Abstract

Hymenopterans make up about 20% of all animal species, but most are poorly known and lack high-quality genomic resources. One group of important, yet understudied hymenopterans are parasitoid wasps in the family Braconidae. Among this understudied group is the genus Cotesia, a clade of ~1,000 species routinely used in studies of physiology, ecology, biological control, and genetics. However, our ability to understand these organisms has been hindered by a lack of genomic resources. We helped bridge this gap by generating a high-quality genome assembly for the parasitoid wasp, Cotesia glomerata (Braconidae; Microgastrinae). We generated this assembly using multiple sequencing technologies, including Oxford Nanopore, whole-genome shotgun sequencing, and 3D chromatin contact information (HiC). Our assembly is one of the most contiguous, complete, and publicly available hymenopteran genomes, represented by 3,355 scaffolds with a scaffold N50 of ~28 Mb and a BUSCO score of ~99%. Given the genome sizes found in closely related species, our genome assembly was ~50% larger than expected, which was apparently induced by runaway amplification of 3 types of repetitive elements: simple repeats, long terminal repeats, and long interspersed nuclear elements. This assembly is another step forward for genomics across this hyperdiverse, yet understudied order of insects. The assembled genomic data and metadata files are publicly available via Figshare (https://doi.org/10.6084/m9.figshare.13010549).

Introduction

The insect order Hymenoptera (comprised >150,000 described species of wasps, bees, ants, and sawflies) is one of the most species-rich animal groups on the planet (Forbes et al. 2018). Much of this diversity lies within several groups of wasps with a “parasitoid” life history, where parasitic larvae develop into free-living adults (Peters et al. 2017). However, parasitoid wasps have generally been understudied taxonomically (Jones et al. 2009). In fact, undocumented parasitoid diversity could make the Hymenoptera the most species-rich order of animals (Forbes et al. 2018). Despite this profound species diversity and myriad of interesting biological phenomena within the Hymenoptera, high-quality genomic data for large swathes of the hymenopteran phylogeny are still lacking (Branstetter et al. 2018).

Braconidae is one of the largest hymenopteran families with >17,000 described species (Yu et al. 2005) and diverged from their closest relatives (Ichneumonidae) in the early-to-mid Jurassic (~175 million years ago) (Peters et al. 2017). The group includes many introduced species important for biological control of insect pests in field and greenhouse agriculture (Heimpel and Lundgren 2000; Van Driesche 2008; Acebes and Messing 2013). Perhaps most notably, the release of Eurasian parasitoid species, Cotesia glomerata (Braconidae; Microgastrinae), in North America, in the 1880s to control populations of imported cabbageworm (Pieris rapae) was one of the first documented cases of introductions for biological control in the world (Heimpel and Cock 2017). Cotesia glomerata has also been a valuable model in a wide range of topics including parasitoid–microbe interactions (Cusumano et al. 2018; Zhu et al. 2018), multitrophic interactions (Bukovinszky et al. 2009; Poelman et al. 2011, 2012), competition and life-history trade-offs (Geervliet et al. 2000; Gu and Dorn 2003; Vyas et al. 2019), nectar nutrition (Wäckers 2001; Wanner et al. 2006), neurobiology (Van Vugt et al. 2015), sex determination (Zhou et al. 2006), and host foraging (Horikoshi et al. 1997; Shiojiri et al. 2006; De Rijk et al. 2016). Continued exploration into these aspects, and others, of the biology and evolution of braconid wasps is currently hindered by the lack of available high-quality genomic data (Branstetter et al. 2018). To date, multiple genomic resources have been developed in braconid wasps. However, these resources are generally lacking in contiguity and phylogenetic breadth. To address this gap, we present a high-quality genome assembly for the parasitoid wasp, C. glomerata, generated using long-read, short-read, and long-range contact (HiC) sequencing data. The resulting C. glomerata genome assembly reported herein is among the most contiguous and complete assemblies currently available across all hymenopterans.

Methods

Data Generation

We obtained C. glomerata specimens from a colony maintained at Colorado State University. Field-collected founders of this colony were initially collected from cabbage fields at the Colorado State Agricultural Research, Development, and Education Center near Wellington, CO. Cotesia glomerata are haplodiploid with 2n females having 20 chromosomes and 1n males having 10 chromosomes (Zhou et al. 2006). We extracted high-molecular-weight DNA (HMW DNA) from 1 male [CgM1] and 1 female [CgF25] C. glomerata specimens using a custom low-input DNA extraction protocol designed for small vertebrates and adapted for single insect input (Supplementary Methods). For each individual, we generated a sequencing library for the Oxford Nanopore Technologies (ONT) platform (SQK-RAD004) and conducted long-read DNA sequencing using a MinION (2 FLO-MINSP6 flowcells). We quality-filtered male and female ONT reads using NanoFilt [v2.5.0] (De Coster et al. 2018) by discarding any sequence with an average quality of <7 and a read length <1000 bp. We then concatenated male and female ONT reads to produce our final ONT dataset, which contained 1 864 940 reads (9 440 627 459 bp) with a read N50 of 8222 bp (~32× coverage).

We extracted additional DNA from a second male C. glomerata specimen [CgM2] using the QIAamp DNA Micro Kit (Qiagen) and generated a proximally ligated DNA library for a pool of 5 male C. glomerata individuals using the Arima® HiC kit (Arima Genomics®, San Diego, CA). Then, we generated a total of 3 Illumina® sequencing libraries (genome re-sequencing for CgM1 and CgM2, and the proximally ligated HiC library) using NEBNext® Ultra™ II DNA Library Prep Kit for Illumina® with dual indices (New England BioLabs®). We sequenced re-sequencing libraries on an Illumina® HiSeqX (Psomagen®, Rockville, MD), and the HiC library was multiplexed on a NovaSeq lane (Novogene®, Davis, CA). We generated 2 male re-sequencing libraries for different individuals, as the remaining DNA after ONT sequencing (CgM1) was minute and produced a low-concentration library—which was supplemented by the second individual.

We processed raw illumina reads by quality and adapter trimming reads using Trim Galore! [v0.6.5] (https://github.com/FelixKrueger/TrimGalore; Martin 2011), filtering PCR duplicates using BBmap [v38.79] (Bushnell, 2014), and QC for each read set using FastQC [v0.11.7] (Andrews 2010). Data generated for each library/individual are summarized in Supplementary Table 1.

Genome Assembly

To maximize the quality of the final assembly with these data, we generated and compared several polished draft genome assemblies using 4 methods: Flye [v2.8.1] (Kolmogorov et al. 2019), wtdbg [v2.5] (Ruan and Li, 2020), Canu [v2.0] (Koren et al. 2017), and Miniasm [v0.3]/Racon [v1.4.13] (Li, 2016; Vaser et al. 2017). We then polished each assembly using ONT and Illumina reads with NextPolish [v1.3.1] (Hu et al. 2020) and assessed the contiguity and completeness of each step using the program Benchmarking Using Single-Copy Orthologs [v3.0] (BUSCO) with the arthropod ortholog database (odb9) (Simão et al. 2015), via the gVolante web server [v1.2.1] (Nishimura et al. 2017) (Table 1). At this point, we chose the highest quality genome assembly (the Flye assembly; Table 1) to continue through HiC scaffolding and genome annotation. We broke and rescaffolded the polished Flye assembly using 2 iterations of 3D-DNA [v201008] (Dudchenko et al. 2017), which yielded 11 chromosome scale scaffolds with no apparent large-scale misassemblies. We visualized the final HiC contact map for misassemblies using Juicebox [v1.11] (Durand et al. 2016). However, we identified 2 arms of a single chromosome that were not scaffolded together and manually connected the scaffolds using Juicebox. Thus, postcuration, this assembly contained 10 chromosome-level scaffolds.

Table 1.

Tracking quality and contiguity of the genome assemblies across versions using 5 common metrics: Contig/scaffold N50, size of the smallest scaffold comprising the largest 50% of the assembly; Scaffold L50, number of scaffolds comprising the largest 50% of the genome; Scaffolds, total number of scaffolds comprising the analyzed assembly; Size, the number of base pairs in the assembly; and BUSCO score using the arthropod database (odb9) (Nishimura et al. 2017)

VersionStepN50L50ScaffoldsSize (Mb)BUSCO (%)
Flye Assembly Statistics       
Flye Assembly v0.1 Flye 1 105 129 52 4767 287 79.0 
Flye Assembly v0.2 NextPolish 1 122 554 52 4767 290 99.0 
Flye Assembly v0.3 3D-DNA 27 795 534 3973 291 98.8 
C. glomerata MPM v2.0 Funannotate 27 795 534 3355 290 98.9 
 Transcripts Funannotate Genome annotations    96.2 
 Peptides Funannotate Genome annotations    96.3 
wtdbg2 Assembly Statistics       
wtdbg2 Assembly v0.1 wtdbg2 473 826 107 3316 302 37.24 
wtdbg2 Assembly v0.2 NextPolish 482 022 109 3316 312 96.0 
Miniasm/Racon Assembly Statistics       
Miniasm Assembly v0.1 Miniasm/Racon 329 657 242 1780 297 63.9 
Miniasm Assembly v0.2 NextPolish 329 029 243 1780 299 89.9 
Canu Assembly Statistics       
Canu Assembly v0.1 Canu 108 160 715 6368 338 58.9 
Canu Assembly v0.2 NextPolish 110 205 718 6368 345 94.5 
VersionStepN50L50ScaffoldsSize (Mb)BUSCO (%)
Flye Assembly Statistics       
Flye Assembly v0.1 Flye 1 105 129 52 4767 287 79.0 
Flye Assembly v0.2 NextPolish 1 122 554 52 4767 290 99.0 
Flye Assembly v0.3 3D-DNA 27 795 534 3973 291 98.8 
C. glomerata MPM v2.0 Funannotate 27 795 534 3355 290 98.9 
 Transcripts Funannotate Genome annotations    96.2 
 Peptides Funannotate Genome annotations    96.3 
wtdbg2 Assembly Statistics       
wtdbg2 Assembly v0.1 wtdbg2 473 826 107 3316 302 37.24 
wtdbg2 Assembly v0.2 NextPolish 482 022 109 3316 312 96.0 
Miniasm/Racon Assembly Statistics       
Miniasm Assembly v0.1 Miniasm/Racon 329 657 242 1780 297 63.9 
Miniasm Assembly v0.2 NextPolish 329 029 243 1780 299 89.9 
Canu Assembly Statistics       
Canu Assembly v0.1 Canu 108 160 715 6368 338 58.9 
Canu Assembly v0.2 NextPolish 110 205 718 6368 345 94.5 
Table 1.

Tracking quality and contiguity of the genome assemblies across versions using 5 common metrics: Contig/scaffold N50, size of the smallest scaffold comprising the largest 50% of the assembly; Scaffold L50, number of scaffolds comprising the largest 50% of the genome; Scaffolds, total number of scaffolds comprising the analyzed assembly; Size, the number of base pairs in the assembly; and BUSCO score using the arthropod database (odb9) (Nishimura et al. 2017)

VersionStepN50L50ScaffoldsSize (Mb)BUSCO (%)
Flye Assembly Statistics       
Flye Assembly v0.1 Flye 1 105 129 52 4767 287 79.0 
Flye Assembly v0.2 NextPolish 1 122 554 52 4767 290 99.0 
Flye Assembly v0.3 3D-DNA 27 795 534 3973 291 98.8 
C. glomerata MPM v2.0 Funannotate 27 795 534 3355 290 98.9 
 Transcripts Funannotate Genome annotations    96.2 
 Peptides Funannotate Genome annotations    96.3 
wtdbg2 Assembly Statistics       
wtdbg2 Assembly v0.1 wtdbg2 473 826 107 3316 302 37.24 
wtdbg2 Assembly v0.2 NextPolish 482 022 109 3316 312 96.0 
Miniasm/Racon Assembly Statistics       
Miniasm Assembly v0.1 Miniasm/Racon 329 657 242 1780 297 63.9 
Miniasm Assembly v0.2 NextPolish 329 029 243 1780 299 89.9 
Canu Assembly Statistics       
Canu Assembly v0.1 Canu 108 160 715 6368 338 58.9 
Canu Assembly v0.2 NextPolish 110 205 718 6368 345 94.5 
VersionStepN50L50ScaffoldsSize (Mb)BUSCO (%)
Flye Assembly Statistics       
Flye Assembly v0.1 Flye 1 105 129 52 4767 287 79.0 
Flye Assembly v0.2 NextPolish 1 122 554 52 4767 290 99.0 
Flye Assembly v0.3 3D-DNA 27 795 534 3973 291 98.8 
C. glomerata MPM v2.0 Funannotate 27 795 534 3355 290 98.9 
 Transcripts Funannotate Genome annotations    96.2 
 Peptides Funannotate Genome annotations    96.3 
wtdbg2 Assembly Statistics       
wtdbg2 Assembly v0.1 wtdbg2 473 826 107 3316 302 37.24 
wtdbg2 Assembly v0.2 NextPolish 482 022 109 3316 312 96.0 
Miniasm/Racon Assembly Statistics       
Miniasm Assembly v0.1 Miniasm/Racon 329 657 242 1780 297 63.9 
Miniasm Assembly v0.2 NextPolish 329 029 243 1780 299 89.9 
Canu Assembly Statistics       
Canu Assembly v0.1 Canu 108 160 715 6368 338 58.9 
Canu Assembly v0.2 NextPolish 110 205 718 6368 345 94.5 

Genome Annotation

Prior to annotation, we trimmed the minimal scaffold length to 1000 bp (Table 1). To functionally annotate the genome assembly, we used the Funannotate pipeline [v1.5.0] (Palmer 2018) in an isolated docker computing environment (Merkel 2014). Briefly, the funannotate pipeline provides a simple pipeline to train and predict gene models using both curated databases (Simão et al. 2015) and RNAseq data (Haas et al. 2008; Keller et al. 2011; Hoff et al. 2016). To compile a posteriori annotation evidence, we fetched available paired-end RNAseq reads from previously conducted RNAseq experiments from Van Vugt et al. (2015) (Bioproject PRJNA289655: SRR2105801, SRR2105795, SRR2105791, SRR2105785). We quality and adapter trimmed reads before filtering PCR duplicates (as described above) of the concatenated RNAseq reads files. As one line of evidence, we mapped these reads directly to the genome assembly using HiSat2 [v2.1] (Kim et al. 2019). As another line of evidence, we assembled a de novo transcriptome using the De novo RNAseq Assembly Pipeline (DRAP) [v1.91] (Cabau et al. 2017) to assist in genome annotation. An in-depth description of the utility of DRAP in the production of high-quality transcriptome assemblies can be found elsewhere (Cabau et al. 2017; Pinto et al. 2019). This transcriptome, along with the hymenopteran BUSCO database (odb9), was used to train gene prediction models during the annotation process. We conducted a systematic assessment of other, freely available hymenopteran genome assemblies using the same method to compare with our C. glomerata assembly using the same metrics as Table 1 (see Table 2).

Table 2.

Representative genome assemblies for publicly available hymenopteran species compared with the new C. glomerata assembly (bold) across 5 common metrics: Scaffold N50, size of the smallest scaffold comprising the largest 50% of the assembly; Scaffold L50, number of scaffolds comprising the largest 50% of the genome; Scaffolds, total number of scaffolds comprising the analyzed assembly; Size, the number of base pairs in the assembly; and BUSCO score using the arthropod database

SpeciesFamilyN50 (kb)L50Total scaffoldsSize (Mb)BUSCO (%)Citation
Ceratosolen solmsi Agaonidae 9558 10 2457 277 99.2 Xiao et al. (2013) 
Apis mellifera Apidae 13 219 5320 250 99.5 Elsik et al. (2014) 
Bombus terretris Apidae 12 868 5609 249 99.0 Sadd et al. (2015) 
Cotesia congregata Braconidae 20 027 2039 199 97.5 Gauthier et al. (2021) 
Cotesia glomerata Braconidae 27796 5 3355 290 98.9 This work 
Cotesia vestalis Braconidae 51 818 39 682 172 97.3 Shi et al. (2019) 
Diachasma alloeum Braconidae 645 128 3968 389 98.6 Tvedte et al. (2019) 
Fopius arisanus Braconidae 978 49 1042 154 97.8 Burke, Simmonds, et al. (2018) 
Macrocentrus cingulum Braconidae 192 179 5696 132 98.8 Yin et al. (2018) 
Microplitis demolitor Braconidae 1139 50 1794 241 99.0 Burke, Walden, et al. (2018) 
Copidosoma floridanum Encyrtidae 1037 153 5445 555 97.1 i5k:GCA_000648655 
Atta cephalotes Formicidae 5154 21 2835 318 97.3 Suen et al. (2011) 
Monomorium pharaonis Formicidae 15 646 9622 259 97.7 Warner et al. (2019) 
Ooceraea biroi Formicidae 16 888 139 224 99.3 Oxley et al. (2014) 
Temnothorax longispinosus Formicidae 514 137 3987 261 98.1 Kaur et al. (2019) 
Vollenhovia emeryi Formicidae 1346 61 13 258 288 99.8 Miyakawa and Mikheyev (2015) 
Diadromus collaris Ichneumonidae 1030 107 63 392 399 99.6 Shi et al. (2019) 
Orussus abietinus Orussidae 612 63 1789 186 98.5 i5k:GCA_000612105 
Nasonia giraulti Pteromalidae 759 64 4912 284 97.1 Werren et al. (2010) 
Nasonia longicornis Pteromalidae 758 65 5214 286 97.2 Werren et al. (2010) 
Nasonia vitripennis Pteromalidae 897 21 6098 296 97.1 Werren et al. (2010) 
Trichogramma pretiosum Trichogrammatidae 3706 19 357 195 99.3 Lindsey et al. (2018) 
SpeciesFamilyN50 (kb)L50Total scaffoldsSize (Mb)BUSCO (%)Citation
Ceratosolen solmsi Agaonidae 9558 10 2457 277 99.2 Xiao et al. (2013) 
Apis mellifera Apidae 13 219 5320 250 99.5 Elsik et al. (2014) 
Bombus terretris Apidae 12 868 5609 249 99.0 Sadd et al. (2015) 
Cotesia congregata Braconidae 20 027 2039 199 97.5 Gauthier et al. (2021) 
Cotesia glomerata Braconidae 27796 5 3355 290 98.9 This work 
Cotesia vestalis Braconidae 51 818 39 682 172 97.3 Shi et al. (2019) 
Diachasma alloeum Braconidae 645 128 3968 389 98.6 Tvedte et al. (2019) 
Fopius arisanus Braconidae 978 49 1042 154 97.8 Burke, Simmonds, et al. (2018) 
Macrocentrus cingulum Braconidae 192 179 5696 132 98.8 Yin et al. (2018) 
Microplitis demolitor Braconidae 1139 50 1794 241 99.0 Burke, Walden, et al. (2018) 
Copidosoma floridanum Encyrtidae 1037 153 5445 555 97.1 i5k:GCA_000648655 
Atta cephalotes Formicidae 5154 21 2835 318 97.3 Suen et al. (2011) 
Monomorium pharaonis Formicidae 15 646 9622 259 97.7 Warner et al. (2019) 
Ooceraea biroi Formicidae 16 888 139 224 99.3 Oxley et al. (2014) 
Temnothorax longispinosus Formicidae 514 137 3987 261 98.1 Kaur et al. (2019) 
Vollenhovia emeryi Formicidae 1346 61 13 258 288 99.8 Miyakawa and Mikheyev (2015) 
Diadromus collaris Ichneumonidae 1030 107 63 392 399 99.6 Shi et al. (2019) 
Orussus abietinus Orussidae 612 63 1789 186 98.5 i5k:GCA_000612105 
Nasonia giraulti Pteromalidae 759 64 4912 284 97.1 Werren et al. (2010) 
Nasonia longicornis Pteromalidae 758 65 5214 286 97.2 Werren et al. (2010) 
Nasonia vitripennis Pteromalidae 897 21 6098 296 97.1 Werren et al. (2010) 
Trichogramma pretiosum Trichogrammatidae 3706 19 357 195 99.3 Lindsey et al. (2018) 
Table 2.

Representative genome assemblies for publicly available hymenopteran species compared with the new C. glomerata assembly (bold) across 5 common metrics: Scaffold N50, size of the smallest scaffold comprising the largest 50% of the assembly; Scaffold L50, number of scaffolds comprising the largest 50% of the genome; Scaffolds, total number of scaffolds comprising the analyzed assembly; Size, the number of base pairs in the assembly; and BUSCO score using the arthropod database

SpeciesFamilyN50 (kb)L50Total scaffoldsSize (Mb)BUSCO (%)Citation
Ceratosolen solmsi Agaonidae 9558 10 2457 277 99.2 Xiao et al. (2013) 
Apis mellifera Apidae 13 219 5320 250 99.5 Elsik et al. (2014) 
Bombus terretris Apidae 12 868 5609 249 99.0 Sadd et al. (2015) 
Cotesia congregata Braconidae 20 027 2039 199 97.5 Gauthier et al. (2021) 
Cotesia glomerata Braconidae 27796 5 3355 290 98.9 This work 
Cotesia vestalis Braconidae 51 818 39 682 172 97.3 Shi et al. (2019) 
Diachasma alloeum Braconidae 645 128 3968 389 98.6 Tvedte et al. (2019) 
Fopius arisanus Braconidae 978 49 1042 154 97.8 Burke, Simmonds, et al. (2018) 
Macrocentrus cingulum Braconidae 192 179 5696 132 98.8 Yin et al. (2018) 
Microplitis demolitor Braconidae 1139 50 1794 241 99.0 Burke, Walden, et al. (2018) 
Copidosoma floridanum Encyrtidae 1037 153 5445 555 97.1 i5k:GCA_000648655 
Atta cephalotes Formicidae 5154 21 2835 318 97.3 Suen et al. (2011) 
Monomorium pharaonis Formicidae 15 646 9622 259 97.7 Warner et al. (2019) 
Ooceraea biroi Formicidae 16 888 139 224 99.3 Oxley et al. (2014) 
Temnothorax longispinosus Formicidae 514 137 3987 261 98.1 Kaur et al. (2019) 
Vollenhovia emeryi Formicidae 1346 61 13 258 288 99.8 Miyakawa and Mikheyev (2015) 
Diadromus collaris Ichneumonidae 1030 107 63 392 399 99.6 Shi et al. (2019) 
Orussus abietinus Orussidae 612 63 1789 186 98.5 i5k:GCA_000612105 
Nasonia giraulti Pteromalidae 759 64 4912 284 97.1 Werren et al. (2010) 
Nasonia longicornis Pteromalidae 758 65 5214 286 97.2 Werren et al. (2010) 
Nasonia vitripennis Pteromalidae 897 21 6098 296 97.1 Werren et al. (2010) 
Trichogramma pretiosum Trichogrammatidae 3706 19 357 195 99.3 Lindsey et al. (2018) 
SpeciesFamilyN50 (kb)L50Total scaffoldsSize (Mb)BUSCO (%)Citation
Ceratosolen solmsi Agaonidae 9558 10 2457 277 99.2 Xiao et al. (2013) 
Apis mellifera Apidae 13 219 5320 250 99.5 Elsik et al. (2014) 
Bombus terretris Apidae 12 868 5609 249 99.0 Sadd et al. (2015) 
Cotesia congregata Braconidae 20 027 2039 199 97.5 Gauthier et al. (2021) 
Cotesia glomerata Braconidae 27796 5 3355 290 98.9 This work 
Cotesia vestalis Braconidae 51 818 39 682 172 97.3 Shi et al. (2019) 
Diachasma alloeum Braconidae 645 128 3968 389 98.6 Tvedte et al. (2019) 
Fopius arisanus Braconidae 978 49 1042 154 97.8 Burke, Simmonds, et al. (2018) 
Macrocentrus cingulum Braconidae 192 179 5696 132 98.8 Yin et al. (2018) 
Microplitis demolitor Braconidae 1139 50 1794 241 99.0 Burke, Walden, et al. (2018) 
Copidosoma floridanum Encyrtidae 1037 153 5445 555 97.1 i5k:GCA_000648655 
Atta cephalotes Formicidae 5154 21 2835 318 97.3 Suen et al. (2011) 
Monomorium pharaonis Formicidae 15 646 9622 259 97.7 Warner et al. (2019) 
Ooceraea biroi Formicidae 16 888 139 224 99.3 Oxley et al. (2014) 
Temnothorax longispinosus Formicidae 514 137 3987 261 98.1 Kaur et al. (2019) 
Vollenhovia emeryi Formicidae 1346 61 13 258 288 99.8 Miyakawa and Mikheyev (2015) 
Diadromus collaris Ichneumonidae 1030 107 63 392 399 99.6 Shi et al. (2019) 
Orussus abietinus Orussidae 612 63 1789 186 98.5 i5k:GCA_000612105 
Nasonia giraulti Pteromalidae 759 64 4912 284 97.1 Werren et al. (2010) 
Nasonia longicornis Pteromalidae 758 65 5214 286 97.2 Werren et al. (2010) 
Nasonia vitripennis Pteromalidae 897 21 6098 296 97.1 Werren et al. (2010) 
Trichogramma pretiosum Trichogrammatidae 3706 19 357 195 99.3 Lindsey et al. (2018) 

Results and Discussion

Data Description

Across individuals and sequencing platforms, we generated a data set of ~130× coverage for genome assembly, ~32× in Oxford Nanopore (ONT) and ~100× PE Illumina reads. We also generated a dataset of 140× Illumina reads derived from 3D chromatin capture experiment (HiC). Our initial assembly depended on the ONT long reads, Illumina reads for downstream polishing, and HiC for scaffolding. Data are summarized further in Supplementary Table 1.

Genome Assembly

By almost every metric, Flye produced the best draft genome assembly. It was the most contiguous (N50) and had the highest per-base quality of all 4 assemblies (represented by a higher BUSCO score, given that each assembly was derived from the same dataset). In contrast, Canu provided the lowest-quality assembly by all metrics including an order of magnitude increase in runtime, while Miniasm/Racon and wtdbg generated intermediate assemblies. Of note, assemblers varied in speed by orders of magnitude with wtdbg being the fastest from reads to consensus (~2 h), then Miniasm and Racon (~9 h), Flye (~8 h), and finally Canu (>96 h). However, after polishing, only the wtdbg assembly approached the quality of the Flye assembly (summarized further in Table 1). Thus, we chose the Flye assembly for additional scaffolding using the HiC data.

Our C. glomerata genome assembly achieved “chromosome-level” status with 90% of the genome attributed to the largest 10 scaffolds; representative of each of C. glomerata’s 10 chromosomes (1n = 10, sensu Zhou et al. 2006). Additionally, 95.6% of the final assembly is represented in 46 scaffolds that are longer than 50 kb. Quality-control read-mapping of Illumina back to the final assembly produced extremely high mapping rates for both CgM1 (98.9% reads mapped; 96.1% properly paired) and CgM2 (98.4% reads mapped; 95.4% properly paired). The base composition across the genome assembly was relatively homogenous with an overall GC content of 31% (±6%). The BUSCO statistics for the final assembly, relative to a set of 1066 conserved arthropod orthologs, included 97.3% complete single-copy genes with 1.5% complete and duplicated gene versions, 0.5% fragmented gene copies, and 0.7% missing genes. Genome annotation, using RNAseq data derived from experiments of expression in the heads of multiple female C. glomerata, successfully passed 29 455 annotations, including 24 170 genes. Interestingly, the final genome assembly approached 300 Mb in size, which far exceeded our initial predictions for its genome size given the available data from their closest relatives (Figure 1).

Figure 1.

The HiC contact map of the final Cotesia glomerata genome assembly cropped to the 10 largest scaffolds generated in Juicebox (Durand et al. 2016).

Genome sizes across Hymenoptera can vary greatly between taxa, such as the 3-fold difference between Macrocentrus cingulum and Diadromus collaris within the superfamily Ichneumonoidea (Table 2). Previous genome assemblies within Cotesia, C. congregata (Gauthier et al. 2021) and C. vestalis (Shi et al. 2019), had haploid genome sizes that were far closer to ~200 Mb (Table 2). We set out to compare across the genomes of these taxa to shed light on this apparent genome size discrepancy. However, drastic differences in sequencing technologies and genome quality across these species prevented direct comparisons between all 3 species. To close this gap, we dropped C. vestalis from downstream analyses and focused solely on comparing the C. glomerata and C. congregata [v2.0] (Gauthier et al. 2021) genomes.

We investigated this genome size discrepancy by interrogating the repeat content using Illumina reads to account for differences in sequencing technologies between assemblies—along with a estimating total repeat content from the assemblies. First, we confirmed this was the haploid genome size by estimating the C. glomerata (CgM2) and C. congregata (ENA: ERR3829581) genome size using kmers with Jellyfish [v2.2.10] (Marçais and Kingsford 2011). The estimated genome size of C. glomerata roughly approximated the assembled genome size at 272 Mb, whereas the estimated genome size of C. congregata was 142 Mb (Figure 2). Next, using RepeatModeler [v1.0.11] (Smit and Hubley 2008), we calculated percent repeat content for each genome 54.75% (159.28 Mb) of the C. glomerata assembly and 35.04% (69.72 Mb) of the C. congregata assembly. This >100% increase in repeat content is sufficient to account for the large increase in genome size in C. glomerata, relative to C. congregata. Lastly, we approximated the categories of genomic repeats responsible for the discrepancies in genome size between these 2 Cotesia species using dnaPipeTE [v1.3.1] (Goubert et al. 2015). We identified 3 primary categories of repetitive elements that increased proportionally between C. glomerata relative to C. congregata. A large proportion of this amplified repetitive content appears to be made up of simple repeats, long terminal repeats, and long interspersed nuclear elements (Figure 1).

Figure 2.

Comparative genome TE content between Cotesia glomerata and C. congregata. “Assembly Size” is the total assembled genome size for each species; “Estimated Size” is the genome size estimation calculated using kmer counting with Jellyfish; and “Repeat Content” is the total repeat content estimated using RepeatModeler. Categories of genomic repeat content and pie charts generated by dnaPipeTE, unspecified % pie slices represent <1% estimated content. It should also be noted that the color palette for each wheel begins at the top of both the key and the wheels (with LTR) and continues clockwise down the palette in the order listed in the key.

Here, we present a chromosome-level genome assembly for C. glomerata. This assembly is currently the most complete and, in part due to its exceptionally large genome size (larger chromosomes), is also one of the most contiguous hymenopteran genomes to date, i.e., having the highest N50 (Table 2). Interestingly, the genome size was much larger than initially hypothesized based on information from its closest relatives, and this discrepancy appears to be due to runaway amplification of repetitive elements in the C. glomerata lineage (Figure 1). As more high-quality braconid genomes continue to be generated, fruitful areas of research may include diving deeper into the unanswered questions, such as the impact of repeat content on the parasitoid lifestyle and the evolution of sex determination in Hymenoptera—among others. Indeed, this assembly is another step forward for genomics across this hyperdiverse, yet understudied, order of insects.

Acknowledgments

The authors thank J. Colby (MPM) and C. Smith (UT) for assistance organizing and genome assembly-related discussions, respectively, and m4rth4 for computational their efficiency over the course of this project. Also, we would like to thank members of the Kirkpatrick Lab for feedback on an earlier version of the manuscript. This work was funded by the John J. Brander and Christine E. Rundbald Research Fellowship to J.J.W. and American Genetic Association EECG award to B.J.P.

Author Contributions

B.J.P, T.G., P.O., J.Z., and J.W. conceptualized the study. R.P. and P.O. conducted fieldwork. B.J.P. and J.W. extracted DNA and B.J.P. generated sequencing libraries, conducted ONT sequencing, analyzed data, and drafted the manuscript. All authors edited, read, and approved the final manuscript.

Data Availability

Sequence data is submitted to the NCBI Sequence Read Archive (SRA) under BioProject PRJNA715233. Assembled data is publicly available at https://doi.org/10.6084/m9.figshare.13010549.

References

Acebes
AL
,
Messing
RH
.
2013
.
Comparative susceptibility to hyperparasitism of Binodoxys communis and Aphidius colemani, primary aphid parasitoids introduced to Hawaii
.
Biol Control
.
65
:
286
292
.

Andrews
S
.
2010
.
FastQC: a quality control tool for high throughput sequence data
. Available from: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.

Branstetter
MG
,
Childers
AK
,
Cox-Foster
D
,
Hopper
KR
,
Kapheim
KM
,
Toth
AL
,
Worley
KC
. (
2018
).
Genomes of the Hymenoptera
.
Curr Opin Insect Sci
.
25
:
65
75
.

Bukovinszky
T
,
Poelman
EH
,
Gols
R
,
Prekatsakis
G
,
Vet
LE
,
Harvey
JA
,
Dicke
M
.
2009
.
Consequences of constitutive and induced variation in plant nutritional quality for immune defence of a herbivore against parasitism
.
Oecologia
.
160
:
299
308
.

Burke
GR
,
Simmonds
TJ
,
Sharanowski
BJ
,
Geib
SM
.
2018
.
Rapid viral symbiogenesis via changes in parasitoid wasp genome architecture
.
Mol Biol Evol
.
35
:
2463
2474
.

Burke
GR
,
Walden
KKO
,
Whitfield
JB
,
Robertson
HM
,
Strand
MR
.
2018
.
Whole genome sequence of the parasitoid wasp Microplitis demolitor that harbors an endogenous virus mutualist
.
G3 (Bethesda)
.
8
:
2875
2880
.

Bushnell
B
.
2014
.
BBMap: a fast, accurate, splice-aware aligner
(No. LBNL-7065E).
Berkeley (CA)
:
Lawrence Berkeley National Lab (LBNL)
.

Cabau
C
,
Escudié
F
,
Djari
A
,
Guiguen
Y
,
Bobe
J
,
Klopp
C
.
2017
.
Compacting and correcting Trinity and Oases RNA-Seq de novo assemblies
.
PeerJ
.
5
:
e2988
.

Cusumano
A
,
Zhu
F
,
Volkoff
AN
,
Verbaarschot
P
,
Bloem
J
,
Vogel
H
,
Dicke
M
,
Poelman
EH
.
2018
.
Parasitic wasp-associated symbiont affects plant-mediated species interactions between herbivores
.
Ecol Lett
.
21
:
957
967
.

De Coster
W
,
D’Hert
S
,
Schultz
DT
,
Cruts
M
,
Van Broeckhoven
C
.
2018
.
NanoPack: visualizing and processing long-read sequencing data
.
Bioinformatics
.
34
:
2666
2669
.

De Rijk
M
,
Krijn
M
,
Jenniskens
W
,
Engel
B
,
Dicke
M
,
Poelman
EH
.
2016
.
Flexible parasitoid behaviour overcomes constraint resulting from position of host and nonhost herbivores
.
Anim Behav
.
113
:
125
135
.

Dudchenko
O
,
Batra
SS
,
Omer
AD
,
Nyquist
SK
,
Hoeger
M
,
Durand
NC
,
Shamim
MS
,
Machol
I
,
Lander
ES
,
Aiden
AP
, et al. 
2017
.
De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds
.
Science
.
356
:
92
95
.

Durand
NC
,
Robinson
JT
,
Shamim
MS
,
Machol
I
,
Mesirov
JP
,
Lander
ES
,
Aiden
EL
.
2016
.
Juicebox provides a visualization system for hi-C Contact maps with unlimited zoom
.
Cell Syst
.
3
:
99
101
.

Elsik
CG
,
Worley
KC
,
Bennett
AK
,
Beye
M
,
Camara
F
,
Childers
CP
.
2014
.
Finding the missing honey bee genes: lessons learned from a genome upgrade
.
BMC Genomics
.
15
(
1
):
86
.

Forbes
AA
,
Bagley
RK
,
Beer
MA
,
Hippee
AC
,
Widmayer
HA
.
2018
.
Quantifying the unquantifiable: why Hymenoptera, not Coleoptera, is the most speciose animal order
.
BMC Ecol
.
18
:
21
.

Gauthier
J
,
Boulain
H
,
van Vugt
JJFA
,
Baudry
L
,
Persyn
E
,
Aury
JM
,
Noel
B
,
Bretaudeau
A
,
Legeai
F
,
Warris
S
, et al. 
2021
.
Chromosomal scale assembly of parasitic wasp genome reveals symbiotic virus colonization
.
Commun Biol
.
4
:
104
.

Geervliet
JB
,
Verdel
MS
,
Snellen
H
,
Schaub
J
,
Dicke
M
,
Vet
LE
.
2000
.
Coexistence and niche segregation by field populations of the parasitoids Cotesia glomerata and C. rubecula in the Netherlands: predicting field performance from laboratory data
.
Oecologia
.
124
:
55
63
.

Goubert
C
,
Modolo
L
,
Vieira
C
,
ValienteMoro
C
,
Mavingui
P
,
Boulesteix
M
.
2015
.
De novo assembly and annotation of the Asian tiger mosquito (Aedes albopictus) repeatome with dnaPipeTE from raw genomic reads and comparative analysis with the yellow fever mosquito (Aedes aegypti)
.
Genome Biol Evol
.
7
:
1192
1205
.

Gu
H
,
Dorn
S
.
2003
.
Mating system and sex allocation in the gregarious parasitoid Cotesia glomerata
.
Anim. Behav
.
66
:
259
264
.

Haas
BJ
,
Salzberg
SL
,
Zhu
W
,
Pertea
M
,
Allen
JE
,
Orvis
J
,
White
O
,
Buell
CR
,
Wortman
JR
.
2008
.
Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments
.
Genome Biol
.
9
:
R7
.

Heimpel
GE
,
Cock
MJW
.
2017
.
Shifting paradigms in the history of classical biological control
.
BioControl
.
63
:
27
37
.

Heimpel
GE
,
Lundgren
JG
.
2000
.
Sex ratios of commercially reared biological control agents
.
Biol Control
.
19
:
77
93
.

Hoff
KJ
,
Lange
S
,
Lomsadze
A
,
Borodovsky
M
,
Stanke
M
.
2016
.
BRAKER1: unsupervised RNA-Seq-based genome annotation with GeneMark-ET and AUGUSTUS
.
Bioinformatics
.
32
:
767
769
.

Horikoshi
M
,
Takabayashi
J
,
Yano
S
,
Yamaoka
R
,
Ohsaki
N
,
Sato
Y
.
1997
.
Cotesia glomerata female wasps use fatty acids from plant–herbivore complex in host searching
.
J Chem Ecol
.
23
:
1505
1515
.

Hu
J
,
Fan
J
,
Sun
Z
,
Liu
S
.
2020
.
NextPolish: a fast and efficient genome polishing tool for long-read assembly
.
Bioinformatics
.
36
:
2253
2255
.

Kaur
R
,
Stoldt
M
,
Jongepier
E
,
Feldmeyer
B
,
Menzel
F
,
Bornberg-Bauer
E
,
Foitzik
S
.
2019
.
Ant behaviour and brain gene expression of defending hosts depend on the ecological success of the intruding social parasite
.
Philos Trans R Soc Lond B Biol Sci
.
374
:
20180192
.

Keller
O
,
Kollmar
M
,
Stanke
M
,
Waack
S
.
2011
.
A novel hybrid gene prediction method employing protein multiple sequence alignments
.
Bioinformatics
.
27
(
6
):
757
763
.

Kim
D
,
Paggi
JM
,
Park
C
,
Bennett
C
,
Salzberg
SL
.
2019
.
Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype
.
Nat Biotechnol
.
37
(
8
):
907
915
.

Kolmogorov
M
,
Yuan
J
,
Lin
Y
,
Pevzner
PA
.
2019
.
Assembly of long, error-prone reads using repeat graphs
.
Nat Biotechnol
.
37
:
540
546
.

Koren
S
,
Walenz
BP
,
Berlin
K
,
Miller
JR
,
Bergman
NH
,
Phillippy
AM
.
2017
.
Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation
.
Genome Res
.
27
(
5
):
722
736
.

Li
H
.
2016
.
Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences
.
Bioinformatics
.
32
(
14
):
2103
2110
.

Lindsey
AR
,
Kelkar
YD
,
Wu
X
,
Sun
D
,
Martinson
EO
,
Yan
Z
, ...
Werren
JH
.
2018
.
Comparative genomics of the miniature wasp and pest control agent Trichogramma pretiosum
.
BMC Biol
.
16
:
1
20
.

Jones
OR
,
Purvis
A
,
Baumgart
E
,
Quicke
DLJ
.
2009
.
Using taxonomic revision data to estimate the geographic and taxonomic distribution of undescribed species richness in the Braconidae (Hymenoptera: Ichneumonoidea)
.
Insect Conserv Diver
.
2
:
204
212
.

Marçais
G
,
Kingsford
C
.
2011
.
A fast, lock-free approach for efficient parallel counting of occurrences of k-mers
.
Bioinformatics
.
27
(
6
):
764
770
.

Martin
M
.
2011
.
Cutadapt removes adapter sequences from high-throughput sequencing reads
.
EMBnet
.
17
(
1
):
10
12
.

Merkel
D
.
2014
.
Docker: lightweight Linux containers for consistent development and deployment
.
Linux J
.
239
:
2
.

Miyakawa
MO
,
Mikheyev
AS
.
2015
.
QTL mapping of sex determination loci supports an ancient pathway in ants and honey bees
.
PLoS Genet
.
11
:
e1005656
.

Nishimura
O
,
Hara
Y
,
Kuraku
S
.
2017
.
gVolante for standardizing completeness assessment of genome and transcriptome assemblies
.
Bioinformatics
.
33
(
22
):
3635
3637
.

Oxley
PR
,
Ji
L
,
Fetter-Pruneda
I
,
McKenzie
SK
,
Li
C
,
Hu
H
,
Kronauer
DJC
.
2014
.
The genome of the clonal raider ant Cerapachys biroi.
Curr Biol
.
24
(
4
):
451
458
.

Palmer
J
.
2018
.
Funannotate: eukaryotic genome annotation pipeline.
doi:10.5281/zenodo.2604804

Peters
RS
,
Krogmann
L
,
Mayer
C
,
Donath
A
,
Gunkel
S
,
Meusemann
K
,
Niehuis
O
.
2017
.
Evolutionary history of the hymenoptera
.
Curr Biol
.
27
(
7
):
1013
1018
.

Pinto
BJ
,
Card
DC
,
Castoe
TA
,
Diaz
RE
Jr.
,
Nielsen
SV
,
Trainor
PA
,
Gamble
T
. (
2019
).
The transcriptome of the Veiled Chameleon (Chamaeleo calyptratus): a resource for studying the evolution and development of vertebrates
.
Dev Dyn
.
248
:
702
708
.

Poelman
EH
,
Bruinsma
M
,
Zhu
F
,
Weldegergis
BT
,
Boursault
AE
,
Jongema
Y
,
Dicke
M
.
2012
.
Hyperparasitoids use herbivore-induced plant volatiles to locate their parasitoid host
.
PLoS Biol
.
10
(
11
):
e1001435
.

Poelman
EH
,
Zheng
S-J
,
Zhang
Z
,
Heemskerk
NM
,
Cortesero
A-M
,
Dicke
M
.
2011
.
Parasitoid-specific induction of plant responses to parasitized herbivores affects colonization by subsequent herbivores
.
Proc Natl Acad Sci USA
.
108
(
49
):
19647
19652
.

Ruan
J
,
Li
H
.
2020
.
Fast and accurate long-read assembly with wtdbg2
.
Nat Methods
.
17
(
2
):
155
158
.

Sadd
BM
,
Barribeau
SM
,
Bloch
G
,
de Graaf
DC
,
Dearden
P
,
Elsik
CG
,
Lozier
JD.
Robertson
HM
,
Smagghe
G
,
Stolle
E
, et al. 
2015
.
The genomes of two key bumblebee species with primitive eusocial organization
.
Genome Biol
.
16
(
76
):
1
31
.

Shi
M
,
Wang
Z
,
Ye
X
,
Xie
H
,
Li
F
,
Hu
X
,
Wang
Z
,
Yin
C
,
Zhou
Y
,
Gu
Q
, et al. 
2019
.
The genomes of two parasitic wasps that parasitize the diamondback moth
.
BMC Genomics
.
20
(
893
):
1
13
.

Shiojiri
K
,
Ozawa
R
,
Matsui
K
,
Kishimoto
K
,
Kugimiya
S
,
Takabayashi
J
.
2006
.
Role of the lipoxygenase/lyase pathway of host-food plants in the host searching behavior of two parasitoid species, Cotesia glomerata and Cotesia plutellae
.
J Chem Ecol
.
32
:
969
979
.

Simão
FA
,
Waterhouse
RM
,
Ioannidis
P
,
Kriventseva
EV
,
Zdobnov
EM
.
2015
.
BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs
.
Bioinformatics
.
31
(
19
):
3210
3212
.

Suen
G
,
Teiling
C
,
Li
L
,
Holt
C
,
Abouheif
E
,
Bornberg-Bauer
E
,
Caldera
EJ
,
Cash
E
,
Cavanaugh
A
,
Denas
O
.
2011
.
The genome sequence of the leaf-cutter ant Atta cephalotes reveals insights into its obligate symbiotic lifestyle
.
PLoS Genet
.
7
(
2
):
e1002007
.

Tvedte
ES
,
Walden
KKO
,
McElroy
KE
,
Werren
JH
,
Forbes
AA
,
Hood
GR
,
Logsdon
JM
,
Feder
JF
,
Robertson
HM
.
2019
.
Genome of the parasitoid wasp diachasma alloeum, an emerging model for ecological speciation and transitions to asexual reproduction
.
Genome Biol Evol
.
11
(
10
):
2767
2773
.

Van Driesche
RG
.
2008
.
Biological control of Pieris rapae in New England: host suppression and displacement of Cotesia glomerata by Cotesia rubecula (Hymenoptera: Braconidae)
.
Fla Entomol
.
91
:
22
25
.

Van Vugt
JJ
,
Hoedjes
KM
,
Van de Geest
HC
,
Schijlen
EW
,
Vet
LE
,
Smid
HM
.
2015
.
Differentially expressed genes linked to natural variation in long-term memory formation in Cotesia parasitic wasps
.
Front Behav Neurosci
.
9
:
255
.

Vaser
R
,
Sović
I
,
Nagarajan
N
,
Šikić
M
.
2017
.
Fast and accurate de novo genome assembly from long uncorrected reads
.
Genome Res
.
27
(
5
):
737
746
.

Vyas
DK
,
Harvey
JA
,
Paul
RL
,
Heimpel
GE
,
Ode
PJ
.
2019
.
Ecological dissociation and re-association with a superior competitor alters host selection behavior in a parasitoid wasp
.
Oecologia
.
191
:
261
270
.

Wäckers
FL
.
2001
.
A comparison of nectar- and honeydew sugars with respect to their utilization by the hymenopteran parasitoid Cotesia glomerata
.
J Insect Physiol
.
47
:
1077
1084
.

Wanner
H
,
Gu
H
,
Dorn
S
.
2006
.
Nutritional value of floral nectar sources for flight in the parasitoid wasp, Cotesia glomerata.
Physiol Entomol
.
31
:
127
133
.

Warner
MR
,
Qiu
L
,
Holmes
MJ
,
Mikheyev
AS
,
Linksvayer
TA
.
2019
.
Convergent eusocial evolution is based on a shared reproductive groundplan plus lineage-specific plastic genes
.
Nat Commun
.
10
:
2651
.

Werren
JH
,
Richards
S
,
Desjardins
CA
,
Niehuis
O
,
Gadau
J
,
Colbourne
JK
,
Werren
JH
,
Richards
S
,
Desjardins
CA
,
Niehuis
O
, et al. ;
Nasonia Genome Working Group
.
2010
.
Functional and evolutionary insights from the genomes of three parasitoid Nasonia species
.
Science
.
327
:
343
348
.

Xiao
JH
,
Yue
Z
,
Jia
LY
,
Yang
XH
,
Niu
LH
,
Wang
Z
,
Zhang
P
,
Sun
B-F
,
He
S-M
,
Li
Z
.
2013
.
Obligate mutualism within a host drives the extreme specialization of a fig wasp genome
.
Genome Biol
.
14
(
12
):
R141
.

Yin
C
,
Li
M
,
Hu
J
,
Lang
K
,
Chen
Q
,
Liu
J
, ...
Chen
X
.
2018
.
The genomic features of parasitism, polyembryony and immune evasion in the endoparasitic wasp Macrocentrus cingulum
.
BMC Genomics
.
19
(
420
):
1
18
.

Yu
D
,
van Achterberg
K
,
Horstmann
K
.
2005
.
World Ichneumonidea 2004. Taxonomy, biology, morphology and distribution
.
Vancouver (Canada)
:
Taxapad
.

Zhou
Y
,
Gu
H
,
Dorn
S
.
2006
.
Single-locus sex determination in the parasitoid wasp Cotesia glomerata (Hymenoptera: Braconidae)
.
Heredity (Edinb)
.
96
:
487
492
.

Zhu
F
,
Cusumano
A
,
Bloem
J
,
Weldegergis
BT
,
Villela
A
,
Fatouros
NE
,
van Loon
JJA
,
Dicke
M
,
Harvey
JA
,
Vogel
H
,
Poelman
EH
.
2018
.
Symbiotic polydnavirus and venom reveal parasitoid to its hyperparasitoids
.
Proc Natl Acad Sci USA
.
115
(
20
):
5205
5210
.

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/pages/standard-publication-reuse-rights)
Corresponding Editor: Beth Shapiro
Beth Shapiro
Corresponding Editor
Search for other works by this author on: