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ABSTRACT The tsetse ßy complex (Glossina spp.) is widely recognized as a key contributor to the
African continentÕs continuing struggle to emerge from deep economic, social, and political problems.
Vector control, the backbone of intensive efforts to remove the human and livestock trypanosomosis
problem, has been typiÞed by spectacular successes and failures. There is widespread agreement that
integrated vector control, combined with direct disease treatment and prevention, has to play a major
role in alleviating the tsetse burden in Africa. Mathematical and computer-based simulation models
have been extensively used to try to understand how best to manage these control efforts. Such models
in ecology have been helpful in giving broad generalizations about population dynamics and control.
Unfortunately, in many ways they have inadequately addressed key aspects of the ßyÕs biology and
ecology, particularly the spatio-temporal variability of its habitats. These too must factor in any control
efforts. Mathematical models have inherent limitations that must be considered in their use for control
programs. In this review, we consider some of the controversies being debated within the Þeld of
ecology and evolution about the use of mathematical models and critically review several models that
have been inßuential in structuring tsetse control efforts. We also make recommendations on the
appropriate role that mathematical and simulation models should play when used for these purposes.
Management programs are often vulnerable to naively using these models inappropriately. The
questions raised in this review will apply broadly to many conservation and area-wide pest control
programs with an ecological component relying on mathematical and computer simulation models to
inform their decisions.
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To set the stage on how modeling has been and can be
used in tsetse control, a brief outline of the contro-
versies in this area is useful. The tsetse ßy complex
(Glossina spp.) is widely recognized as a key contrib-
utor to the African continentÕs continuing struggle to
emerge from deep economic, social, and political
problems. It has been christened “The Poverty Fly”
(Leak 1998) and “AfricaÕs Bane” by T. Nash (Nash
1969), because these ßies strike both human health, as
a vector of human trypanosomoses (sleeping sick-
ness); and food and agriculture through the transmis-
sion of animal trypanosomoses (nagana) to livestock,
whichareusedasa sourceofproteinand fertilizer, and
also as agricultural traction and transport in Africa.
There is no doubt that the sustainable removal of the
tsetse and trypanosomosis problem would generate
substantial direct beneÞts and numerous rural devel-
opment opportunities.

During the last century, humans have fought nu-
merous battles against these ßies, and in some in-
stances these intensive control efforts have resulted in
spectacular successes: for example, the sustainable
removal ofGlossina pallidipesAustin from Zulu Land,
South Africa (Du Toit 1954), and of Glossina austeni
Newstead from the Island of Unguja, Zanzibar (Vrey-
sen et al. 2000).Glossina morsitans submorsitansNew-
stead and Glossina tachinoides Westwood were also
removed from 200,000 km2 in Nigeria (Spielberger et
al. 1977), Glossina morsitans centralis Newstead from
the Okavango Delta, Botswana (Kgori et al. 2006), but
little data are available to ascertain the sustainability
of these campaigns. Whereas the results can be easily
maintained for savannah species that are sensitive to
human encroachment, riverine species are much more
resilient and Glossina tachinoides probably reinvaded
part of the cleared areas in Nigeria (Van den Bossche et
al. 2010). Moreover, some interventions also have re-
sulted in unfortunate failures (De La Rocque et al. 2001,
Hargrove2003),whichareoftennotreportedassuchbut
are rather attributed to reinvasions of the cleared areas
after institutional, policy, and economic changes that
altered program objectives, strategies, and tactics
(Doran 2000, Allsopp 2001, Van den Bossche and Doran
2001).Thus, it isestimatedthat todate,�0.3%of thetotal
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tsetse infestedareahasbeenclearedaftercontrolefforts.
Many authors have thus argued for a shift to an auton-
omous control of tsetse, based on affordable techniques
like restricted insecticide treatment of cattle, especially
whentsetse targetpopulationsarenot isolated(Bournet
al. 2000, 2005; Bouyer et al. 2009a, 2011).

There is widespread agreement that vector control
remains theoretically the most desirable way of man-
aging the disease trypanosomosis (Leak 1998). Some
even argue that a trypanosomosis-free environment
can only be created by the removal of major tsetse ßies
(Jordan 2001). This is especially relevant since the
development of a vaccine to protect livestock against
trypanosomosis has failed to date, resistance of the
parasite against available drugs is increasing and no
new trypanocidal drugs have been developed for de-
cades (Geerts et al. 2001). In a review ÔTsetse and
Trypanosome Research and Development Since 1980�
on the impact of funding in this area, Mehlitz et al.
(1998) concluded that commendable quality research
had resulted in the development of a range of pow-
erful control tactics, but their impact has been ham-
pered by sustainability problems; a view shared by
Leak (1998). How tsetse control is to be best accom-
plished has remained controversial to date: one camp
promoting a localized, farmer-based and -Þnanced ap-
proach (Brightwell et al. 2001, Molyneux 2001, Kabayo
2002,Rogers andRandolph2002)andanother, arguing
for area-wide integrated pest management (AW-IPM)
that targets all individuals of a pest population even
those inhabiting areas not of interest to the farmer
(Feldmann 2004, Alemu et al. 2007, Green et al. 2007,
Vreysen et al. 2007). The removal of tsetse and
trypanosomosis problem in a sustainable manner on a
large scale would have a signiÞcant impact on the
livelihoods of some 260 million Africans, mostly living
in heavily indebted poor countries (Budd 1999), but
there is no consensus on how to do this or even
whether this is feasible.

While there have been limited economic analyses of
tsetse control in general (Brandl 1986, Barrett 1997,
Vale and Torr 2005, Baumgärtner et al. 2008), they
have rarely adequately addressed aspects of control in
the context of AW-IPM, that is, integrating medium
and long-term environmental impacts. The toolbox of
methods presently available is large, including sequen-
tial aerial spraying of insecticides at ultra-low volume
(SAT), traps and targets (impregnated or not with
insecticides) (ITs), epicutaneous treatment of cattle
using insecticide (ITC), and the Sterile Insect Tech-
nique (SIT) (Bouyer et al. 2010). Most of the eco-
nomic models have made generic conclusions about
these various techniques whereas species-level spec-
iÞcities have been neglected and environmental fac-
tors have only been partially considered (Petney 1997,
Reid et al. 2000, Grant 2001, Eisler et al. 2003). Much
more work in this area is needed, given the ecological
sensitivity of many of the very different environments
found across the tsetse range and the possible inßu-
ence of environmental change on the properties of the
different control techniques (Terblanche et al. 2008,
Van den Bossche et al. 2010).

Another area of concern in tsetse control programs
is in SIT in which male tsetse are reared, sterilized, and
released into the wild, where it is hoped they will mate
with wild females and thereby reduce the probability
of viable matings. Several recent assessments have
argued for SIT to be removed from the arsenal of tsetse
control (Brightwell et al. 2001, Molyneux 2001, Rogers
and Randolph 2002, Torr et al. 2005), whereas others
stress that it is the only technique that can deal ef-
fectively with the last remnants of a suppressed pop-
ulation because of its inverse density dependence
(Feldmann and Hendrichs 1999, Hendrichs et al.
2005).

Most of these assessments have relied upon a small
cadre of mathematical models (Vale and Torr 2005),
which, while useful, do not warrant the weight ap-
portioned to them in making widespread management
decisions (Enserink 2007). Such models in ecology
have been helpful in giving broad generalizations
about population dynamics and control, and theoret-
ical models were often used to compare the different
methods available to Þnd the best way to tackle the
tsetse problem. However, in many ways they have
poorly addressed key aspects of the biology and ecol-
ogy of the economically important tsetse species and
have inadequately considered the complex milieu of
ecological factors within which the various tsetse ßies
are embedded. These models too must factor in an
integration of control efforts, and not just play differ-
ent control tactics against each other. In this review,
some of the controversies that are being debated
within the Þeld of ecology and evolution about the use
of mathematical models are reviewed vis-à-vis a few
models that have been used to compare available tse-
tse control techniques. The paper also shows that
various arguments in favor or against different tsetse
control techniques or strategic approaches are inad-
equate in light of these model weaknesses. A part of
what we hope to accomplish with this paper is to
establish the information, models, and statistical per-
spectives to support better adaptive management in
tsetse control efforts.

Models in Ecology

From its beginning, modeling has played a vital role
in the development of ecology as a science. Most early
models were unstructured population models that
predominantly tracked overall population number
and simple population dynamics (Hastings 2005). The
widely used models where criticized by Hall (1988) as
often being applied inappropriately because the mod-
els were too simple to capture much of the complex
biological reality. Despite often being Þt to data, these
Þts were generally over parameterized, hence, did not
seem to be an adequate take on population behavior
in any real ecological system. In the ensuing years
there has been much debate about how mathematical
models are to be used in ecology to structure theory
and on even whether there are any ecological laws at
all (Cooper 2003, Lockwood 2008).
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The problem is exacerbated because models often
try to balance competing interests. This has been cap-
tured in what has come to be known as LevinsÕ de-
siderata (Levins 1966), the tri-fold characterization of
models as being constrained by generality, precision,
and realism. Because these three goals of models are
often incompatible, modelers must make choices
about which of these goals is the most important for
the intended use of the model.

Ecological processes in a spatial context have been
the sine qua non element in most ecological systems
for a number of years. In a highly inßuential paper,
Levin (1992) argued that spatial processes were es-
sential in characterizing most ecosystems and the im-
bedded interactions of constituent organisms. In ad-
dition, the importance of developing spatial models
and using discrete state spaces that tracked local pro-
cesses was recognized as providing essential informa-
tion in modeling efforts (Durrett and Levin 1994).
This is essentially a bottom up approach to modeling.
Rather than focusing on population level processes
such as are used in structured population modeling at
the level of population dynamics and behavior, un-
structured modeling focuses on bottom up modeling
and allows individual behavior and local dynamics to
structure the model. De Roos and Persson (2005) have
argued that this paradigm prevails in ecological mod-
eling:

“The insights gained from the population-level
models are therefore likely to apply only to those
populations in which either within-population
variability is low (individuals are identical) or
ecological interactions and their consequences
are relatively independent of the characteristics
and traits of the individuals involved. Both these
conditions are generally not the rule but the ex-
ception in ecological systems.”

These kinds of models make sense especially from the
perspective that there are no laws in ecology. If most
of the patterns that we see are a result of aggregations
of individual-based organism behaviors structuring
higher level ecological and population dynamics then
this type of modeling offers singular advantage in
capturing the complex nature of ecological interac-
tions. This is true when typical ecological systems are
extremely complex (Mitchell 1998) and this complex-
ity is thought to matter in how biological patterns
unfold and structure explanations for this complexity
from the individual up (Grimm and Railsback 2005).

Computer Simulation

Early simulations in ecology, however, suffered
from the kinds of misunderstandings that are common
to the beginning development of a new technique.
Because early computer simulations were easy to con-
struct, the Þrst few generations of simulation models
were hastily done, inadequately tested, and used in-
appropriately. This colored the perception of more
mainstream modelers about the usefulness of simula-
tion, believing that the weaknesses of these models

were an insurmountable problem inherent in simula-
tion and one unlikely to be overcome. Essentially, they
argued that the Ôbaby should be thrown out with the
bathÕ andsimulationdismissedasauseful tool (e.g., see
Pilkey and PilkeyÐJarvis 2007).

However, the science of simulation has matured,
and a consensus is growing on how these models can
productively be used and interpreted. This includes
open access and archiving of computer code, adequate
testing of the model, and explicit information on
model assumptions and algorithms. Despite this, poor
models that do not meet these criteria are still being
published today.

Computer simulations are likely to play a more and
more important role in modeling these kinds of sys-
tems as they are well positioned to handle the kind of
genuine complexity found in ecological systems.
While simple analytic models such as differential
equation-type modeling will always have their place
for providing insight and general heuristics and pos-
sibilities in ecological systems, they do not capture one
of their key features, namely, complexity (Peck 2004).
This is not just true in ecology. For example, in astro-
physics, philosopher of science, Peter Humphreys has
argued that the age of analytic models is over (Hum-
phreys 2004). Sorting out how to use these types of
models is an on-going debate in ecology (Peck 2008).

One aspect of modeling that needs to be addressed
here is William WimsattÕs ideas on Ôrobustness.Õ His
perspective is summed up nicely in the title of one of
his papers, ÔFalse models as a means to truer theoriesÕ
(Wimsatt 2007). In this paper, he explores the concept
of ÔrobustnessÕ in modeling. He argues that all models
are representational abstractions that always fall short
of capturing aspects of the systems they are designed
to represent. Robustness explores whether different
models, which formally represent the same system,
come to the same conclusions, see the same patterns
and behavior, and make similar predictions. When
models converge in the results that they suggest, the
story that the model is telling is more likely to be
capturing real aspects of the system.

Tsetse Models: A Brief History

Early mathematical models used in exploring ques-
tions of tsetse biology and population dynamics drew
on the available ecological literature. For example,
Rogers et al. (1984) estimate mortality rates for Glos-
sina palpalis palpalis (Robineau-Desvoidy) using an
exponential decay function of the form:

Nt � N0e
�mt

Wherem is the mortality rate (estimated from trap-
ping data in Ivory Coast). In a companion paper (Rog-
ers and Randolph 1984b) a survival model from May-
nardÐSmith and Slatkin (1973) was used to calculate
the degree of density dependence in the same trap-
ping series:

Ps �
1

�1 � �aN�b�
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Where Ps is the surviving proportion of a population
of size N, and where a is a scaling constant and b gives
the strength of density dependence. These models are
simple and straightforward applications of simple an-
alytical models of aspects of tsetse data. In a third
paper (Rogers and Randolph 1984a) was developed
based on these two models in which the authors argue
for an overall strategy for using such models in inßu-
encing management decisions. In the conclusion of
this paper the authors argue:

“Our understanding of the natural dynamics of
the target species, tested by the development of
simple mathematical models for it, helps us to
identify possible pest management strategies and
the choice between them is made by applying
cost-beneÞt analytical techniques, the aim being
to achieve the greatest reduction for the smallest
cost” pp. 422Ð423.

This was a signiÞcant advancement on the way that
tsetse management programs had been designed and
implemented in the past. The approach provided a
theoretical structure by which one could use biolog-
ical information, models, and economic consider-
ations to put together a more scientiÞcally based pro-
gram for tsetse control. This was an important step
forward in recognizing the gamut of considerations
that should be taken when designing and implement-
ing a tsetse control program. Such methods would
become very inßuential in selecting control strategies
and structuring control programs into the future.

However, there was a danger lurking in this strategy
that comes from modeling techniquesÕ inherent weak-
ness and which needs to be acknowledged and con-
sidered when such management options are being
discussed. Certain models can be used to great beneÞt
but they often give the appearance of having more
depth of insight than is warranted. This is because
mathematical models are sometimes not completely
understood by managers and Þeld biologists who as-
sume that a mathematical model, because of its ap-
pearance of scientiÞc respectability and sophistica-
tion, alone credential the arguments used to marshal
particular courses of action. HallÕs critique (Hall 1988)
of early models becomes relevant here.

In the ensuing decades, tsetse models were devel-
oped by a variety of researchers, each with a different
focus on aspects of tsetse control (Barclay 2005). Most
of these have been deterministic or stochastic analytic
models. One of the leading tsetse researchers using
mathematical modeling is John Hargrove (Hargrove
1981, 1988, 1990, 1993, 1994, 2000, 2001, 2003, 2005;
Hargrove et al. 2003, 2011b; Barclay and Hargrove
2005) who developed a suite of biologically realistic
models based on stochastic birth-death theory, and
age-structured transition matrices. These models form
the backbone of tsetse modeling since Roger et al.Õs
basic work and have been used to compare manage-
ment techniques to combat tsetse ßy populations and
provide guidance on how best to use limited resources
in establishing monitoring and suppression programs.

Other models that deserve special attention include
these by Gouteux and his collaborators (Jarry et al.
1996, 1999; Gouteux and Jarry 1998; Gouteux et al.
2001; Artzrouni and Gouteux 2003, 2006), who have
used a variety of analytic models to explore tsetse
population dynamics. Yu used birth-death stochastic
models to follow the spread of trypanosome carrying
tsetse ßies (Yu et al. 1995, 1996). Williams et al. used
diffusion equations to capture the movement of tsetse
(Williams et al. 1992, Williams 1995). Rogers and
Bouyer as well for fuscipes and palpalis respectively
(Rogers 1977, Bouyer et al. 2007a).

All of these models were designed to be useful to
biologists and program managers involved in tsetse
control and were published in top-tier entomological
journals. The focus of their attention to a biological
audience is apparent in that none of the above men-
tioned models were published in theoretical or math-
ematical journals.

A more in-depth analysis shows that some general-
izations of these models are appropriate, although
extrapolation from one tsetse species to others with
very different biologies is inappropriate. All of the
models are analytic models with a variety of simpli-
fying assumptions that limit the amount of biology that
can be captured, and most of the models do not take
into account spatial dynamics of the ßies, which can be
very different depending on the species. Those that
do, are simple diffusion-reaction models.

Attempts to capture more biological complexity
have turned to the use of simulation models. Muller et
al. (2004) use an agent-based contact model to ex-
plore the spread of tsetse-transmitted human Afri-
can Trypanosomosis. The model is an excellent ex-
ample of how simulation can be used to capture details
of biological complexity that are impossible for simple
analytic models.

Models work best when incorporated into a pro-
gram of Ôadaptive management.Õ Adaptive manage-
ment is a valuable way of trying to recognize that
complex systems require a different perspective in
using information for their management. In complex
systems, uncertainty levels are high and their man-
agement will need real-time adjustments during the
course of managing desirable outcomes. Rather than
explicitly doing probability assessments and then
choosing the best management option from among the
set of possibilities in a once-and-for-all fashion. It uses
scenario analysis to look at possible outcomes and
focuses on the management options that will allow
interventions for possible contingencies that may
emerge. It is a much more interactive approach to
management that relies on ongoing monitoring,
modeling, and data gathering. As Sandra Mitchell
describes it,

“For the purposes of this discussion the most
important thing to notice about adaptive man-
agement is that it modiÞes the predict-and-act
model to be an interactive process of predict, act,
establish metrics of successful action, gather data
about consequences, predict again, establish met-
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rics of successful action, act, gather data about the
consequences, predict anew É Adaptive manage-
ment is a dynamic, iterative, feedback-rich strat-
egy for decision making that matches the dy-
namic, feedback-dependent reality of complex
systems (Mitchell 2003).”

Simulation models can be very useful for adaptive
management of tsetse ßy. However they should be
used with care. Grimm et al. (2006) lays out appro-
priate criteria for using and publishing agent-based
models, and the process he advocates work nicely for
the steps necessary for any complex simulation model.
This process is known as ODD (Overview, Design
concepts, and Details). Grimm et al. suggests that in
every paper using agent-based model these steps
should be a part of the explication process. In pub-
lishing these models, the Þrst step in describing the
modeling effort is to formally give an overview of the
model including its purpose, variables, and process
description of the model. We would add to this, that
all theoretical assumptions of the model should be
detailedÑincluding any overarching assumptions for
the model in its entirety and the assumptions used in
the individual submodels that made up the complete
modeling effort.

Next the design concepts used in the model includ-
ing what the model was and was not designed to
achieve. Often the purpose of the model is explained,
but the limits of the inferences targeted are not. This
should be an explicit part of the model description to
avoid problems with it being inappropriately used for
purposes for which it was not intended.

Lastly in the ODD framework, details should be
given, including initializations, input data, and clear
descriptions of all submodels. This should include the
equations used to model each compartment or process
with in the simulation. This protocol provides a good
framework from which to evaluate the adequacy of
model descriptions in the literature.

Case study: Using Simulation Models to Advise
Tsetse Control Programs

Looking at the case of models designed to explore
the relative efÞciency of different control techniques
to advise policy makers, we Þnd that too often they are
inappropriately designed and/or described to be use-
ful in making decisions about tsetse control.

Two models that were subsequently used to argue
for and against SIT demonstrate how models can be
misapplied to management cases and illustrate why
simulation models need to be carefully used in a con-
text of adaptive management when making decisions
in tsetse control. This means in particular that all
modeling results should be held as tentative and used
in an adaptive sense. The models should be designed
from the beginning to be updated as more information
is gathered during an intervention and used such that
there is a back and forth between on-going data col-
lection and reassessing the model in light of this data
collection.

Several recent critiques have drawn heavily on cer-
tain models to argue for or against the use of the SIT
as a valid and efÞcient tsetse control tactic. Because
funding for tsetse ßy is limited, turf wars have arisen
that praise the use of SIT or disparage it. Those that
praise it point to its successes such as those outlined
in the introduction. They point out that SIT may be the
only way to clean up isolated populations or popula-
tions that have only those ßies remaining that are not
attracted to targets or baits. They also point to suc-
cessful Þeld operations (Politzar and Cuisance 1984;
Oladunmade et al. 1985, 1990; Vreysen et al. 2000).
Those who see SIT as unnecessary, for example, Moly-
neux (2001) argue against SIT as a continent-wide
eradication strategy and allow these arguments spill
over into a general dismissal of SIT as a component of
integrated area-wide control. Likewise, Rogers and
Randolph, in an opinion piece (Rogers and Randolph
2002) argue against tsetse eradication from Africa, and
go on to claim that SIT is not an effective choice.

Both groups then turn to inadequate models to
make their respective points about using SIT. For
example, Vale and Torr (2005) created a compart-
mental deterministic model of tsetse movement and
economics to predict the cost and effectiveness of
different control strategies, namely SIT and insecti-
cide-treated cattle. However, the model suffers from
some important weaknesses: 1) the published model
contains few details on the assumptions used to struc-
ture the model; 2) there is little information on how
the model was tested and parameterized; and 3) doubt
about whether and/or how sensitivity and uncertainty
analyses were performed. While the excel spread
sheets in which the model was implemented are avail-
able, it is difÞcult to dissect the code to reconstruct the
ßow control, or get a description of the equations of
the model which are described by, “The numbers
displayed in each cell were determined by a formula
behind the cell,” which are implemented in individual
entries into a spreadsheet and nowhere provided in a
typical analytic form. Therefore, the model seems to
have several shortfalls as a Þnished product and is
reminiscent of the reasons that models where so se-
verely criticized in the early days of ecological simu-
lation as discussed above.

Likewise, a model developed by Barkley and Vrey-
sen (2011) is used to “facilitate decision making during
the planning and implementation of operational area-
wide IPM programs against tsetse,” by comparing four
control measures, for example, aerial spraying of non-
residual insecticides, traps and targets, insecticide-
treated livestock (ITL) and the sterile insect tech-
nique (Hargrove et al. 2011a) rightly argue that there
were biological problems with the model principally
the time steps used were not reßective of tsetse ßy
ecology and the way movement was modeled was
ßawed. Part of what allowed this assessment was that
Barclay was more complete in describing the sub-
model dynamics and the equations used which are
absent in the Vale et al. paper critiqued above. In
addition, Barclay and Vrayson include a sensitivity
analysis that allows for a more complete assessment of
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the modelÕs adequacy. However, interestingly, Har-
grove et al. argue that the Barclay model conßicts with
HargroveÕs nonspatial models, which are also inappro-
priate to the task of comparing output with spatial
models. However, Barclay and Vreysen do not include
an uncertainty analysis, neither is there enough infor-
mation to properly evaluate the complete set of as-
sumptions used in the model, nor is the computer code
available to reproduce the model. Ironically, we are
left with inappropriate models being used to criticize
inappropriate models, which leave one with the feel-
ing that windmills are being used to tilt windmills.

There are several problems in both models used as
arguments for and against SIT. First, all of their argu-
ments rest on simulations that have been inadequately
described and tested. For example, Shaw et al. (2007)
recently even suggest using the Torr et al. model for
management and investment decisions in Uganda on
tsetse control tactics, and this is especially troubling
given the current state of this model. When critical
policy strategies are set and important decision mak-
ing takes place based on inadequately tested and eval-
uated models no one wins.

Second, complexity is important for understanding
the ecology of these systems. For example, in Har-
grove et al. (2011)Õs response to the Barclay/Vreysen
model, Hargrove (2005) is brought to bear in mar-
shalling their arguments that both the Barclay/Vrey-
senÕs model and thus SIT, can be dismissed, they do not
seem to recognize that the Hargrove (2005) refer-
enced model is ecologically simple and lacks the spa-
tial complexity needed to adequately understand the
effect of metapopulation dynamics and habitat frag-
mentation on these extinction probabilities. Peck
(Peck 2012) has shown that when standard extinction
probabilities, as derived by Hargrove (2005), are es-
timated in a metapopulation context, it completely
changes those probabilities because of rescue effects
created by movement among the habitat patches. This
is especially important for riverine species in West
Africa. Population genetics studies have demonstrated
the impact of habitat fragmentation on population
dynamics resulting in signiÞcant structuring of the
tsetse populations (Solano et al. 2000, Bouyer et al.
2009b).

The simple models used in making arguments for or
against SIT in what are clearly spatially complex en-
vironments, are inadequate (Guerrini et al. 2008). To
properly assess how best to manage tsetse it will re-
quire new models that not only take into account
economic issues, but which take into account meta-
population theory, landscape ecology, evolutionarily
stable strategy, insights from invasion and conserva-
tion biology, source-sink dynamics, and other insights
gained from the ecological sciences on population
regulation and control. Furthermore, the recommen-
dations derived from such models might vary for dif-
ferent tsetse species (namely because of their disper-
sal pattern and feeding behavior) or in different
environments (according to their fragmentation
level). Individual based models may be especially

promising for these explorations (Muller et al. 2004,
Grimm and Railsback 2005).

We conclude that indeed, not only these models,
but also many models used in exploring tsetse control
are vulnerable to the criticisms that have been tar-
geted in the mainstream ecological literature dis-
cussed above and have not dealt extensively with the
realities of biological complexity. The models are also
not robust in the Wimsatt sense of the word, in that all
of the models have been developed by a handful of
researchers and there have been few overlapping
models, which would allow for a sense of how well the
Þndings of these models hold up when viewed from a
variety of modeling perspectives. This is not a criticism
of the general use of models that, in are often well
done, properly analyzed, and useful to the extent that
their weaknesses are recognized. However, it is this
last point that underlies the largest problem with the
models discussed, as they have been widely used as the
Þnal word in understanding tsetse population dynam-
ics and have carried a disproportional, maybe even
inappropriate weight in management decisions with
respect to tsetse control. As Rogers articulated years
ago, we do agree that models have a place in making
management decisions, but the way some of these
models have been used recently is inappropriate and
misapplied.

We argue strongly that before such simulation mod-
els are used, the ODD proposed by Grimm and Rails-
back (2006) and recently updated and reassessed
(Grimm et al. 2010) for agent based models, be used
rigorously in all computer simulation models. These
should become standard practices before simulations
models are accepted into the literature and used by
stakeholders, particularly in the context of vector
management and control tactics and regarding invest-
ment options. These practices are already required by
most ecological journals and ecological modeling and
theory journals.

In addition, tsetse modelers would do well to follow
the protocols proposed by Schmolke et al. (2010) who
recently proposed that models used in support of man-
agement decisions follow a standard format in docu-
menting the modeling effort: transparent and com-
prehensive ecological modeling (TRACE). In the
TRACE protocol three levels of information are made
explicit in reporting the use of models: 1) model De-
velopment, including model design, model descrip-
tion, parameterization and calibration; 2) model Test-
ing and Analysis, including veriÞcation, sensitivity
analysis and validation; and 3) model Application,
explicitly the results of the model and how that model
will be used in management decisions including un-
certainty analysis, and recommendations for manage-
ment based on the above.

In addition, the following criteria should be con-
sidered (Peck 2004).

A. All computer code-based models should have a
well-documented programming code that is trans-
parent to competent reviewers and provided for all
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formal reviews of papers containing simulation
models.

B. Careful explanation should be made available of
how all of the equations are used in the model,
relationships among the equations clariÞed, and
ßow diagrams of the ßow of state variables pro-
vided to make understanding the modelÕs construc-
tion explicit.

C. A table of all biological, statistical, societal, eco-
nomic, and relational assumptions should be ex-
plicitly made and justiÞcation provided from the
literature to give an explanation for the assump-
tions used or the effect of the assumptions in the
model. In addition, details on where the model is
discrete, where continuous, the role of stochastic
elements in the model, and the spatial assumptions
should be made clear.

D. The parameter values used in the model should be
provided and should be tested with properly con-
structed sensitivity analyses (e.g., see Storer et al.
2003). These tests should be detailed in the paper
itself or provided in supplemental material or in
detailed appendices.

E. The modelers should make a clear assessment of
how the model can be used, to which biological
systems it should apply, where its weaknesses lie,
and provide cautions on where the model should
and should not provide insight and information.

F. Details on how the model was tested against the
biological system it is designed to represent, or how
it could be so tested, should be provided.

Unfortunately, these criteria, broadly recognized in
ecological reporting and practice, have played little
role in the tsetse literature. Finally, this analysis shows
the urgent need for better models allowing integrating
important ecological characteristics of tsetse that have
been insufÞciently (-) or not (o) considered in the
present models and that might have important impacts
on their conclusions, namely:

● Differences in dispersal capacities between groups
(mainly in one dimension for riverine species and
two for the savannah and forest groups) or even
within (Koné et al. 2011) (-),

● Differences in feeding behaviors between groups,
namely opportunistic host selection associated to
learning in the palpalis group (Bouyer et al. 2007b)
(o),

● Habitat fragmentation and metapopulation struc-
ture (Peck 2012) (o),

● Aggregated distribution patterns of tsetse, leading to
spatio-temporal heterogeneity of the contact be-
tween ITs or ITC and tsetse whereas sterile ßies
released by air are able to aggregate in the same sites
preferred by wild ßies (Vreysen et al. 2011) (o),

● Density-dependant mortality (Rogers and Ran-
dolph 1984b) (-),

● Density-dependant dispersal, because of feeding
competition on the host (Torr and Mangwiro 2000),
leading to lower alimentary dispersal with decreas-
ing tsetse densities, associated to lower efÞciency of
ITs and ITC (o),

● Heterogeneous efÞciency of SAT because of varia-
tions in the tree cover and thus, insecticide pene-
tration, especially in the case of riverine species
(Bouyer et al. 2005) (o).
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