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The acquisition of large multilocus sequence data is
providing researchers with an unprecedented amount of
information to resolve difficult phylogenetic problems. With
these large quantities of data comes the increasing challenge
regarding the best methods of analysis. We review the
current trends in molecular phylogenetic analysis, focusing
specifically on the topics of multiple sequence alignment and
methods of tree reconstruction. We suggest that traditional
methods are inadequate for these highly heterogeneous
data sets and that researchers employ newer more
sophisticated search algorithms in their analyses. If we are
to best extract the information present in these data sets,
a sound understanding of basic phylogenetic principles
combined with modern methodological techniques are
necessary.
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With third-generation sequencing technology rapidly ap-
proaching, it will become more feasible to obtain large
multilocus data sets to infer evolutionary relationships
(Genome 10k Community of Scientists 2009). These
enormous quantities of data have spawned the development
of several new programs for phylogenetic inference for
these highly heterogeneous data sets. From multiple
sequence alignment (MSA) to species tree construction,
these new methods are changing the way we gather and
manipulate data and analyze and interpret results. The
purpose of this paper is to provide a brief review of both
traditional and more modern methods available to analyze
diverse data sets in the era of multilocus phylogenetics. We
start by providing a discussion of methods to infer an
alignment of orthologous sequences and ways to extract
information present in insertion/deletion events. This is
followed by a review of the often-controversial direct
optimization (DO) techniques. The last 2 sections specif-
ically review methods of tree reconstruction, the first of
which focuses mostly on concatenation; a method com-
monly used in multilocus studies. In contrast, species tree

methods are showing exceptional promise for these types of
data but have not yet garnered sufficient attention among
empiricists. As phylogenetic methods change rapidly and are
often complex, we hope this review can serve as a guideline
for researchers new to the field. This review will also be of
use to current phylogeneticists looking for novel methods to
analyze their multilocus data sets. We stress that this review
is by no means exhaustive. However, we feel that the topics
discussed are likely those that researchers will encounter in
modern molecular systematics.

Alignment

A robust phylogenetic hypothesis is intricately linked to the
quality of the MSA. The accurate determination of character
homology is vital to infer evolutionary history, and thus,
substantial effort has been placed on finding optimal
methods to align divergent orthologous sequences. We
define homology here as identity in character state due to
shared evolutionary history. Due to intronic and intergenic
regions, accurate assessments of base-pair homology will
become even more problematic as larger multilocus data
sets become available. Traditionally, an MSA is performed
either manually or with the aid of different computer
algorithms. Manual alignments (i.e., by eye) are often
relatively straightforward when inferring relationships using
highly conserved coding sequences. However, performing
manual alignment of noncoding sequences can be prob-
lematic as insertion/deletion (indel) events are more
common and do not necessarily occur in multiples of
3 bases.

To try to reduce the degree of subjectivity introduced
into an MSA of distantly related groups, many researchers
turn to computer software packages. Traditionally, the most
common programs used to construct an MSA were the
Clustal series (Thompson et al. 1994; Larkin et al. 2007).
Clustal is a progressive method that uses a neighbor joining
(NJ) guide tree to create the MSA from a series of pairwise
alignments. The user can specify specific parameters before
the analysis is run, including the costs of both inserting a gap
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and extending a previously inserted gap. Although Clustal
can be extremely helpful when working with difficult
sequences, the resulting MSA is often edited manually to
subjectively improve character homology. However, oppo-
nents of manual alignment methods argue that introducing
researcher bias into an analysis yields the resulting alignment
and subsequent phylogenetic hypothesis nonreproducible.

The acquisition of large heterogeneous data sets will
result in orthologous sequences containing several distinct
indel events in noncoding regions. Thus, a refinement of
methods used to create an MSA is necessary if we are to
accurately determine base-pair homology (Wallace et al.
2005). Over the past decade, several studies have quantified
the accuracy of common MSA methods using simulated
data sets (Lassmann and Sonnhammer 2002; Katoh et al.
2005; Edgar and Batzoglou 2006; Nuin et al. 2006). For
example, a recent study compared the performances of 6
alignment packages to infer the correct MSA from
sequences containing gaps (Golubchik et al. 2007). Gaps
are inserted into an MSA to account for indel events, but the
location of gap insertion is often ambiguous at best. They
found that the more commonly used progressive packages
like Clustal and T-Coffee (Notredame et al. 2000)
performed quite poorly when indels were present.
Conversely, programs such as DIALIGN-T (Morgenstern
2004) and MAFFT (Katoh et al. 2002) often recovered
a more accurate MSA. However, combining results from
different alignment algorithms using M-Coffee (Wallace
et al. 2006) and/or removing ambiguously aligned regions
with Gblocks (Talavera and Castresana 2007) may result in
more robust phylogenetic hypotheses, especially when
alignments differ substantially with different algorithms.

Probabilistic methods of MSA are also beginning to
determine character homology with noncoding DNA. These
methods rely on statistical models of sequence evolution to
obtain the alignment or set of alignments with the highest
probability given a set of orthologous sequences. Early
models were only able to accommodate indels one base pair
in length and are thus unrealistic for most molecular data
sets (Thorne et al. 1991, 1992). However, more realistic
indel models continue to be developed specifically for
noncoding sequences (Keightley and Johnson 2004). The
model used in the package MCALIGN (Keightley and
Johnson 2004), for example, is parameterized by comparing
the empirical distribution of indel lengths and frequencies
relative to the rate of nucleotide substitution. Although the
method is potentially promising, its current implementation
only allows for the alignment of 2 or 3 orthologous
sequences.

Gap Coding

Following the construction of an MSA for the traditional
2-step MSA þ phylogeny estimation procedure, the
researcher is left with the decision of how to handle the
gaps inserted into the data set by the MSA algorithm to
account for indel events. For most traditional maximum
parsimony (MP) analyses, gaps have been either coded as

missing data (most cases) or coded as a fifth character state
(Swofford et al. 1996). Both of these methods are potentially
problematic in that the former completely discards relevant
evolutionary information (Simmons et al. 2001; Kawakita
et al. 2003), whereas the latter assumes that gaps represent
independent evolutionary events; a highly unlikely scenario
(Simmons and Ochoterena 2000). These issues also
extended into probabilistic phylogenetic inference in that
parameters were estimated without taking indel events into
account.

To adequately extract the phylogenetic information
present in indels (gaps), researchers are beginning to look
at both alternative means of character coding (Simmons and
Ochoterena 2000; Simmons et al. 2007) as well as the
formulation of indel models of sequence evolution (Thorne
et al. 1991, 1992; Miklós et al. 2004). Simmons and
Ochoterena (2000) suggested using both simple and
complex coding of indels to quantify synapomorphies
present between taxa. Simple indel coding assumes that
each contiguous stretch of gaps with identical 5# and 3#
termini comprises a single evolutionary event. A binary
(presence/absence) character state matrix is then concate-
nated to the remaining alignment and analyzed together
under any optimality criterion. For probabilistic inference,
the morphological models presented in Lewis (2001) can be
used for the binary matrix as a separate partition. Indel
coding can be performed manually or automated using
programs such as GapCoder (Young and Healy 2003) and
BARCOD (Barriel 1994). Studies have shown that including
the information present in gaps can: 1) dramatically increase
the number of potentially phylogenetically informative
characters and 2) lead to a more strongly supported
phylogenetic hypothesis (Giribet and Wheeler 1999;
Kawakita et al. 2003; Ogden and Rosenberg 2007b).
Furthermore, indel characters tend to show reduced levels
of homoplasy as compared with nucleotide characters
(Simmons et al. 2001). Thus, researchers should continue
to seek to maximize the evolutionary information present in
indel events, especially as more noncoding sequences are
used and more realistic models of evolution are developed.

Direct Optimization

An alternative to constructing an MSA prior to phylogenetic
inference is to use DO procedures. DO is different from
other approaches in that the alignment and phylogenetic
tree are estimated simultaneously. Optimization can be
performed either under a parsimony or under a probabilistic
framework. The program POY (Wheeler 1996; Varón et al.
2009), for example, estimates both the phylogenetic tree and
the best alignment based on the MP criterion. Previous
versions of POY were also able to implement DO in
a likelihood framework. Newer programs such as StatAlign
(Novák et al. 2008), BAli-Phy (Suchard and Redelings 2006),
and BEAST (Lunter et al. 2005) incorporate models of
sequence evolution to estimate the posterior distribution of
a set of trees and alignments based on Bayesian inference
(BI). The Bali-Phy software shows exceptional promise in
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that its models allow for nested or overlapping indel events
(Redelings and Suchard 2005, 2007), whereas other methods
utilize the more common TKF1 and TKF2 indel models
(Thorne et al. 1991, 1992). However, joint estimation of
alignment and phylogeny in a probabilistic framework is
currently computationally intensive and feasible only with
smaller data sets (Lunter et al. 2005). These methods also fit
a single model to the data, which may not be justified with
multilocus data sets.

Although DO procedures can provide an alternative to
constructing a subjective MSA, there are other technical and
philosophical factors that possibly confound their utility
(Simmons 2004; Simmons and Ochoterena 2000). Studies
have compared the performance of DO with POY versus
traditional Clustal MSA þ MP in PAUP* (Swofford 2002)
and found the former to be inferior in most of the analyses
performed (Kjer et al. 2007; Ogden and Rosenberg 2007a).
However, a more recent simulation study showed that these
results are due, in part, to the use of simple gap penalties in
POY (Liu, Nelesen, et al. 2009). Conversely, using an
affine-gap penalty in POY often leads to more accurate
alignment and phylogenetic hypotheses than the tradi-
tional Clustal þ MP approach. By affine penalty, we refer to
the additive nonzero cost of both inserting a gap and
extending a previously inserted gap. For example, under
a simple gap penalty, the cost incurred would equal kC,
where C equals the gap opening cost and k equals the
length of the gap. Under an affine penalty, a gap of length
k would cost Copen þ kCextend, where Copen equals the cost
of inserting a gap and kCextend is the cost of extending the
inserted gap of length k. Few comprehensive simulation
studies have investigated the performance of likelihood-
based DO methods, but it is anticipated that the power of
these methods will continue to increase as more realistic
models of evolution become incorporated into the analysis
(Miklós et al. 2004).

Phylogenetic Inference

Concatenation

Any method of data analysis must rely on an underlying set
of assumptions. A primary objective of any scientific
investigation is to minimize the number of unnecessary
and unjustifiable assumptions required to explain patterns in
the data. In this regard, MP analysis continues to be
a popular cladistic method to reconstruct evolutionary
histories. Although not statistical in the sense that the
criterion does not impose a probabilistic model of sequence
evolution, many cladists believe that MP outperforms
model-based methods of tree reconstruction (including
distance-based phenetic methods). This is due, in part, to
factors such as the additional assumptions involved with
phenetic and likelihood-based analyses (Siddall and Kluge
1997; Siddall 2001). Several computer programs are able to
perform MP analysis using morphological and/or molecular
data (Hennig86, Farris 1988; NONA/Pee-Wee, Goloboff
1994) Many of these programs are limited in their scope of

data exploration and analysis and are currently used less
frequently in phylogenetic analysis than more utilitarian
software packages.

Historically, the most widely used program to estimate
trees under the parsimony criterion is PAUP* or phyloge-
netic analysis using parsimony (*and other methods)
(Swofford 2002). This program has several advantages to
the user, some of which include the ability to analyze
molecular or morphological data or data sets containing
a mixture of character types. PAUP* is also able to analyze
data under different criteria including the NJ and maximum
likelihood (ML) methods. Compared with several other
phylogenetic software packages, the Macintosh version of
PAUP* is also quite user-friendly, which has added to
researchers preference for this program versus other
parsimony software. Other functions in PAUP* that have
made it a versatile choice for phylogenetic inference are: 1)
the ability to implement a variety of different models of
evolution in a distance or likelihood framework; 2) the
calculation of heterogeneous patterns in data with the
partition homogeneity test or incongruence length differ-
ence test (Farris et al. 1994); 3) the detection of saturation;
and 4) the calculation of pairwise base differences with or
without accounting for multiple hits.

Although the benefits of PAUP* are numerous, the
program suffers from severe limitations when data sets get
too large, especially when there is a lack of strong
phylogenetic signal. Furthermore, it is well known that
for implicit enumeration and branch-and-bound meth-
ods, having a data set with more than 20 taxa can take an
enormous amount of time and computational power that is
generally not feasible with modern computer technology
(Swofford et al. 1996). Instead, performing a heuristic
search, usually with a set of random addition sequences
(RASs) followed by tree bisection–reconnection (TBR)
branch swapping is implemented in hopes of finding a set
of most parsimonious trees. However, even these heuristic
methods can take an inordinate amount of time when data
sets get too large (both in taxa and base pairs). This makes
PAUP* an unlikely candidate to analyzing larger multilocus
data sets in a parsimony framework. Furthermore, providing
support for nodes via bootstrapping (Felsenstein 1985) or
jackknifing (Lanyon 1985) would be a computational burden
with these quantities of data.

A relatively new phylogenetic inference package, TNT
(Tree Analysis Using New Technology; Goloboff et al.
2003, 2008) is showing exceptional promise for the analysis
of large data sets (.150 taxa) under MP (Hovenkamp 2004;
Giribet 2005; Meier and Ali 2005; Goloboff and Pol 2007).
TNT is available for Linux, Macintosh, and Windows
platforms (GUI version for Windows only) with a down-
loadable PowerPoint presentation that explains the basic
features of the program. TNT’s implementation of 4 ‘‘New
Technology’’ search algorithms (sectorial searches, tree
drifting, tree fusing, and the ratchet) provides researchers
with novel and faster methods to search for optimal trees.
TNT allows for the analysis of data sets that would normally
require between 300 and 900 times longer with traditional
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phylogenetic programs such as PAUP*(Goloboff 1999). For
a comprehensive explanation of these search algorithms, the
reader is directed to the original papers (Goloboff 1999;
Nixon 1999). In addition to these new algorithms providing
a more thorough evaluation of tree space with larger data
sets, simulation studies have shown that standard RAS þ
TBR searches in TNT take a fraction of time as those
implemented in PAUP*. Indeed it is shown that TNT is able
to perform rapid parsimony analysis with a high number of
taxa (;1000; Goloboff 1999), although it is not yet known
how the algorithms would handle data sets composed of
thousands to tens of thousands of base pairs. More
simulation studies are needed to determine how TNT will
handle these data sets for a greater number of taxa.
However, it is highly likely that TNT will serve as a prime
candidate to quickly and efficiently analyze multilocus data
under the parsimony criterion.

Phylogenetic packages using probabilistic methods such
as ML and BI have gained popularity due to their ability to
incorporate various models of sequence evolution to best
explain the data. Historically, ML methods were used as
a parametric comparison with MP analysis. Over the past
2 decades, its use has diminished as newer Bayesian
techniques have become available that are better able to
exploit the information contained in a data set. For example,
early ML methods (i.e., PAUP*) were more computationally
demanding than Bayesian methods, especially when applying
more than one model of evolution to the data. Indeed, most
researchers who used the ML criterion to generate
a phylogenetic hypothesis fit a single model of evolution to
the data, even if the data were composed of many different
genes and codons that are likely evolving at very different
rates. Recently, newer, more sophisticated ML algorithms
such as those implemented in GARLI (Zwickl 2006) and
RAxML (Stamatakis 2006) have been developed for rapid
likelihood analysis. RAxML in particular is showing
exceptional promise for phylogenetic inference with thou-
sands of taxa and/or base pairs. RAxML is also able to
accommodate mixed model ML analysis (GARLI is currently
unable to do so), fitting independent evolutionary models to
alignments of both nucleotides and amino acids. With these
improved algorithms, ML is again becoming a popular choice
for phylogenetic analysis of exceptionally large data sets.

Bayesian methods of phylogenetic inference continue to
be among the most popular choice for analyzing large
complex data sets composed of different genic regions. The
majority of past and current studies implement a partitioned
Bayesian analysis in the program MrBayes (Ronquist and
Huelsenbeck 2003) dividing the data a priori based on
different functional regions such as genes, codon position in
protein-coding genes, and stems and loops in ribosomal
RNA (rRNA) (Nylander et al. 2004; Brandley et al. 2005).
Simulation and empirical data sets have shown that
partitioning the data into discrete regions and assigning
different evolutionary models to each region significantly
improves the marginal likelihood values for the posterior
distribution (Nylander et al. 2004; Brown and Lemmon
2007). However, there has been less consensus among

researchers as to the best way to determine what the optimal
partitioning strategy is for a particular data set. This problem
is further exacerbated by the fact that overpartitioning a data
set can be just as harmful as underpartitioning and can
introduce several unnecessary additional parameters to the
analysis that may or may not be justified by the data (Brown
and Lemmon 2007). The use of Bayes factors (Kass and
Raftery 1995) is currently the most common way to assess
the optimal partition strategy for a given data set. However,
there is still some degree of subjectivity in the calculation
and interpretation of values. For example, some researchers
advocate a significance value of 10 or greater (Brandley et al.
2005), whereas others suggest that any value above 2 is
significant (Raftery 1996). This means that when comparing
2 separate models, model one versus model 2 (BF12),
a 2(lnBF) . 10 favors the former over the latter. The values
used for the calculation of BF are typically the marginal
likelihoods of each run, which can be calculated in software
packages such as Mathematica or approximated by the
harmonic mean values in MrBayes.

As sequencing technology progresses, heterogeneous
data sets encompassing various genomic regions including
protein-coding genes, rRNA genes, intergenic regions, and
introns will become standard practice. With these diverse
data sets, it will be necessary to determine the best methods
to account for both the pattern as well as rate variation in
nucleotide substitution present throughout the different
regions. Although partitioning the data in MrBayes gener-
ally leads to improved likelihood scores, this usually comes
at the cost of increased computation time required to
reach convergence (Roberts et al. 2009). Consider a data
set composed of 3 unlinked protein-coding genes. As-
signing one model to the entire data set may be relatively
computation-friendly, but it may not be philosophically
justifiable based on the variance in evolutionary rate and
pattern. It may be more suitable to divide the data into
discrete partitions (gene and codon within gene) to fully
accommodate the heterogeneous rates and patterns most
likely present in the data. With 3 protein-coding genes,
however, this would require 9 separate partitions, with
parameters estimated separately for each partition (assuming
an unlinked model). Different priors on branch lengths and
evolutionary rates can also be specified for each data
partition before the analysis is implemented (Brown et al.
2010). However, increasing the number of partitions and
parameters increases computation time and parameter
variance at an exponential rate (Roberts et al. 2009).
Additional partitions also decrease the number of sites
(characters) per partition, increasing the systematic error in
model fitting (Brandley et al. 2005; Roberts et al. 2009).
Highly partitioned data sets may also lead to errors in
branch length estimation (Marshall et al. 2006) and influence
convergence and mixing of the Markov chains, which may
require changing the heating scheme (Beiko et al. 2006).
Although certainly feasible with a small to moderate number
of loci, applying these methods to large data sets may lead to
erroneous conclusions due to inappropriate models and
prior distributions.

133

Perspectives

D
ow

nloaded from
 https://academ

ic.oup.com
/jhered/article/102/1/130/821529 by guest on 23 April 2024



A newer and more promising approach to BI of
multilocus data sets can be found in the software
package BayesPhylogenies (Pagel and Meade 2004). The
program implements a mixture model to account for pattern
heterogeneity present in diverse data sets and assigns
a model to each site in an alignment of nucleotide
sequences. BayesPhylogenies uses the likelihood function
to calculate how many independent substitution rate
matrices, Q, are needed to best explain the data without
the need for a priori partitioning of the data. Each rate
matrix is composed of a known model of evolution,
generally corresponding to the general time reversible
(GTR) model with or without gamma rate variation (Yang
1994), and parameters are estimated separately for each
matrix. The GTR method is usually used for each matrix
because it allows for the most free parameters. In a
traditional likelihood framework, we seek to maximize the
likelihood of observing the data given a specific set of
parameters. This can be written as P(D|Q, T), where D is
an alignment of nucleotide sequences, Q corresponds to
a model of sequence evolution, and T is a phylogenetic tree.
The mixture model method is able to incorporate additional
models to maximize the likelihood and can be written as
P(D|Q1, Q2, Q3, . . . ,Qj, T), where Q1–Qj represents how
many models (rate matrices) are required to best explain the
data. Simulation and empirical analyses have shown
that mixture models can outperform mixed model BI
(i.e., partitioning) based on increased likelihood scores,
usually without the incorporation of additional unnecessary
parameters (Pagel and Meade 2004, 2005).

Although employing a mixture model analysis may be
more suitable to a particular data set, the researcher often
does not know a priori how many independent rate
matrices are required to best explain the data. One method
that can be used to determine the minimum number of rate
matrices is to simply repeat the analysis several times
specifying a different number of Q matrices with and
without gamma rate variation (C ) and separate base
frequencies (p) and use model selection criteria such as
Bayes factors or Akaike’s information criterion (AIC) to
select the best strategy (Roberts et al. 2009). The researcher
may also plot the likelihood returns for each separate
run versus Q (with and without C ) in order to visually
assess stationarity (see e.g., Pagel and Meade 2004).
Alternatively, the reversible jump (RJ) procedure (Green
1995; Huelsenbeck et al. 2004) can accommodate un-
certainty by allowing the joint estimation of parameters in
the posterior distribution. Along with estimating the
parameters of interest such as tree topology and branch
lengths, the RJ method also estimates the minimum number
of rate matrices required to maximize the likelihood of
observing the data. This method is advantageous as it does
not to make any a priori assumptions regarding the pattern
of sequence evolution.

Although computationally intensive, an additional useful
benefit of employing a mixture model analysis is that the
program is able to incorporate heterotachy; variation in the
rate of evolution through time in a specific region of an

alignment at a specific location in the tree (Fitch and
Markowitz 1970; Pagel and Meade 2008). Heterotachy is
a common phenomenon in molecular evolution but is
seldom incorporated into a molecular phylogenetic analysis
(Lopez et al. 2002; Philippe et al. 2005). BayesPhylogenies
accomplishes this by assigning more than one branch length
to a specific region in a phylogenetic tree. These additional
branch length sets can be specified by the user a priori or
estimated directly from the data by the RJ procedure (Pagel
and Meade 2008). Using the RJ procedure to estimate the
likelihood of additional branch lengths has numerous
benefits over assigning additional complete sets to the
entire data a priori (Pagel and Meade 2008). For example,
assigning additional sets forces more than one branch
length for every branch of a tree, most of which are
unjustified and add unnecessary parameters to the analysis.
The RJ procedure, on the other hand, only assigns addi-
tional branch lengths where the data suggest that they are
necessary, in turn minimizing the number of additional
parameters required to best explain the data.

The benefits of employing a mixture model Bayesian
analysis over a partitioned analysis are relatively straightfor-
ward. First, these models do not require a priori partitioning
of the data, which is often a subjective matter. Second,
mixture model methods can select the best modeling
strategy a posteriori based on the given data (RJ method),
eliminating the need for model selection criteria such as
Bayes factors, AIC, and Bayesian Information Criteria.
Third, mixture models allow for within partition pattern
variability, which is quite common in an alignment of
molecular sequences but seldom incorporated (Pagel and
Meade 2004). Finally, mixture models have the ability to
reduce node-density artifacts (i.e., underestimate of the
amount of change in long branches compared with shorter
branches with more nodes) often present in a data set
(Venditti et al. 2008). For these reasons, as well as those
presented above, researchers are beginning to incorporate
new heterogeneous models in empirical data sets composed
of several independent loci. Over the past few years, mixture
models have been used to infer phylogeny in several groups
including mammals (Roberts et al. 2009), flies (Lewis et al.
2005), and lizards (Zaldivar-Riverón et al. 2008; Schulte and
Cartwright 2009). These studies find mixture model results
comparable with traditional probabilistic inference methods,
although likelihood scores are generally higher. However,
methods to assess adequate mixing and convergence for
mixture models are still in development. Additional
empirical studies will allow us to draw better conclusions
as to the congruence of mixture model approaches with
more traditional partition-based methods.

It is predicted that mixture models will begin to
be incorporated more frequently as multilocus data sets
become available. This is due to a combination of com-
putational efficiency and philosophical justifications to
handle highly heterogeneous data sets. It becomes prob-
lematic to fit an inordinate number of evolutionary models
to a data set containing tens to hundreds of independent loci
a priori and running a partitioned analysis. These models will
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not only add an enormous amount of additional parameters
to the analysis but may also prove to be a poor fit to the data
due to overparameterization. Estimating the number of
required models directly from the data is a much more
feasible and defensible goal. Consider a data set containing
100 000 bp spanning several protein coding exons, introns,
and intergenic regions (soon to be a moderately sized data
set). If the user wished to perform a partitioned Bayesian
analysis, these data would have to be divided a priori into an
unmanageable number of partitions, increasing both the
number of assumptions and computational burden. Con-
versely, using the RJ mixture model procedure to estimate
the number of required rate matrices directly from the data
may show that the data can be explained by only a few
different rate matrices. This in turn drastically reduces the
number of required parameters in the analysis and will
provide higher likelihood scores.

Species Trees

The reconciliation of a well-supported species tree is the
primary interest in systematics. Traditionally, the steps
involved in a molecular phylogenetic investigation included
1) sequencing a single gene from a representative individual
for each taxon under study; 2) constructing a gene tree of
the sequences using available phylogenetic methods; and 3)
equating the resolved gene tree with the species tree.
Although these gene trees often serve as an adequate
hypothesis for the species tree in older groups, discor-
dance between gene trees can be quite common, especially
for rapid speciation events and recently diverged taxa
(Degnan and Rosenberg 2006, 2009; Carstens and Knowles
2007). As we are moving away from single-locus phyloge-
netics to more multilocus studies (Edwards 2008; Brito
and Edwards 2009), gene tree heterogeneity will become
a common phenomenon in molecular investigations.
Extracting the phylogenetic signal from these discordant
gene trees is paramount in hypothesizing the most likely
species tree. Therefore, several recent methods have been
proposed to estimate the most likely species tree from a set
of independent gene trees (reviewed in Knowles 2009).

It is now well understood that gene tree heterogeneity is
ubiquitous (Degnan and Rosenberg 2009). Factors such as
horizontal gene transfer (Doolittle 1999), gene duplication
(Page and Charleston 1997), recombination, hybridization
and introgression (Rieseberg et al. 2000), and incomplete
lineage sorting (Pamilo and Nei 1988) can result in gene trees
that are discordant with other gene trees as well as the species
tree (Maddison 1997). Several traditional and more recent
methods have been used to deal with this discordance in
multilocus data sets. For example, the most common way to
incorporate information from multiple genes is to concat-
enate them into one supermatrix and analyze them as one
under the total evidence approach (Kluge 1989). Concate-
nation assumes that the phylogenetic signal present in most
partitions will swamp out the conflicting signal in others.
Over the years, several methods have been developed to
examine the contribution of individual gene partitions to the

total evidence topology. These include partitioned Bremer
support (Baker and DeSalle 1997), partitioned likelihood
support (Lee and Hugall 2003), and the partition addition
bootstrap alteration (Struck et al. 2006). Given the total
evidence topology, these methods quantify the support or
conflict for each node calculated from each partition in either
a parsimony or a likelihood framework. Indeed, it is the
concatenation approach that has garnered the most attention
from systematists over the past few decades and has proved
effective in some genomic data sets (e.g., Rokas et al. 2003).

Although the concatenation method may provide more
phylogenetic resolution simply by increasing the number
of informative characters, information about variance in
gene coalescence is lost. This has spawned an exciting new
era of research into methods to 1) account for gene tree
discordance in estimating a species tree and 2) move away
from concatenation (Edwards et al. 2007; Kubatko and
Degnan 2007; Knowles 2009).

It is currently assumed that incomplete lineage sorting
due to deep coalescence is the most common mechanism
leading to incongruence among gene trees (Degnan and
Rosenberg 2009). Thus, most of the recent species tree
methods do not account for the other potential factors
outlined above (but see Kubatko 2009). Generally speaking,
species tree methods are classified as either summary
statistics based or probabilistic based (Knowles 2009;
Liu, Yu, et al. 2009; McCormack et al. 2009). Early summary
statistics approaches such as minimizing deep coalescence
(Maddison and Knowles 2006) are computationally trac-
table but often less robust than probabilistic methods
(McCormack et al. 2009). However, newer summary
statistics methods that account for coalescence variance
such as STAR and STEAC (Liu, Yu, et al. 2009) are showing
exceptional promise to construct species trees. These
methods are relatively quick and can be implemented in
the statistical package R.

ML and Bayesian methods have been developed to
model gene coalescence to infer the most likely species tree.
These heavily parameterized models allow for the stochas-
ticity of coalescence times between gene lineages to be
integrated into species tree inference probabilistically. In
a fully Bayesian framework, for example, the programs
BEST (Bayesian Estimation of Species Trees; Liu 2008; Liu
and Pearl 2007) and *BEAST (Heled and Drummond 2010)
use multiple alleles per species to estimate the posterior
distribution of gene and species trees. Prior distributions of
gene trees are conditioned on the species tree in which the
gene trees are embedded. As a by-product of the joint
estimation of gene trees and the species tree, the programs
also provide divergence times and ancestral population sizes.
The latter has been shown to rely heavily on the prior
distribution of h 5 4Nel, where Ne is the effective
population size and l is the per-site mutation rate (Liu and
Pearl 2007). Although species tree inference with BEST and
*BEAST have been shown to outperform concatenation,
computational demand currently limits their utility when
applying the methods to larger data sets (Cranston et al.
2009; Liu, Yu, et al. 2009).
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Because joint estimation of gene and species trees is
often intractable with large quantities of data, other ML and
Bayesian methods have been employed. Bayesian concor-
dance analysis (BCA; Ané et al. 2007), for example, uses
individually calculated gene trees to infer the species tree
that maximizes the bipartition concordance among each
gene tree. BCA can be implemented in the program BUCKy
(Ané et al. 2007) and requires a set of calculated gene trees
along with a single user-defined input parameter a that
quantifies the degree of gene tree incongruence. BCA has
been shown to be a highly accurate alternative to the
demanding algorithm used in BEST and the method is
generally insensitive to values of a (Cranston et al. 2009).
A promising ML method is found in the program STEM
(Species Tree Estimation Using Maximum Likelihood;
Kubatko et al. 2009). Like BCA, STEM uses the calculated
gene trees (assuming a molecular clock) as input data to
calculate the most likely species tree under coalescence. The
program can also evaluate the likelihood of a user-specified
input tree as well as search for a set of high likelihood
topologies. Prior to analysis, the user must specify a value
for h (to convert branch lengths into coalescent units) and
a per-locus evolutionary rate r. Although ML inference with
STEM has been shown to improve over concatenation ML
analysis (Kubatko et al. 2009), it is still unknown how robust
the method is to starting parameter values.

Conclusions

We hope that this review encourages both empirical and
theoretical systematists to strongly consider the status and
future of phylogenetic inference methods. As multilocus
data sets become the norm across laboratories, some of the
most commonly employed techniques for both MSA and
tree reconstruction will no longer be adequate for generating
phylogenetic hypotheses. Instead, alternate and more
sophisticated search algorithms are required in order to
fully exploit the information contained in these large
quantities of data. As highly heterogeneous data sets
become available, testing the accuracy of both modern
alignment algorithms and DO methods through simulation
will become even more important.

For traditional phylogenetic inference, MP analysis will no
doubt continue to play a role. In this regard, TNT is showing
promise for dealing with difficult phylogenetic problems.
Furthermore, model-based concatenation methods using
mixture models in BayesPhylogenies seem promising for
multilocus data sets. However, there have been few
simulations to quantify the accuracy of the model compared
with other methods including direct species tree inference.

Several methods outlined in this review are also showing
promise for analyzing phylogenomic data sets, including the
alignment algorithms in the programs Multi-LAGAN
(Brudno et al. 2003) and MAUVE (Darling et al. 2004)
and the species tree methods found in programs such as
BCA, STEM, and STEAC. The field of molecular
systematics has always been a rapidly evolving discipline

drawing from expertise across diverse backgrounds. With
new sequencing technologies upon us, and new methods of
analysis, simulation studies are vital if we are to ascertain the
best approach to phylogenetic inference. This simulation-
based research has thus been a necessary and rapidly
progressing component of multilocus phylogenetics and
much more work is needed. Furthermore, little work has
been done to quantify the application of new methods to
phylogeographic studies. We are approaching an exciting
new era of molecular systematics and as more heteroge-
neous data sets begin to accumulate, the efficacy of current
methodology is sure to be put to the test.
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