Abstract

The debate surrounding the role of genetic and environmental factors in shaping behavior has a long tradition. However, their effects on complex behaviors such as unpredictability in anti-predator strategies remain poorly understood. Behaving unpredictably when escaping predators may increase the prey's chances of survival, especially when prey can rely on a complex habitat providing camouflage and shelter opportunities. We explored the effects of genetic and environmental influences on escape strategies of the steppe grasshopper Chorthippus dorsatus. Individuals from controlled breeding had been randomly assigned to one of two environmental complexity treatments during ontogeny. We then quantified escape behavior in a large cohort through burst experiments. Using a multivariate double-hierarchical animal model, we analyzed the effects of pedigree and environmental complexity on both inter- and intra-individual variance in three components of escape behavior: flight initiation distance (FID), jump distance, and jump angle. Habitat complexity affected average jump angle, but not the average FID or jump distance, nor unpredictability in any of the three traits. Pedigree relatedness accounted for 5-6% of the total variance in average FID and average jump distance and 7% of the variance in unpredictability in jump angle. Genetic correlations suggest a behavioral syndrome structure in escape strategies that involves FID (a potential indicator of boldness). Our study demonstrates that unpredictability in escape behavior has the potential to evolve by natural selection, as some of its components are heritable. Furthermore, we show that although habitat complexity represents a strong environmental treatment, its lasting effects during ontogeny on escape behavior are minimal.

Information Accepted manuscripts
Accepted manuscripts are PDF versions of the author’s final manuscript, as accepted for publication by the journal but prior to copyediting or typesetting. They can be cited using the author(s), article title, journal title, year of online publication, and DOI. They will be replaced by the final typeset articles, which may therefore contain changes. The DOI will remain the same throughout.
This content is only available as a PDF.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.