilepsy syn-
dromes (88), blood pressure (89), hearing loss, sporadic
autism (90), and cancers. These studies suggest that com-
plex traits may be due to both common polymorphisms
and multiple rare deleterious alleles in protein coding
genes. Although the original signals detected in GWAS are
often common variants, the discovery of highly penetrant
rare variants in the same region might be crucial.

Deep resequencing approaches provide an opportunity
to test for associations with all sequence variants (com-
mon and rare variants as well as structural variants) that
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are, to some extent, much more detailed than the current
GWAS with genotyping arrays (78, 79). This resolution is
something that GWAS are unable to achieve. Deep rese-
quencing in the promising targeted regions of individuals
with extreme phenotypes may be the most promising strat-
egy for accessing rare variants and has the potential to
discover rarevariants and structural variantsneither geno-
typed on dense SNP arrays nor reliably imputed. The test-
ing of associations between rare variants, structural vari-
ants, and skeletal phenotypes is beginning to be explored.
The Framingham Study, The United Kingdom Twins
Study, the Canadian Multicenter Osteoporosis Study, the
Cardiovascular Heart Study, the Women’s Health Study,
and the Rotterdam Study have all begun to perform next-
generation whole-genome sequencing, whole-exome se-
quencing, and/or targeted sequencing of loci found in pre-
vious GWAS meta-analyses. The first results of these
efforts should be forthcoming.

Increasing coverage toward “next-generation
GWAS”

There are conflicting opinions regarding the use of pub-
licly available random samples as reference panels [such as
the International HapMap project and the 1000 Genomes
Project (9–11)] to impute disease-related causal variants
in specific study populations. This is especially true for those
populations not represented in the projects because the dis-
ease-related causal variants may not be captured by the in-
dividuals in the publicly available reference panels (80, 91,
92). In addition, although long-range phasing and haplotype
imputation may be able to capture rare variants well, current
imputation methods do not adequately predict rare variants.

With advances in technology for massively parallel geno-
typingofSNP, thecapacityof commercial arrayshasevolved
to deliver very high density SNP capabilities, thus enabling
highly powered “next-generation” GWAS with up to 5 mil-
lion SNP in a DNA chip from Affymetrix (93) and Illumina.
In addition, the recent emergence of the human exome-array
will also permit multiple cohorts to genotype both com-
mon and rare functional variants in exons that have been
identified by previous sequencing studies. This array is
much more affordable than next-generation whole-exome
sequencing and is being performed in dozens of studies
with skeletal phenotypes worldwide.

Gene-by-gene (GXG) interactions
A recent study estimated that GXG interactions may

account for a significant portion of the heritability of com-
plex phenotypes (94). To date, few GWAS have incorpo-
rated GXG interaction testing due to the fact that the focus
has first been on single-locus testing. In addition, testing
statistical interaction in relation to a linear model (such as

linear regression model) may not directly imply biological
or functional interactions in genetics. An exhaustive
search of all pair-wise two-locus interactions from a
GWAS has been proposed (95). Although it is computa-
tionally feasible, it is very time consuming and does not
deal with three-way, four-way, or even higher-order in-
teractions. Therefore, sophisticated statistical tools still
need to be developed.

Gene-by-sex interactions
The study of the genetic basis of complex phenotypes

involves the consideration of genetic and environmental
factors and how these interact with each other (GXE). One
of the key challenges for current GWAS GXE interactions
is the limited statistical power due to small sample size and
heterogeneity of the measurement methods and distribu-
tion across studies.

Recent studies suggest that sex-specific genetic archi-
tecture influences many human phenotypes (96), includ-
ing reproductive, physiological, and complex disease
traits. Some of the underlying mechanisms might be at-
tributed to differential gene regulation in males and fe-
males. Strong sexual dimorphism has been observed for
BMD. One explanation for this sex-specific predisposition
to osteoporosis and fracture risk is the possibility that the
differences between men and women are driven by genetic
effects determining bone fragility (97). Our recent study
performed a GWAS gene-by-sex interaction on LS and FN
BMD in approximately 25,000 individuals from seven
cohorts and replicated top findings in an additional ap-
proximately 24,000 subjects (55). Despite the large col-
laborative effort involved, no significant gene-by-sex in-
teraction was found. To have adequate power (80%) to
detect gene-by-sex interaction signals (explaining 0.08%
of total variance), at least 50,000 subjects will be needed.
These results suggest that the interaction effects are
smaller than the main effects and require even larger sam-
ple sizes than the sample sizes required for the main effects.

Pleiotropic effect
Most complex diseases with a heterogeneous pathophys-

iology cannot be precisely defined by only one phenotype
(98, 99). Often the related endophenotypes for diseases may
be associated with the same sets of genes (100). Testing re-
lated endophenotypes simultaneously is a powerful ap-
proach for identifying susceptibility genes and for measuring
the pleiotropic effects of genes directly influencing multiple
traits. By studying multiple skeletal phenotypes, including
BMD of the hip, spine, heel ultrasound, and hip geometric
indices in the Framingham Osteoporosis Study, the number
of shared GWAS top hits between these phenotypes was in-
creased (101)whenthegenetic correlationbetween twoskel-
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etalphenotypeswashigher. Itwasconcludedthatmostof the
similarity between the quantitative bone phenotypes may be
attributed to pleiotropic effects of genes.

Another approach to searching for pleiotropy is to le-
verage large GWAS consortia results and to look up the
overlapping GWAS top SNPs between two phenotypes.
When this was done with BMD and other phenotypes,
several BMD loci (LS or FN) were also found to be asso-
ciated with other nonskeletal phenotypes, such as
CLDN14 gene (kidney stone) (102), ITGA1 (fasting glu-
cose) (103), WNT4-ZBTB40 (ulcerative colitis) (59),
TNFSF11 (Crohn’s disease) (104), MEF2C and FUBP3
(height) (57), and C6orf97-ESR1 (breast cancer) (105).
These observations suggest that pleiotropic genetic effects
may exist between BMD and other phenotypes that tra-
ditionally have not been considered to be related to bone.

To use GWAS information, we recently (106) devel-
oped a multivariate genome-wide association approach
(empirical-weighted linear-combined test statistics) to
model multiple phenotypes simultaneously across the
whole genome. Empirical-weighted linear-combined test
statistics is a method to directly combine test statistics
(aggregated test statistics from GWAS meta-analyses) of
correlated phenotypes using a weighted sum of univariate
test statistics to maximize the effect size of the overall
association tests. Several benefits of using this approach
include the following: 1) only aggregated test statistics
from GWAS analyses are needed and not individual level
data; and 2) the approach is not affected by individuals
missing one of the multiple phenotypes. This method has
been applied to study potential pleiotropic effects for
BMD and reproductive health (such as age at menarche
and age at natural menopause) (107) and for BMD and
lean body mass (108) in large GWAS meta-analyses.

Integrative genomics: a step beyond statistical
signals

Although GWAS provides an unbiased hypothesis-free
approach to screen the genetic determinants of traits
across the whole genome, the simple statistical signals do
not provide the much-needed functional implication to
predict the underlying biological processes involved in dis-
ease pathophysiology. More than half of the SNPs with
genome-wide significant associations are located in inter-
genic regions between two or multiple genes. Due to the
limited understanding of the structure of the human ge-
nome, it becomes a challenge to annotate the intergenic
SNPs to nearby genes or to characterize the biological
consequenceofapolymorphismin intergenicregions.Kouet
al. (29) discovered a GWAS locus associated with osteopo-
rotic fracture in a Japanese population. They applied a pro-
tein motif analysis to predict an unknown gene in a chro-

mosome 2q33.1 locus where the genome-wide significant
SNP were located. This unknown gene encoded a protein
containing a signal peptide and a formiminotransferase do-
main in its N terminal (FTCD_N domain). They were able to
characterize the structure of this novel gene and named this
gene “FONG.” The molecular involvement of FONG in
skeletal biology will need to be further studied.

To overcome this challenge, we proposed a systems
genomics approach using likelihood-based causality net-
work modeling to construct regulatory networks (26).
This was done by integrating gene expression profiling
experiments (whole genome transcripts) from human tis-
sues (expression QTL and expression SNPs), as well as
animal and cellular whole genome experimental models
(such as PTH-stimulated osteoclastogenesis and osteo-
blastogenesis of embryonic stem cells) into genome-wide
association analysis to prioritize GWAS genes for future
functional validations in cellular and animal studies. In
addition to genotypes, one can incorporate gene expres-
sion profiling from cellular, animal models and human
tissues as well as from epigenetics, transcriptomics, and
proteomics into a network model. This approach may lead
to improving the detection of association signals and to a
better understanding of genetic association signals while
providing a systems view of the biological processes un-
derlying disease susceptibility.

Beyond BMD phenotypes
In the field of skeletal genetics, the initial success with

studies of DXA-derived BMD of LS and FN led to the
expansion of phenotypes studied. Additional GWAS ef-
forts are under way to study skeletal phenotypes such as
proximal hip geometry (109), bone ultrasound, forearm
BMD, pQCT of the LS, high-resolution pQCT of the ra-
dius and tibia, biochemical markers such as serum osteo-
calcin and osteoprotegerin (110), vertebral fracture, hip
fracture (111), and nonvertebral fracture (112).

Conclusion

To date, GWAS have identified more than 60 novel loci
associated with skeletal phenotypes (predominantly for
DXA BMD), and, in doing so, GWAS have provided valu-
able insights into the genetic architecture of the skeleton.
With the “agnostic” approach of GWAS, we expect that
more discoveries of the genes involved in the regulation of
bone metabolism will emerge compared with traditional
candidate gene studies. In addition, high resolution of SNP
mapping provides greater power than using linkage stud-
ies to identify low-penetrance, disease-susceptible vari-
ants. Several of the GWAS findings have highlighted key
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biological pathways that influence BMD variation, par-
ticularly Wnt signaling, bone development (ossification),
mesenchymal-stem-cell differentiation, osteoclast differ-
entiation, and TGF signaling. More than half of the BMD
loci identified by GWAS have no known biological func-
tion related to skeletal health. These novel loci, each with
a subtle effect, together explained approximately 5.8% of
the total genetic variance in FN BMD. To gather study
cohorts for sufficient sample size, GWAS has fostered the
growth of international collaborations on a scale previ-
ously unheard of in biological science. With growing col-
laborations and progress in sequencing/genotyping tech-
nologies, it is likely that more diverse populations will be
studied and more loci will be discovered. Follow-up of the
most promising GWAS top findings will require the iden-
tification of functional variants by performing sequencing
of targeted regions and ultimately sequencing the whole
genome. The ultimate goals of GWAS are to discover new
molecular and biological pathways involved in the regu-
lation of bone metabolism that can be leveraged for drug
development and to enhance current risk factor profiles
such as FRAX (113) by incorporating genetic risk scores.
Although several challenges lie ahead as GWAS moves
into the next generation, there are prospects of new dis-
coveries in skeletal biology.

Acknowledgments

We acknowledge Dr. Chia-Ho Cheng for creation of Fig. 2.

Address all correspondence and requests for reprints to:
Douglas P. Kiel, Institute for Aging Research, Hebrew Senior-
Life, 1200 Centre Street, Boston, Massachusetts 02131. E-mail:
kiel@hsl.harvard.edu.

Contributions to this review by Y.-H.H. and D.P.K. were
funded in part from grants from the National Institute of Ar-
thritis Musculoskeletal and Skin Diseases and the National In-
stitute on Aging (R01 AR/AG 41398, R01 AR061162, and R21
AR056405).

Disclosure Summary: Y.-H.H. has nothing to declare. D.P.K.
has received grant support from Amgen, Merck, and Eli Lilly and
serves as a consultant for Amgen, Merck, and Eli Lilly.

References

1. Altshuler D, Daly MJ, Lander ES 2008 Genetic mapping in human
disease. Science 322:881–888

2. Hirschhorn JN, Daly MJ 2005 Genome-wide association studies
for common diseases and complex traits. Nat Rev Genet 6:95–108

3. Pe’er I, de Bakker PI, Maller J, Yelensky R, Altshuler D, Daly MJ
2006 Evaluating and improving power in whole-genome associa-
tion studies using fixed marker sets. Nat Genet 38:663–667

4. Rannala B, Reeve JP 2001 High-resolution multipoint linkage-dis-
equilibrium mapping in the context of a human genome sequence.
Am J Hum Genet 69:159–178

5. Reich DE, Cargill M, Bolk S, Ireland J, Sabeti PC, Richter DJ,
Lavery T, Kouyoumjian R, Farhadian SF, Ward R, Lander ES 2001
Linkage disequilibrium in the human genome. Nature 411:199–204

6. Reich DE, Lander ES 2001 On the allelic spectrum of human dis-
ease. Trends Genet 17:502–510

7. Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, Gibbs RA,
Belmont JW, Boudreau A, Hardenbol P, Leal SM, Pasternak S,
Wheeler DA, Willis TD, Yu F, Yang H, Zeng C, Gao Y, Hu H, Hu
W, Li C, Lin W, Liu S, Pan H, Tang X, Wang J, Wang W, Yu J,
Zhang B, Zhang Q, Zhao H, Zhao H, Zhou J, Gabriel SB, Barry
R, Blumenstiel B, Camargo A, Defelice M, Faggart M, Goyette M,
Gupta S, Moore J, Nguyen H, Onofrio RC, et al. 2007 A second
generation human haplotype map of over 3.1 million SNPs. Nature
449:851–861

8. Altshuler DM, Gibbs RA, Peltonen L, Dermitzakis E, Schaffner SF,
Yu F, Peltonen L, Dermitzakis E, Bonnen PE, Altshuler DM, Gibbs
RA, de Bakker PI, Deloukas P, Gabriel SB, Gwilliam R, Hunt S,
Inouye M, Jia X, Palotie A, Parkin M, Whittaker P, Yu F, Chang K,
Hawes A, Lewis LR, Ren Y, Wheeler D, Gibbs RA, Muzny DM,
Barnes C, Darvishi K, Hurles M, Korn JM, Kristiansson K, et al.
2010 Integrating common and rare genetic variation in diverse
human populations. Nature 467:52–58

9. 1000 Genomes Project Consortium 2010 A map of human genome
variation from population-scale sequencing. Nature 467:1061–
1073

10. Nielsen R 2010 Genomics: in search of rare human variants. Na-
ture 467:1050–1051

11. MacArthur DG, Balasubramanian S, Frankish A, Huang N, Mor-
ris J, Walter K, Jostins L, Habegger L, Pickrell JK, Montgomery SB,
Albers CA, Zhang ZD, Conrad DF, Lunter G, Zheng H, Ayub Q,
DePristo MA, Banks E, Hu M, Handsaker RE, Rosenfeld JA, Fro-
mer M, Jin M, Mu XJ, Khurana E, Ye K, Kay M, Saunders GI, Suner
MM, Hunt T, Barnes IH, Amid C, Carvalho-Silva DR, Bignell AH,
Snow C, Yngvadottir B, Bumpstead S, Cooper DN, Xue Y, Romero
IG, Wang J, Li Y, Gibbs RA, McCarroll SA, Dermitzakis ET,
Pritchard JK, Barrett JC, Harrow J, Hurles ME, Gerstein MB,
Tyler-Smith C 2012 A systematic survey of loss-of-function vari-
ants in human protein-coding genes. Science 335:823–828

12. Sudmant PH, Kitzman JO, Antonacci F, Alkan C, Malig M,
Tsalenko A, Sampas N, Bruhn L, Shendure J, Eichler EE 2010
Diversity of human copy number variation and multicopy genes.
Science 330:641–646

13. Gunderson KL, Steemers FJ, Lee G, Mendoza LG, Chee MS 2005
A genome-wide scalable SNP genotyping assay using microarray
technology. Nat Genet 37:549–554

14. Ragoussis J 2009 Genotyping technologies for genetic research.
Annu Rev Genomics Hum Genet 10:117–133

15. Li Y, Willer CJ, Ding J, Scheet P, Abecasis GR 2010 MaCH: using
sequence and genotype data to estimate haplotypes and unob-
served genotypes. Genet Epidemiol 34:816–834

16. Marchini J, Howie B, Myers S, McVean G, Donnelly P 2007 A new
multipoint method for genome-wide association studies by impu-
tation of genotypes. Nat Genet 39:906–913

17. de Bakker PI, Yelensky R, Pe’er I, Gabriel SB, Daly MJ, Altshuler
D 2005 Efficiency and power in genetic association studies. Nat
Genet 37:1217–1223

18. Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP,
Collins FS, Manolio TA 2009 Potential etiologic and functional
implications of genome-wide association loci for human diseases
and traits. Proc Natl Acad Sci USA 106:9362–9367

19. Kiel DP, Demissie S, Dupuis J, Lunetta KL, Murabito JM, Karasik
D 2007 Genome-wide association with bone mass and geometry in
the Framingham Heart Study. BMC Med Genet 8(Suppl 1):S14

20. Styrkarsdottir U, Halldorsson BV, Gretarsdottir S, Gudbjartsson
DF, Walters GB, Ingvarsson T, Jonsdottir T, Saemundsdottir J,
Center JR, Nguyen TV, Bagger Y, Gulcher JR, Eisman JA, Chris-
tiansen C, Sigurdsson G, Kong A, Thorsteinsdottir U, Stefansson

J Clin Endocrinol Metab, October 2012, 97(10):E1958–E1977 jcem.endojournals.org E1973

D
ow

nloaded from
 https://academ

ic.oup.com
/jcem

/article/97/10/E1958/2833496 by guest on 23 April 2024



K 2008 Multiple genetic loci for bone mineral density and frac-
tures. N Engl J Med 358:2355–2365

21. Styrkarsdottir U, Halldorsson BV, Gretarsdottir S, Gudbjartsson
DF, Walters GB, Ingvarsson T, Jonsdottir T, Saemundsdottir J,
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tia-Naji N, Esko T, Feitosa MF, Kutalik Z, Mangino M, et al. 2010
Association analyses of 249,796 individuals reveal 18 new loci
associated with body mass index. Nat Genet 42:937–948

59. Anderson CA, Boucher G, Lees CW, Franke A, D’Amato M, Tay-
lor KD, Lee JC, Goyette P, Imielinski M, Latiano A, Lagacé C, Scott
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Freeman JL, González JR, Gratacòs M, Huang J, Kalaitzopoulos D,
Komura D, MacDonald JR, Marshall CR, Mei R, Montgomery L,
Nishimura K, Okamura K, Shen F, Somerville MJ, Tchinda J, Vals-
esia A, Woodwark C, Yang F, Zhang J, Zerjal T, Zhang J, Armen-
gol L, Conrad DF, Estivill X, Tyler-Smith C, Carter NP, Aburatani
H, Lee C, Jones KW, Scherer SW, Hurles ME 2006 Global variation
in copy number in the human genome. Nature 444:444–454

62. Stranger BE, Forrest MS, Dunning M, Ingle CE, Beazley C, Thorne
N, Redon R, Bird CP, de Grassi A, Lee C, Tyler-Smith C, Carter N,
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