Abstract

The Southern torrent salamander (Rhyacotriton variegatus) was recently found not warranted for listing under the US Endangered Species Act due to lack of information regarding population fragmentation and gene flow. Found in small-order streams associated with late-successional coniferous forests of the US Pacific Northwest, threats to their persistence include disturbance related to timber harvest activities. We conducted a study of genetic diversity throughout this species' range to 1) identify major phylogenetic lineages and phylogeographic barriers and 2) elucidate regional patterns of population genetic and spatial phylogeographic structure. Cytochrome b sequence variation was examined for 189 individuals from 72 localities. We identified 3 major lineages corresponding to nonoverlapping geographic regions: a northern California clade, a central Oregon clade, and a northern Oregon clade. The Yaquina River may be a phylogeographic barrier between the northern Oregon and central Oregon clades, whereas the Smith River in northern California appears to correspond to the discontinuity between the central Oregon and northern California clades. Spatial analyses of genetic variation within regions encompassing major clades indicated that the extent of genetic structure is comparable among regions. We discuss our results in the context of conservation efforts for Southern torrent salamanders.

Genetic analyses of natural populations can become more than theoretical investigations of biological, geographic, and historical processes when threatened or endangered species are involved as they provide unique opportunities to apply the wealth of knowledge accumulated over the last century for the purposes of addressing contemporary conservation issues. For example, pure phylogeographic analyses of molecular genetic variation can provide valuable insights about specific factors that contribute to patterns of genetic diversity and divergence across a species' range (Avise 2000). Such explorations may identify geographic features that produce deep patterns of genetic divergence and may indicate timing of historically important events (e.g., Haig et al. 2004; Ripplinger and Wagner 2004; Miller et al. 2005). From a conservation perspective, these analyses can prove invaluable for defining conservation units for species management purposes (Moritz 1994a, 1994b). Likewise, genetic analyses can also provide information about dispersal abilities, reproductive strategies, and population demography (e.g., Jarne 1995; Miller et al. 2002; Mahoney 2004). In the case of endangered taxa, generation of such information can assist with understanding the basic biology and life history of species that facilitates formulation of species conservation strategies.

The Southern torrent salamander (Rhyacotriton variegatus) was recently found not warranted for listing under the US Endangered Species Act after the US Fish and Wildlife Service concluded there was a “lack of information [about whether] the species is threatened by low gene flow and low genetic diversity across its range” (Federal Register 60: 33785). This species is widely but patchily distributed throughout the Pacific Coast mountain range of the US Pacific Northwest, extending from Tillamook County, OR, south to Mendicino County, CA. Although they are limited primarily to the Pacific Coast mountain range, their distribution also extends eastward into the Central Cascade Range of Oregon (Figure 1; Leonard et al. 1993; Wagner et al. 2006). Mostly found in small streams and headwaters associated with late-successional forests, they are impacted by timber harvest and related disturbance activities (Bury and Corn 1988a; Corn and Bury 1989; Diller and Wallace 1996). Juveniles are restricted to cold, clear, fast-flowing streams, and adults are rarely found more than a few meters from stream banks. Both adults and juveniles appear sensitive to water loss and heat shock and require low ambient temperatures (Brattstrom 1963; Nussbaum and Tait 1977; Nussbaum et al. 1983). Subsequently, removal of the forest canopy may increase mean stream temperatures and stream sedimentation, leading to extirpation of local populations (Bury and Corn 1988b; Corn and Bury 1989; Welsh 1990; Welsh and Lind 1992). As a consequence, recolonization after extirpation is thought to be low, due to these ecological factors and their apparent limited dispersal abilities (Nussbaum and Tait 1977; Nijhuis and Kaplan 1998).

Figure 1

Map of collection locations for Southern torrent salamanders and out-groups in the western United States of America. Variation in symbols for Southern torrent salamanders indicates the 3 major phylogenetic lineages identified from cytb sequence analyses (Figures 2 and 3).

In this paper, we examine patterns of phylogeographic and population genetic structure in the Southern torrent salamander cytochrome b gene at both regional and local spatial scales. We compare our results to previously conducted allozyme studies (Good et al. 1987; Good and Wake 1992) and discuss our results with respect to conservation issues related to the Southern torrent salamander.

Methods

DNA Isolation and Sequencing

Southern torrent salamanders were sampled from 72 localities (1–3 individuals per location, 189 in total) throughout their known range (Figure 1 and Table 1). Also included in sequence analyses were limited numbers of Cascade torrent, Columbia torrent, and Olympic torrent salamanders (Rhyacotriton cascadae, Rhyacotriton kezeri, and Rhyacotriton olympicus, respectively) as out-groups (Table 1 and Figure 1). Sample tissue was taken by nonlethal tail clipping (∼1 cm) from hand-captured adults and was stored immediately in a cryogenic tube containing buffer solution (100 mM Tris–HC1 pH 8.0, 100 mM ethylenediaminetetraacetic acid pH 8.0, 10 mM NaCl, 0.5% sodium dodecyl sulfate) until transferred to an ultracold freezer (−80 °C).

Table 1

Localities of Southern torrent salamander populations surveyed in this study. Sample sizes (n) from each location, haplotype codes (Figure 2), and GenBank accession numbers are also provided

Site n (haplotype) Longitude, latitude County, state GenBank accession number 
1. E. Little Nestucca 3 (H1) −123.892, 45.123 Tillamook, OR AY753838 
2. W. Little Nestucca 2 (H1) −123.819, 45.107 Tillamook, OR AY753838 
3. Ball Mountain 3 (H2) −123.940, 44.920 Tillamook, OR AY753839 
4. Siletz 3 (H3) −123.941, 44.656 Lincoln, OR AY753840 
5. Salmon Ck 2 (H4) −123.728, 44.587 Lincoln, OR AY753841 
6. Mary's Peak 3 (H5) −123.551, 44.495 Benton, OR AY753842 
7. Alsea Area Trib. 3 (H6) −123.546, 44.306 Benton, OR AY753843 
8. Risley Ck 2 (H7) −124.064, 44.411 Lincoln, OR AY753844 
9. Bear Ck Trib. 3 (H8) −123.790, 44.349 Benton, OR AY753845 
10. Mossy Falls 3 (H9) −123.749, 44.350 Benton, OR AY753846 
11. Little Lobster Ck 2 (H10) −123.704, 44.310 Benton, OR AY753847 
12. Heidi Ck 3 (H10) −123.461, 44.252 Lane, OR AY753847 
13. Madera's Grave 2 (H9) −123.928, 44.218 Lane, OR AY753846 
14. Mapleton 2 (H11) −123.856, 43.920 Lane, OR AY753848 
15. Kentucky Falls 3 (H12) −123.820, 43.890 Lane, OR AY753849 
16. Elliot SF #1 2 (H13) −124.026, 43.589 Douglas, OR AY753850 
17. Elliot SF #2 2 (H13) −124.034, 43.492 Douglas, OR AY753850 
18. Bear Ck 3 (H14) −123.618, 43.320 Douglas, OR AY753851 
19. No name 3 (H15) −123.440, 43.480 Douglas, OR AY753852 
20. Goodman #1 3 (H16) −122.676, 43.831 Lane, OR AY753853 
21. Goodman #2 3 (H16) −122.696, 43.831 Lane, OR AY753853 
22. Patterson Mountain 3 (H16) −122.616, 43.776 Lane, OR AY753853 
23. M. Bryce Ck 3 (H17) −122.681, 43.642 Lane, OR AY753854 
24. Rainbow Mine 3 (H18) −122.656, 43.573 Lane, OR AY753855 
25. N. Scaredman 2 (H19) −122.794, 43.397 Douglas, OR AY753856 
26. W. Scaredman 2 (H19) −122.754, 43.368 Douglas, OR AY753856 
27. E. Scaredman 2 (H19) −122.794, 43.368 Douglas, OR AY753856 
28. Scott Mountain 3 (H19) −123.063, 43.348 Douglas, OR AY753856 
29. Cow Creek 3 (H20) −123.632, 42.904 Douglas, OR AY753857 
30. Ollala Ck 3 (H20) −123.546, 44.306 Douglas, OR AY753857 
31. Canyon Ck 3 (H21) −123.257, 42.876 Douglas, OR AY753858 
32. Shoestring #1 2 (H22, H23) −123.396, 42.905 Douglas, OR AY753859, AY753860 
33. O'Shea Ck 3 (H24) −123.316, 42.877 Douglas, OR AY753861 
34. Elk #1 2 (H25) −124.327, 42.702 Curry, OR AY753862 
35. Elk #2 2 (H26, H27) −124.365, 42.710 Curry, OR AY753863, AY753864 
36. Qoutsana 3 (H28) −124.236, 42.485 Curry, OR AY753865 
37. N. Galice 3 (H29) −123.694, 42.539 Douglas, OR AY753866 
38. Galice 3 (H30) −123.631, 42.543 Douglas, OR AY753867 
39. Limpy Ck 3 (H31) −123.439, 42.423 Douglas, OR AY753868 
40. Pistol R. 3 (H32) −124.313, 42.284 Curry, OR AY753869 
41. Little Redwood 2 (H32) −124.143, 42.145 Curry, OR AY753869 
42. Chetco R. 3 (H33) −124.173, 42.130 Curry, OR AY753870 
43. Winchuck R. 3 (H34) −124.101, 42.024 Curry, OR AY753871 
44. L. Division Rd. 3 (H35) −124.025, 41.870 Del Norte, CA AY753872 
45. M. Fork Smith R. 3 (H36) −124.012, 41.770 Del Norte, CA AY753873 
46. S. Fork Smith R. 3 (H37) −123.887, 41.550 Del Norte, CA AY753874 
47. Dominie Ck 2 (H38) −124.130, 41.963 Del Norte, CA AY753875 
48. Miller Rellium 2 (H37) −124.054, 41.748 Del Norte, CA AY753874 
49. Hunter Ck 1 (H39) −124.029, 41.575 Humboldt, CA AY753876 
50. Turwer Ck #1 3 (H39) −123.950, 41.590 Humboldt, CA AY753876 
51. Turwer Ck #2 3 (H39) −123.970, 41.590 Humboldt, CA AY753876 
52. Omagar 3 (H40) −123.974, 41.455 Humboldt, CA AY753877 
53. Morek Ck 3 (H41) −123.826, 41.269 Humboldt, CA AY753878 
54. McDonald Ck 3 (H42) −124.091, 41.221 Humboldt, CA AY753879 
55. Mitsui Ck 3 (H43) −124.052, 40.978 Humboldt, CA AY753880 
56. Wire Grass 2 (H42) −123.902, 41.020 Humboldt, CA AY753879 
57. Cannon Ck #1 2 (H44) −123.847, 40.714 Humboldt, CA AY753881 
58. Cannon Ck #2 3 (H44) −123.888, 40.711 Humboldt, CA AY753881 
59. Jacoby Ck 2 (H44) −124.034, 40.817 Humboldt, CA AY753881 
60. M. Trib. 3 (H42) −124.019, 40.843 Humboldt, CA AY753879 
61. Dry Ck 2 (H42) −124.019, 40.843 Humboldt, CA AY753879 
62. Black Dog 2 (H45) −124.018, 40.858 Humboldt, CA AY753882 
63. Goodman Prairie 3 (H46) −123.888, 40.711 Humboldt, CA AY753883 
64. Graham Ck 2 (H47) −123.847, 40.714 Humboldt, CA AY753884 
65. University Hills 2 (H46) −123.472, 40.650 Trinity, CA AY753883 
66. Ten Mile 3 (H48) −123.598, 39.753 Mendocino, CA AY753885 
67. Fox Ck 3 (H48) −123.594, 39.741 Mendocino, CA AY753885 
68. Elder Ck 3 (H48) −123.617, 39.736 Mendocino, CA AY753885 
69. Skunk Ck 3 (H48) −123.615, 39.738 Mendocino, CA AY753885 
70. Chadbourne 2 (H49, H50) −123.761, 39.628 Mendocino, CA AY753886, AY753887 
71. Dark Gulch 3 (H51) −123.773, 39.236 Mendocino, CA AY753888 
72. M. Alder Ck 3 (H52) −123.639, 39.005 Mendocino, CA AY753889 
73. Rhyacotriton cascadae 3 (H54) −122.059, 45.122 Clackamas, OR AY764249 
74. Rhyacotriton cascadae 3 (H55) −122.434, 44.594 Linn, OR AY764250 
75. Rhyacotriton cascadae 2 (H56) −122.640, 43.914 Lane, OR AY764251 
76. Rhyacotriton cascadae 2 (H57) −122.162, 45.136 Clakamas, OR AY764252 
77. Rhyacotriton kezeri 2 (H58) −123.519, 45.794 Tillamook, OR AY764253 
78. Rhyacotriton olympicus 2 (H59) −124.276, 48.044 Clallam, WA AY764254 
Site n (haplotype) Longitude, latitude County, state GenBank accession number 
1. E. Little Nestucca 3 (H1) −123.892, 45.123 Tillamook, OR AY753838 
2. W. Little Nestucca 2 (H1) −123.819, 45.107 Tillamook, OR AY753838 
3. Ball Mountain 3 (H2) −123.940, 44.920 Tillamook, OR AY753839 
4. Siletz 3 (H3) −123.941, 44.656 Lincoln, OR AY753840 
5. Salmon Ck 2 (H4) −123.728, 44.587 Lincoln, OR AY753841 
6. Mary's Peak 3 (H5) −123.551, 44.495 Benton, OR AY753842 
7. Alsea Area Trib. 3 (H6) −123.546, 44.306 Benton, OR AY753843 
8. Risley Ck 2 (H7) −124.064, 44.411 Lincoln, OR AY753844 
9. Bear Ck Trib. 3 (H8) −123.790, 44.349 Benton, OR AY753845 
10. Mossy Falls 3 (H9) −123.749, 44.350 Benton, OR AY753846 
11. Little Lobster Ck 2 (H10) −123.704, 44.310 Benton, OR AY753847 
12. Heidi Ck 3 (H10) −123.461, 44.252 Lane, OR AY753847 
13. Madera's Grave 2 (H9) −123.928, 44.218 Lane, OR AY753846 
14. Mapleton 2 (H11) −123.856, 43.920 Lane, OR AY753848 
15. Kentucky Falls 3 (H12) −123.820, 43.890 Lane, OR AY753849 
16. Elliot SF #1 2 (H13) −124.026, 43.589 Douglas, OR AY753850 
17. Elliot SF #2 2 (H13) −124.034, 43.492 Douglas, OR AY753850 
18. Bear Ck 3 (H14) −123.618, 43.320 Douglas, OR AY753851 
19. No name 3 (H15) −123.440, 43.480 Douglas, OR AY753852 
20. Goodman #1 3 (H16) −122.676, 43.831 Lane, OR AY753853 
21. Goodman #2 3 (H16) −122.696, 43.831 Lane, OR AY753853 
22. Patterson Mountain 3 (H16) −122.616, 43.776 Lane, OR AY753853 
23. M. Bryce Ck 3 (H17) −122.681, 43.642 Lane, OR AY753854 
24. Rainbow Mine 3 (H18) −122.656, 43.573 Lane, OR AY753855 
25. N. Scaredman 2 (H19) −122.794, 43.397 Douglas, OR AY753856 
26. W. Scaredman 2 (H19) −122.754, 43.368 Douglas, OR AY753856 
27. E. Scaredman 2 (H19) −122.794, 43.368 Douglas, OR AY753856 
28. Scott Mountain 3 (H19) −123.063, 43.348 Douglas, OR AY753856 
29. Cow Creek 3 (H20) −123.632, 42.904 Douglas, OR AY753857 
30. Ollala Ck 3 (H20) −123.546, 44.306 Douglas, OR AY753857 
31. Canyon Ck 3 (H21) −123.257, 42.876 Douglas, OR AY753858 
32. Shoestring #1 2 (H22, H23) −123.396, 42.905 Douglas, OR AY753859, AY753860 
33. O'Shea Ck 3 (H24) −123.316, 42.877 Douglas, OR AY753861 
34. Elk #1 2 (H25) −124.327, 42.702 Curry, OR AY753862 
35. Elk #2 2 (H26, H27) −124.365, 42.710 Curry, OR AY753863, AY753864 
36. Qoutsana 3 (H28) −124.236, 42.485 Curry, OR AY753865 
37. N. Galice 3 (H29) −123.694, 42.539 Douglas, OR AY753866 
38. Galice 3 (H30) −123.631, 42.543 Douglas, OR AY753867 
39. Limpy Ck 3 (H31) −123.439, 42.423 Douglas, OR AY753868 
40. Pistol R. 3 (H32) −124.313, 42.284 Curry, OR AY753869 
41. Little Redwood 2 (H32) −124.143, 42.145 Curry, OR AY753869 
42. Chetco R. 3 (H33) −124.173, 42.130 Curry, OR AY753870 
43. Winchuck R. 3 (H34) −124.101, 42.024 Curry, OR AY753871 
44. L. Division Rd. 3 (H35) −124.025, 41.870 Del Norte, CA AY753872 
45. M. Fork Smith R. 3 (H36) −124.012, 41.770 Del Norte, CA AY753873 
46. S. Fork Smith R. 3 (H37) −123.887, 41.550 Del Norte, CA AY753874 
47. Dominie Ck 2 (H38) −124.130, 41.963 Del Norte, CA AY753875 
48. Miller Rellium 2 (H37) −124.054, 41.748 Del Norte, CA AY753874 
49. Hunter Ck 1 (H39) −124.029, 41.575 Humboldt, CA AY753876 
50. Turwer Ck #1 3 (H39) −123.950, 41.590 Humboldt, CA AY753876 
51. Turwer Ck #2 3 (H39) −123.970, 41.590 Humboldt, CA AY753876 
52. Omagar 3 (H40) −123.974, 41.455 Humboldt, CA AY753877 
53. Morek Ck 3 (H41) −123.826, 41.269 Humboldt, CA AY753878 
54. McDonald Ck 3 (H42) −124.091, 41.221 Humboldt, CA AY753879 
55. Mitsui Ck 3 (H43) −124.052, 40.978 Humboldt, CA AY753880 
56. Wire Grass 2 (H42) −123.902, 41.020 Humboldt, CA AY753879 
57. Cannon Ck #1 2 (H44) −123.847, 40.714 Humboldt, CA AY753881 
58. Cannon Ck #2 3 (H44) −123.888, 40.711 Humboldt, CA AY753881 
59. Jacoby Ck 2 (H44) −124.034, 40.817 Humboldt, CA AY753881 
60. M. Trib. 3 (H42) −124.019, 40.843 Humboldt, CA AY753879 
61. Dry Ck 2 (H42) −124.019, 40.843 Humboldt, CA AY753879 
62. Black Dog 2 (H45) −124.018, 40.858 Humboldt, CA AY753882 
63. Goodman Prairie 3 (H46) −123.888, 40.711 Humboldt, CA AY753883 
64. Graham Ck 2 (H47) −123.847, 40.714 Humboldt, CA AY753884 
65. University Hills 2 (H46) −123.472, 40.650 Trinity, CA AY753883 
66. Ten Mile 3 (H48) −123.598, 39.753 Mendocino, CA AY753885 
67. Fox Ck 3 (H48) −123.594, 39.741 Mendocino, CA AY753885 
68. Elder Ck 3 (H48) −123.617, 39.736 Mendocino, CA AY753885 
69. Skunk Ck 3 (H48) −123.615, 39.738 Mendocino, CA AY753885 
70. Chadbourne 2 (H49, H50) −123.761, 39.628 Mendocino, CA AY753886, AY753887 
71. Dark Gulch 3 (H51) −123.773, 39.236 Mendocino, CA AY753888 
72. M. Alder Ck 3 (H52) −123.639, 39.005 Mendocino, CA AY753889 
73. Rhyacotriton cascadae 3 (H54) −122.059, 45.122 Clackamas, OR AY764249 
74. Rhyacotriton cascadae 3 (H55) −122.434, 44.594 Linn, OR AY764250 
75. Rhyacotriton cascadae 2 (H56) −122.640, 43.914 Lane, OR AY764251 
76. Rhyacotriton cascadae 2 (H57) −122.162, 45.136 Clakamas, OR AY764252 
77. Rhyacotriton kezeri 2 (H58) −123.519, 45.794 Tillamook, OR AY764253 
78. Rhyacotriton olympicus 2 (H59) −124.276, 48.044 Clallam, WA AY764254 
Table 1

Localities of Southern torrent salamander populations surveyed in this study. Sample sizes (n) from each location, haplotype codes (Figure 2), and GenBank accession numbers are also provided

Site n (haplotype) Longitude, latitude County, state GenBank accession number 
1. E. Little Nestucca 3 (H1) −123.892, 45.123 Tillamook, OR AY753838 
2. W. Little Nestucca 2 (H1) −123.819, 45.107 Tillamook, OR AY753838 
3. Ball Mountain 3 (H2) −123.940, 44.920 Tillamook, OR AY753839 
4. Siletz 3 (H3) −123.941, 44.656 Lincoln, OR AY753840 
5. Salmon Ck 2 (H4) −123.728, 44.587 Lincoln, OR AY753841 
6. Mary's Peak 3 (H5) −123.551, 44.495 Benton, OR AY753842 
7. Alsea Area Trib. 3 (H6) −123.546, 44.306 Benton, OR AY753843 
8. Risley Ck 2 (H7) −124.064, 44.411 Lincoln, OR AY753844 
9. Bear Ck Trib. 3 (H8) −123.790, 44.349 Benton, OR AY753845 
10. Mossy Falls 3 (H9) −123.749, 44.350 Benton, OR AY753846 
11. Little Lobster Ck 2 (H10) −123.704, 44.310 Benton, OR AY753847 
12. Heidi Ck 3 (H10) −123.461, 44.252 Lane, OR AY753847 
13. Madera's Grave 2 (H9) −123.928, 44.218 Lane, OR AY753846 
14. Mapleton 2 (H11) −123.856, 43.920 Lane, OR AY753848 
15. Kentucky Falls 3 (H12) −123.820, 43.890 Lane, OR AY753849 
16. Elliot SF #1 2 (H13) −124.026, 43.589 Douglas, OR AY753850 
17. Elliot SF #2 2 (H13) −124.034, 43.492 Douglas, OR AY753850 
18. Bear Ck 3 (H14) −123.618, 43.320 Douglas, OR AY753851 
19. No name 3 (H15) −123.440, 43.480 Douglas, OR AY753852 
20. Goodman #1 3 (H16) −122.676, 43.831 Lane, OR AY753853 
21. Goodman #2 3 (H16) −122.696, 43.831 Lane, OR AY753853 
22. Patterson Mountain 3 (H16) −122.616, 43.776 Lane, OR AY753853 
23. M. Bryce Ck 3 (H17) −122.681, 43.642 Lane, OR AY753854 
24. Rainbow Mine 3 (H18) −122.656, 43.573 Lane, OR AY753855 
25. N. Scaredman 2 (H19) −122.794, 43.397 Douglas, OR AY753856 
26. W. Scaredman 2 (H19) −122.754, 43.368 Douglas, OR AY753856 
27. E. Scaredman 2 (H19) −122.794, 43.368 Douglas, OR AY753856 
28. Scott Mountain 3 (H19) −123.063, 43.348 Douglas, OR AY753856 
29. Cow Creek 3 (H20) −123.632, 42.904 Douglas, OR AY753857 
30. Ollala Ck 3 (H20) −123.546, 44.306 Douglas, OR AY753857 
31. Canyon Ck 3 (H21) −123.257, 42.876 Douglas, OR AY753858 
32. Shoestring #1 2 (H22, H23) −123.396, 42.905 Douglas, OR AY753859, AY753860 
33. O'Shea Ck 3 (H24) −123.316, 42.877 Douglas, OR AY753861 
34. Elk #1 2 (H25) −124.327, 42.702 Curry, OR AY753862 
35. Elk #2 2 (H26, H27) −124.365, 42.710 Curry, OR AY753863, AY753864 
36. Qoutsana 3 (H28) −124.236, 42.485 Curry, OR AY753865 
37. N. Galice 3 (H29) −123.694, 42.539 Douglas, OR AY753866 
38. Galice 3 (H30) −123.631, 42.543 Douglas, OR AY753867 
39. Limpy Ck 3 (H31) −123.439, 42.423 Douglas, OR AY753868 
40. Pistol R. 3 (H32) −124.313, 42.284 Curry, OR AY753869 
41. Little Redwood 2 (H32) −124.143, 42.145 Curry, OR AY753869 
42. Chetco R. 3 (H33) −124.173, 42.130 Curry, OR AY753870 
43. Winchuck R. 3 (H34) −124.101, 42.024 Curry, OR AY753871 
44. L. Division Rd. 3 (H35) −124.025, 41.870 Del Norte, CA AY753872 
45. M. Fork Smith R. 3 (H36) −124.012, 41.770 Del Norte, CA AY753873 
46. S. Fork Smith R. 3 (H37) −123.887, 41.550 Del Norte, CA AY753874 
47. Dominie Ck 2 (H38) −124.130, 41.963 Del Norte, CA AY753875 
48. Miller Rellium 2 (H37) −124.054, 41.748 Del Norte, CA AY753874 
49. Hunter Ck 1 (H39) −124.029, 41.575 Humboldt, CA AY753876 
50. Turwer Ck #1 3 (H39) −123.950, 41.590 Humboldt, CA AY753876 
51. Turwer Ck #2 3 (H39) −123.970, 41.590 Humboldt, CA AY753876 
52. Omagar 3 (H40) −123.974, 41.455 Humboldt, CA AY753877 
53. Morek Ck 3 (H41) −123.826, 41.269 Humboldt, CA AY753878 
54. McDonald Ck 3 (H42) −124.091, 41.221 Humboldt, CA AY753879 
55. Mitsui Ck 3 (H43) −124.052, 40.978 Humboldt, CA AY753880 
56. Wire Grass 2 (H42) −123.902, 41.020 Humboldt, CA AY753879 
57. Cannon Ck #1 2 (H44) −123.847, 40.714 Humboldt, CA AY753881 
58. Cannon Ck #2 3 (H44) −123.888, 40.711 Humboldt, CA AY753881 
59. Jacoby Ck 2 (H44) −124.034, 40.817 Humboldt, CA AY753881 
60. M. Trib. 3 (H42) −124.019, 40.843 Humboldt, CA AY753879 
61. Dry Ck 2 (H42) −124.019, 40.843 Humboldt, CA AY753879 
62. Black Dog 2 (H45) −124.018, 40.858 Humboldt, CA AY753882 
63. Goodman Prairie 3 (H46) −123.888, 40.711 Humboldt, CA AY753883 
64. Graham Ck 2 (H47) −123.847, 40.714 Humboldt, CA AY753884 
65. University Hills 2 (H46) −123.472, 40.650 Trinity, CA AY753883 
66. Ten Mile 3 (H48) −123.598, 39.753 Mendocino, CA AY753885 
67. Fox Ck 3 (H48) −123.594, 39.741 Mendocino, CA AY753885 
68. Elder Ck 3 (H48) −123.617, 39.736 Mendocino, CA AY753885 
69. Skunk Ck 3 (H48) −123.615, 39.738 Mendocino, CA AY753885 
70. Chadbourne 2 (H49, H50) −123.761, 39.628 Mendocino, CA AY753886, AY753887 
71. Dark Gulch 3 (H51) −123.773, 39.236 Mendocino, CA AY753888 
72. M. Alder Ck 3 (H52) −123.639, 39.005 Mendocino, CA AY753889 
73. Rhyacotriton cascadae 3 (H54) −122.059, 45.122 Clackamas, OR AY764249 
74. Rhyacotriton cascadae 3 (H55) −122.434, 44.594 Linn, OR AY764250 
75. Rhyacotriton cascadae 2 (H56) −122.640, 43.914 Lane, OR AY764251 
76. Rhyacotriton cascadae 2 (H57) −122.162, 45.136 Clakamas, OR AY764252 
77. Rhyacotriton kezeri 2 (H58) −123.519, 45.794 Tillamook, OR AY764253 
78. Rhyacotriton olympicus 2 (H59) −124.276, 48.044 Clallam, WA AY764254 
Site n (haplotype) Longitude, latitude County, state GenBank accession number 
1. E. Little Nestucca 3 (H1) −123.892, 45.123 Tillamook, OR AY753838 
2. W. Little Nestucca 2 (H1) −123.819, 45.107 Tillamook, OR AY753838 
3. Ball Mountain 3 (H2) −123.940, 44.920 Tillamook, OR AY753839 
4. Siletz 3 (H3) −123.941, 44.656 Lincoln, OR AY753840 
5. Salmon Ck 2 (H4) −123.728, 44.587 Lincoln, OR AY753841 
6. Mary's Peak 3 (H5) −123.551, 44.495 Benton, OR AY753842 
7. Alsea Area Trib. 3 (H6) −123.546, 44.306 Benton, OR AY753843 
8. Risley Ck 2 (H7) −124.064, 44.411 Lincoln, OR AY753844 
9. Bear Ck Trib. 3 (H8) −123.790, 44.349 Benton, OR AY753845 
10. Mossy Falls 3 (H9) −123.749, 44.350 Benton, OR AY753846 
11. Little Lobster Ck 2 (H10) −123.704, 44.310 Benton, OR AY753847 
12. Heidi Ck 3 (H10) −123.461, 44.252 Lane, OR AY753847 
13. Madera's Grave 2 (H9) −123.928, 44.218 Lane, OR AY753846 
14. Mapleton 2 (H11) −123.856, 43.920 Lane, OR AY753848 
15. Kentucky Falls 3 (H12) −123.820, 43.890 Lane, OR AY753849 
16. Elliot SF #1 2 (H13) −124.026, 43.589 Douglas, OR AY753850 
17. Elliot SF #2 2 (H13) −124.034, 43.492 Douglas, OR AY753850 
18. Bear Ck 3 (H14) −123.618, 43.320 Douglas, OR AY753851 
19. No name 3 (H15) −123.440, 43.480 Douglas, OR AY753852 
20. Goodman #1 3 (H16) −122.676, 43.831 Lane, OR AY753853 
21. Goodman #2 3 (H16) −122.696, 43.831 Lane, OR AY753853 
22. Patterson Mountain 3 (H16) −122.616, 43.776 Lane, OR AY753853 
23. M. Bryce Ck 3 (H17) −122.681, 43.642 Lane, OR AY753854 
24. Rainbow Mine 3 (H18) −122.656, 43.573 Lane, OR AY753855 
25. N. Scaredman 2 (H19) −122.794, 43.397 Douglas, OR AY753856 
26. W. Scaredman 2 (H19) −122.754, 43.368 Douglas, OR AY753856 
27. E. Scaredman 2 (H19) −122.794, 43.368 Douglas, OR AY753856 
28. Scott Mountain 3 (H19) −123.063, 43.348 Douglas, OR AY753856 
29. Cow Creek 3 (H20) −123.632, 42.904 Douglas, OR AY753857 
30. Ollala Ck 3 (H20) −123.546, 44.306 Douglas, OR AY753857 
31. Canyon Ck 3 (H21) −123.257, 42.876 Douglas, OR AY753858 
32. Shoestring #1 2 (H22, H23) −123.396, 42.905 Douglas, OR AY753859, AY753860 
33. O'Shea Ck 3 (H24) −123.316, 42.877 Douglas, OR AY753861 
34. Elk #1 2 (H25) −124.327, 42.702 Curry, OR AY753862 
35. Elk #2 2 (H26, H27) −124.365, 42.710 Curry, OR AY753863, AY753864 
36. Qoutsana 3 (H28) −124.236, 42.485 Curry, OR AY753865 
37. N. Galice 3 (H29) −123.694, 42.539 Douglas, OR AY753866 
38. Galice 3 (H30) −123.631, 42.543 Douglas, OR AY753867 
39. Limpy Ck 3 (H31) −123.439, 42.423 Douglas, OR AY753868 
40. Pistol R. 3 (H32) −124.313, 42.284 Curry, OR AY753869 
41. Little Redwood 2 (H32) −124.143, 42.145 Curry, OR AY753869 
42. Chetco R. 3 (H33) −124.173, 42.130 Curry, OR AY753870 
43. Winchuck R. 3 (H34) −124.101, 42.024 Curry, OR AY753871 
44. L. Division Rd. 3 (H35) −124.025, 41.870 Del Norte, CA AY753872 
45. M. Fork Smith R. 3 (H36) −124.012, 41.770 Del Norte, CA AY753873 
46. S. Fork Smith R. 3 (H37) −123.887, 41.550 Del Norte, CA AY753874 
47. Dominie Ck 2 (H38) −124.130, 41.963 Del Norte, CA AY753875 
48. Miller Rellium 2 (H37) −124.054, 41.748 Del Norte, CA AY753874 
49. Hunter Ck 1 (H39) −124.029, 41.575 Humboldt, CA AY753876 
50. Turwer Ck #1 3 (H39) −123.950, 41.590 Humboldt, CA AY753876 
51. Turwer Ck #2 3 (H39) −123.970, 41.590 Humboldt, CA AY753876 
52. Omagar 3 (H40) −123.974, 41.455 Humboldt, CA AY753877 
53. Morek Ck 3 (H41) −123.826, 41.269 Humboldt, CA AY753878 
54. McDonald Ck 3 (H42) −124.091, 41.221 Humboldt, CA AY753879 
55. Mitsui Ck 3 (H43) −124.052, 40.978 Humboldt, CA AY753880 
56. Wire Grass 2 (H42) −123.902, 41.020 Humboldt, CA AY753879 
57. Cannon Ck #1 2 (H44) −123.847, 40.714 Humboldt, CA AY753881 
58. Cannon Ck #2 3 (H44) −123.888, 40.711 Humboldt, CA AY753881 
59. Jacoby Ck 2 (H44) −124.034, 40.817 Humboldt, CA AY753881 
60. M. Trib. 3 (H42) −124.019, 40.843 Humboldt, CA AY753879 
61. Dry Ck 2 (H42) −124.019, 40.843 Humboldt, CA AY753879 
62. Black Dog 2 (H45) −124.018, 40.858 Humboldt, CA AY753882 
63. Goodman Prairie 3 (H46) −123.888, 40.711 Humboldt, CA AY753883 
64. Graham Ck 2 (H47) −123.847, 40.714 Humboldt, CA AY753884 
65. University Hills 2 (H46) −123.472, 40.650 Trinity, CA AY753883 
66. Ten Mile 3 (H48) −123.598, 39.753 Mendocino, CA AY753885 
67. Fox Ck 3 (H48) −123.594, 39.741 Mendocino, CA AY753885 
68. Elder Ck 3 (H48) −123.617, 39.736 Mendocino, CA AY753885 
69. Skunk Ck 3 (H48) −123.615, 39.738 Mendocino, CA AY753885 
70. Chadbourne 2 (H49, H50) −123.761, 39.628 Mendocino, CA AY753886, AY753887 
71. Dark Gulch 3 (H51) −123.773, 39.236 Mendocino, CA AY753888 
72. M. Alder Ck 3 (H52) −123.639, 39.005 Mendocino, CA AY753889 
73. Rhyacotriton cascadae 3 (H54) −122.059, 45.122 Clackamas, OR AY764249 
74. Rhyacotriton cascadae 3 (H55) −122.434, 44.594 Linn, OR AY764250 
75. Rhyacotriton cascadae 2 (H56) −122.640, 43.914 Lane, OR AY764251 
76. Rhyacotriton cascadae 2 (H57) −122.162, 45.136 Clakamas, OR AY764252 
77. Rhyacotriton kezeri 2 (H58) −123.519, 45.794 Tillamook, OR AY764253 
78. Rhyacotriton olympicus 2 (H59) −124.276, 48.044 Clallam, WA AY764254 

A modified phenol–chloroform extraction procedure was used to isolate DNA (Sambrook et al. 1989) with the final extracted aqueous layer purified in a microcon-50 filter (Millipore, Billerica, MA). An ∼850-bp fragment of the cytochrome b gene was amplified for each of the 189 individuals in the data set using the following primers designed for vertebrates: MVZ15 (5′-GAACTAATGGCCCACACWWTACGNAA-3′) and MVZ16 (5′-AAATAGGAAATATCATTCTGGTTTAAT-3′) (Kocher et al. 1989). Each polymerase chain reaction was carried out with 100 ng DNA in a 50-μl volume using 0.5 units of Taq Gold (Perkin Elmer, Wellesley, MA), 100 μM each deoxynucleoside triphosphate, 2 mM MgCl, and 1 μM of each primer. Thermal cycling was performed using the following parameters: an initial denaturation of 10 min at 93 °C, followed by 40 cycles of denaturation for 1 min at 93 °C, annealing for 1 min at 52 °C, and extension at 72 °C for 2 min. A final extension at 72 °C for 10 min completed the reaction. Reaction products were run on 1% agarose gels, and amplified cytochrome b fragments were extracted from gel slices using an ultra-free-mc 0.45 filter (Millipore). The supernatant was then transferred to a microcon-50 filter (Millipore) and washed twice with 400 μl distilled deionized water. Sequencing was performed on an Applied Biosystems (373A) sequencer. Sequencing primers included MVZ15, MVZ16, and cytb2 (5′-AAACTGCAGCCCCTCAGAATGATATTTGTCCTCA-3′; Moritz et al. 1992). Bidirectional sequences from each individual were aligned by hand using the Genetic Data Environment (Smith et al. 1992). After trimming sequence ends, we obtained a final 778-bp alignment corresponding to nucleotides 28–805 of the complete cytochrome b gene (based on comparisons with GenBank accession number AY728210; Muller et al. 2004).

Phylogenetic Analyses of Mitochondrial Haplotypes

MEGA 2.1 (Kumar et al. 2001) was used to perform preliminary sequence data explorations and to obtain average pairwise genetic distances. In addition, we used 2 methods to infer phylogenetic relationships among Southern torrent cytochrome b sequences. First, we used MEGA to perform a minimum evolution (ME) search of tree space. The tree with the shortest sum of branch lengths was identified using the close-neighbor-interchange algorithm with the starting tree obtained via the neighbor-joining algorithm (Saitou and Nei 1987). We relied on Jukes–Cantor genetic distances for the ME analysis. Bootstrap support (Felsenstein 1985) for the resulting topology was obtained from 1000 replicates. Cytochrome b sequences from the other 3 Rhyacotriton species were used to root phylogenetic trees (Table 1 and Figure 1). Second, we used the computer program TCS (Clement et al. 2000) to produce a haplotype network. This procedure, based on the statistical parsimony approach of Templeton et al. (1992), calculated the genealogy of the set of haplotypes observed in this study with a 95% confidence connection limit.

Spatial Analyses of Regional Phylogeographic Structure

Sequence data from each phylogenetic clade were used to infer the presence and extent of genetic structure using spatial autocorrelation analysis (Sokal and Oden 1978). Most forms of spatial autocorrelation rely on the calculation of average measures of dissimilarity or covariance for all pairs of observations that fall within user-defined sets of distance classes. Through the use of randomization procedures, specific sets of distance classes can be identified that are significantly smaller or greater than random expectations. For example, identifying significantly small genetic dissimilarities or significantly large covariances in distance classes encompassing relatively short physical distances between individuals provides evidence for both nonrandom patterns of genetic diversity and the spatial scale at which the nonrandom pattern occurs (Manel et al. 2003).

Spatial autocorrelation analyses were performed using the computer program ALLELES IN SPACE (Miller 2005). The measure of autocorrelation used for analysis (Ay) was quantified as the average genetic distance between pairs of individuals that fell into distance class y. Analyses were initially performed using 10 distance classes and were subsequently repeated using 20 and 30 distance classes to ensure that the arbitrary choice of distance class size had no effect on analysis outcomes. A randomization procedure consisting of 5000 replicates was used to identify distance classes where average genetic distances were significantly larger or smaller than random expectations.

Results

Phylogenetic Analyses

There was substantial haplotype variation among Southern torrent salamander populations at regional and local scales. Nucleotide sequences (778 bp) were characterized by 122 polymorphic sites (80 parsimony informative) and relatively low average pairwise genetic distances between haplotypes (mean Jukes–Cantor distance = 0.027, standard error = 0.003). Consequently, use of more complicated nucleotide substitution models (with their associated greater variances) to account for multiple hits at nucleotide sites was not necessary for phylogeny reconstruction (Nei and Kumar 2000, p. 112). In total, 52 unique haplotypes were detected among the 189 individuals and 72 locations sampled (Table 1). Individuals sampled from the same location generally bore identical haplotypes (Table 1). When more than one haplotype was detected at a site (sites 32, 35, and 70; Table 1), nucleotide differences between haplotypes were very small (<0.5%).

Our phylogenetic analyses produced similar results for both inferential methods used. ME analyses yielded a single tree with a sum of branch lengths of 0.458 (Figure 2). Bootstrap analyses revealed 3 well-supported haplotype clades that corresponded to distinct geographic regions (Figure 1). A northern Oregon clade, supported by 100% of bootstrap replicates, contained 3 haplotypes detected at 4 populations. A second clade comprising haplotypes detected in central Oregon was supported by 77% of bootstrap replicates. In total, 34 unique haplotypes detected in 42 populations were included in the central Oregon lineage. Finally, a haplotype lineage comprising 15 unique haplotypes from 26 northern California populations was supported by 98% of bootstrap replicates. This inference was largely supported by the haplotype network generated from our data (Figure 3). In this analysis, 3 groups of haplotypes were recovered that could not be joined into a single composite network via statistical parsimony with 95% confidence. The constituents of these groups were identical to those contained within major clades revealed by ME analyses. Three additional steps beyond the 12 calculated to achieve a 95% parsimony probability were required to join the central Oregon and northern California clades. A total of 21 steps were required to join all 3 clades into a single network.

Figure 2

ME phylogenetic tree illustrating relationships of 52 Southern torrent salamander cytochrome b haplotypes observed at the 72 locations examined. Bootstrap values (1000 bootstrap replicates) >50 are provided.

Figure 3

Haplotype network of 52 cytochrome b haplotypes. An additional 3 steps beyond the 12 calculated to achieve a 95% parsimony probability was required to join the central Oregon and northern California clades. A total of 21 steps were required to join all 3 clades into a single network.

Regional Spatial Phylogeographic Structure

Due to small sample sizes, no spatial autocorrelation analyses were performed on individuals from the 4 northern Oregon clade locations. However, analyses performed on individuals from the central Oregon and northern California clades clearly indicated the presence of strong regional phylogeographic structure (Figure 4). In analyses performed using 10 distance classes, the central Oregon data set yielded highly significant values of Ay that were smaller than random expectations over the 2 shortest distance classes (encompassing geographic distances up to ∼63 km; P < 0.001). The third distance class of this data set (∼63–94 km) was significantly smaller than random at the α = 0.05 level (P = 0.023). Likewise, in analyses of the northern California data set, the first 3 distance classes (up to ∼92 km) were all significantly small (P < 0.001). Qualitatively similar results were obtained when z = 20 and z = 30 distance classes were used for analyses (Figure 4). Thus, in total, both geographic regions contain strong patterns of phylogeographic structuring that were relatively comparable between clades.

Figure 4

Results of spatial autocorrelation analyses of Southern torrent salamander cytochrome b haplotypes found in the central Oregon and northern California clades. Analyses were performed using z = 10, 20, and 30 distinct distance classes. Ay quantifies the average pairwise genetic distances of haplotypes that fall within the boundaries specified for distance class y. Horizontal lines indicate the average value of Ay for a data set. Results of these analyses suggest that the extent of spatial phylogeographic structure in Southern torrent salamanders occurs in the order of ∼100–150 km.

Discussion

Phylogeography of Southern Torrent Salamanders

Vicariance, geography, and factors related to climate change can influence genetic structure of populations across a species' range by restricting gene flow or allowing range expansion and colonization of new areas (Templeton et al. 1995; Bernatchez and Wilson 1998). These factors, combined with limited vagility of some species may contribute to population fragmentation. Patterns of divergence also may be the result of phylogeographic barriers. In our analyses, divergences among 3 major clades of Southern torrent salamanders may correspond to potential phylogeographic barriers as the geographic range of each clade appears to be constrained by major rivers (Figure 1).

The Yaquina River appears to be a geographic barrier between the northern Oregon and central Oregon clades (Figure 1). Likewise, a sharp discordance between the northern California and central Oregon clades occurs in the region around the Smith River (Figure 1). Although the efficacy of rivers as barriers to dispersal of salamanders has been questioned (Highton 1972), our results are comparable to other molecular genetic analyses conducted on salamanders from the Pacific Northwest. For example, strong patterns of mitochondrial divergence have been observed on either side of the Columbia River for the Larch Mountain salamander (Plethodon larselli; Wagner et al. 2005), while historical changes in the position of the Columbia River main stem have also been hypothesized as a potential factor that constrains the species' distribution and influences patterns of mitochondrial sequence diversity in the Oregon Slender salamander (Batrachoseps wrighti; Miller et al. 2005). In torrent salamanders, prior investigations suggest that dispersal across rivers (that correspond to species boundaries) is minimal. For example, the northern extent of the Southern torrent salamander's distribution (as encompassed by the northern Oregon clade in this study) is in the vicinity of the Little Nestucca River, where it is parapatric with the Columbia torrent salamander to the north. Allozyme analyses previously determined that no hybridization occurred along this contact zone and also indicated that no gene flow occurred across the river (Good and Wake 1992). Likewise, analyses of a contact zone between Southern torrent salamanders and Cascade torrent salamanders on either side of the Willamette River showed reciprocal monophyly of both mitochondrial and allozyme alleles (Wagner et al. 2006). Thus, despite their primarily aquatic life cycle, torrent salamanders may actively avoid warmer, higher order rivers that experience more direct sunlight due to the width of the rivers itself. Alternatively, mortality associated with predation or downstream displacement of individuals due to strong water currents could also reduce movements of individuals across large river channels.

The genetic discontinuity between the northern and central Oregon clades is a phenomenon observed in several other plant and animal species (Soltis et al. 1997; Brunsfield et al. 2001). For example, chloroplast DNA (cpDNA) analyses of red alder (Alnus rubra) and stink currant (Ribes bracteosum) demonstrated strong patterns of genetic differentiation along a north–south axis in an area close to where similar patterns are observed in the Southern torrent salamander (Soltis et al. 1997). Likewise, the perennial piggyback plant (Tolmiea menziesii) demonstrates a particularly striking pattern in this region as it corresponds to not only an area of cpDNA divergence but also a transition from diploid individuals in the southern area of the species' range to tetraploid individuals in northern areas (Soltis et al. 1989). More recently, a strong north–south genetic discontinuity has also been observed in central Oregon in the red tree vole (Phenacomys longicaudus = Arborimus longicaudus) (Miller et al. 2006). Soltis et al. (1997) convincingly argued that such patterns were due to Pleistocene glaciation events. In this scenario, contemporary discontinuities may have been produced as a result of secondary contact between lineages previously isolated in separate northern and southern glacial refugia. Alternately, these discontinuities may be a consequence of northern range expansions from unglaciated southern refugia after glacial retreat. Although our data do not specifically allow us to distinguish between these 2 scenarios, we suggest that comparable types of historical glacial processes likely produced patterns of genetic structure observed for the central and northern Oregon clades of the Southern torrent salamander. Furthermore, we suggest that the Yaquina River may currently act as a barrier to dispersal that effectively reinforces the effects of this historical process.

Interestingly, the geographic region around the Smith River (corresponding to the division between the central Oregon and northern California clades in our study) corresponds to an area of phylogeographic importance for a variety of taxa. Jackman (1998) described species-level divergence within the genus Aneides and found a zone of hybridization occurring directly south of the Smith River's south fork between clouded salamanders (Aneides ferreus) and the newly identified wandering salamander (Aneides vagrans). Similarly, taxonomically differentiated species have been recognized among tree voles (Phenacomys sp.), with a chromosomal inversion occurring between the Oregon and California populations in the northern California coastal region (Johnson and George 1991). Finally, Dunn's salamander (Plethodon dunni) is found only directly north of the Smith River drainage, with its distribution extending slightly into the northern California coastal region (Petranka 1998).

Regional Population and Phylogeographic Structure

Thirty-five of the 52 haplotypes detected in this study were unique to specific locations (Table 1). The remaining 17 haplotypes were generally found in geographically proximate locations (Table 1 and Figure 1). This pattern is consistent with other genetic analyses of salamanders from the northwestern United States of America (e.g., Jockusch and Wake 2002; Mahoney 2004; Miller et al. 2005) and suggests little contemporary gene flow among populations. Supporting this inference are studies of movement patterns in this species along streamside habitats that reveal very small linear movement per individual (0.08 m/month or 0.003 m/day; Welsh and Lind 1992). Likewise, studies of the Cascade torrent salamander (R. cascadae) also suggest limited movement with a mean distance moved per day of 0.36 m and an average linear movement per individual of 2.4 m over a 3-month period (Nijhuis and Kaplan 1998).

Our analyses of phylogeographic structure via spatial autocorrelation also provided evidence for strong population genetic structure and low contemporary gene flow among populations (Figure 4). Interestingly, despite the variety of factors that can contribute to phylogeographic structure over a given geographic region, our analyses suggested comparable spatial extents of phylogeographic structure for both central Oregon and northern California clades (although heterogeneity among Ay values was more appreciable in the northern California data set, presumably due to the smaller sample sizes). In general, the extent of genetic structure revealed by spatial autocorrelation analyses is obtained by identifying the transition point where autocorrelation coefficients switch from values that are less than average to ones that are greater than average (Clark and Richardson 2002; Diniz-Filho and Telles 2002). In both data sets, transitions between values of Ay that were less than random expectation to ones that were greater than average occurred at distance classes encompassing physical distances in the order of 100–150 km (Figure 4). Furthermore, values of Ay did not change linearly with geographic distance, which would indicate the presence of genetic clines (Bertorelle and Barbujani 1995). Instead, patterns presented in Figure 4 more closely resemble “stabilizing profiles” suggested by Diniz-Filho and Telles (2002). This suggests that patterns observed in our analyses likely reflected the influence of minor subclades revealed in phylogenetic analyses (Figure 2) and, furthermore, may indicate the presence of minor or relatively recent vicariance in this species.

Conservation Implications

Currently, the Southern torrent salamander is protected by federal lands reserved for conservation of Northern spotted owls (Strix occidentalis caurina) under the Northwest Forest Plan (US Forest Service and US Bureau of Land Management 1994). This conservation strategy may not adequately provide for the maintenance of genetic diversity found in Southern torrent salamanders across their range. Therefore, management efforts could focus on reexamining their status with respect to conservation unit designations. Recognition of conservation units will help focus management efforts under the Northwest Forest Plan and for future evaluation of the population status. For example, strategic management of separate geographic regions could effectively minimize logistical issues associated with managing a widespread species throughout its entire range. Such efforts could instead focus on the most critically imperiled populations or regions and allow for management designed to address local threats to species.

Our genetic data specifically lend themselves to identification of putative management units given the identification of major phylogenetic lineages that occupy nonoverlapping geographic regions corresponding to northern Oregon, central Oregon, and northern California (Figures 1–3). Furthermore, we note that previously conducted allozyme analyses of Southern torrent salamanders (Good et al. 1987; Good and Wake 1992) revealed strong patterns of population structure in this species that largely corresponded to the central Oregon and northern California clades identified in this study. Thus, our data for the northern California region specifically meet the ESU (i.e., evolutionary significant unit) criteria of Moritz (1994b), which define ESUs as having reciprocally monophyletic mitochondrial lineages and significant differences in nuclear alleles among populations. Evidence for assigning ESU designations for the other groups, specifically the northern Oregon and central Oregon clades, is less clear. Our data indicate reciprocal monophyly of mitochondrial alleles among the sampled populations; however, it is possible there is introgression among clades along the Yaquina River through male-mediated gene flow. Therefore, until evidence clearly demonstrates significant differentiation of nuclear alleles between the northern Oregon and central Oregon clades, we conservatively suggest that these regions could be recognized as separate management units as defined by Moritz. However, given the deep divergence of the northern Oregon clade (Figure 2), we expect that any nuclear data generated to address patterns of genetic structure at this mitochondrial discontinuity will ultimately support ESU designations for these regions.

Our analyses of regional population and spatial phylogeographic structure provide further information that may assist with the development of conservation strategies for Southern torrent salamanders. Although conventional thoughts on species management reflect the idea that conservation efforts should focus on maintaining gene flow among populations to avoid loss of diversity, such goals may not be practical (or even feasible) for taxa with low dispersal rates and extreme differentiation among populations. However, our autocorrelation analyses suggested that the extent of spatial phylogeographic structuring occurs over physical distances of ∼100–150 km (Figure 4). This indicates that haplotypes discovered less than ∼100 km apart are on average statistically correlated, and in contrast, pairs of haplotypes selected from areas in excess of ∼100–150 km apart are statistically independent. Thus, if the primary goal becomes one of conserving phylogenetic diversity within regions, management efforts could focus initially on identification of high-priority habitats separated by the physical distances identified by our analyses (Clark and Richardson 2002; Diniz-Filho and Telles 2002). In doing so, resource managers may minimize the amount of redundancy associated with their efforts to conserve genetic diversity while simultaneously ensuring that a majority of genetic diversity is maintained across this fragmented species' range.

Numerous individuals aided and greatly benefited this project. For assistance in sample collection, we thank B. Bury, L. Diller, T. Dove, J. Dwyer, M. Hee, R. Mason, P. Lybarger, H. Packard, L. Weddell, and H. Welsh. Laboratory assistance was provided by M. Boriss, A. Kaplan, G. Lienkamper, P. Lybarger, T. Mullins, S. Warnock, and B. Wright. The comments of J. Beatty, L. Gorman, T. Mullins, and the Utah State University “Herp Group” greatly improved the manuscript. Support was provided by the USGS Forest and Rangeland Ecosystem Science Center and the US Fish and Wildlife Service through the help of A. Chrisney.

References

Avise
JC
Phylogeography: the history and formation of species
2000
Cambridge (MA)
Harvard University Press
Bernatchez
L
Wilson
CC
Comparative phylogeography of nearctic and palearctic fishes
Mol Ecol
1998
, vol. 
7
 (pg. 
431
-
452
)
Bertorelle
G
Barbujani
G
Analysis of DNA diversity by spatial autocorrelation
Genetics
1995
, vol. 
140
 (pg. 
811
-
819
)
Brattstrom
BH
A preliminary review of the thermal requirements of amphibians
Ecology
1963
, vol. 
44
 (pg. 
238
-
255
)
Brunsfield
SJ
Sullivan
J
Soltis
DE
Soltis
PS
Silvertown
J
Antonovics
J
Comparative phylogeography of northwestern North America: a synthesis
Integrating ecology and evolution in a spatial context
2001
Oxford
Blackwell Science Ltd
(pg. 
319
-
339
)
Bury
RB
Corn
PS
Szaro
RC
Severson
KE
Patton
DR
Douglas-fir forests in the Oregon and Washington Cascades: relation of the herpetofauna to stand age and moisture
Management of amphibians, reptiles, and small mammals in North America
1988
USDA Forest Service. Fortcolins (Co)
General Technical Report RM-166
(pg. 
11
-
20
)
Bury
RB
Corn
PS
Raedeke
KJ
Responses of aquatic and streamside amphibians to timber harvest: a review
Streamside management: riparian wildlife and forestry interactions
1988
Seattle (WA)
University of Washington Institute of Forest Resources Contribution 59
(pg. 
165
-
180
)
Clark
SA
Richardson
BJ
Spatial analysis of genetic variation as a rapid assessment tool in the conservation management of narrow-range endemics
Invertebr Syst
2002
, vol. 
16
 (pg. 
583
-
587
)
Clement
M
Posada
D
Crandall
KA
TCS: a program to estimate gene genealogies
Mol Ecol
2000
, vol. 
9
 (pg. 
1657
-
1659
)
Corn
PS
Bury
RB
Logging in western Oregon: responses of headwater habitats and stream amphibians
For Ecol Manage
1989
, vol. 
29
 (pg. 
39
-
57
)
Diller
LV
Wallace
RL
Distribution and habitat of Rhyacotriton variegatus in managed, young growth forests in north coastal California
J Herpetol
1996
, vol. 
30
 (pg. 
184
-
191
)
Diniz-Filho
JAF
Telles
MPDC
Spatial autocorrelation analysis and the identification of operational units for conservation in continuous populations
Conserv Biol
2002
, vol. 
16
 (pg. 
924
-
935
)
Felsenstein
J
Confidence limits on phylogenies: an approach using the bootstrap
Evolution
1985
, vol. 
39
 (pg. 
783
-
791
)
Good
DA
Wake
DB
Geographic variation and speciation in the Torrent salamanders of the genus Rhyacotriton (Caudata: Rhyacotritonidae)
Univ Calif Publ Zool
1992
, vol. 
126
 (pg. 
1
-
91
)
Good
DA
Wurst
GZ
Wake
DB
Patterns of geographic variation in allozymes of the Olympic salamander, Rhyacotriton olympicus
Fieldiana Zool
1987
, vol. 
32
 (pg. 
1
-
15
)
Haig
SM
Mullins
TD
Forsman
ED
Subspecies relationships and genetic structure in the spotted owl
Conserv Genet
2004
, vol. 
5
 (pg. 
683
-
705
)
Highton
R
Distributional interactions among eastern North American salamanders of the genus Plethodon
VA Polytech Inst Res Monogr
1972
, vol. 
4
 (pg. 
139
-
188
)
Jackman
TR
Molecular and historical evidence for the introduction of clouded salamanders (genus Aneides) to Vancouver Island, British Columbia, Canada, from California
Can J Zool
1998
, vol. 
76
 (pg. 
1570
-
1580
)
Jarne
P
Mating system, bottlenecks and genetic polymorphism in hermaphroditic animals
Genet Res
1995
, vol. 
65
 (pg. 
193
-
207
)
Jockusch
EL
Wake
DB
Falling apart and merging: diversification of slender salamanders (Plethodontidae: Batrachoseps) in the American West
Biol J Linn Soc
2002
, vol. 
76
 (pg. 
361
-
391
)
Johnson
ML
George
SB
Species limits within the Arborimus longicaudus species-complex (Mammalia:Rodentia) with a description of a new species from California
Nat Hist Mus Los Angel Cty Contrib Sci
1991
, vol. 
429
 (pg. 
1
-
16
)
Kocher
TD
Thomas
WK
Edwards
SV
Paabo
S
Villablanca
FX
Wilson
AC
Dynamics of mitochondrial DNA evolution in animals: amplifications and sequencing with conserved primers
Proc Natl Acad Sci USA
1989
, vol. 
86
 (pg. 
6196
-
6200
)
Kumar
S
Tamura
K
Jakobsen
IB
Nei
M
MEGA2: molecular evolutionary genetics analysis software
Bioinformatics
2001
, vol. 
17
 (pg. 
1244
-
1245
)
Leonard
WP
Brown
HA
Jones
LC
McAllister
KR
Storm
RM
Amphibians of Washington and Oregon
1993
Seattle (WA)
Seattle Audubon Society
Mahoney
M
Molecular systematics and phylogeography of the Plethodon elongates species group: combining phylogenetic and population genetic methods to investigate species history
Mol Ecol
2004
, vol. 
13
 (pg. 
149
-
166
)
Manel
S
Schwartz
ML
Luikart
G
Taberlet
P
Landscape genetics: combining landscape ecology and population genetics
Trends Ecol Evol
2003
, vol. 
18
 (pg. 
189
-
197
)
Miller
MP
Alleles In Space: computer software for the joint analysis of interindividual spatial and genetic information
J Hered
2005
, vol. 
96
 (pg. 
722
-
724
)
Miller
MP
Blinn
DW
Keim
P
Correlations between observed dispersal capabilities and patterns of genetic differentiation in populations of four aquatic insect species from the Arizona White Mountains, U.S.A
Freshw Biol
2002
, vol. 
47
 (pg. 
1660
-
1673
)
Miller
MP
Bellinger
RM
Forsman
ED
Haig
SM
Effects of historical climate change, habitat connectivity, and vicariance on genetic structure and diversity across the range of the red tree vole (Phenacomys longicaudus) in the Pacific Northwestern United States
Mol Ecol
2006
, vol. 
15
 (pg. 
145
-
159
)
Miller
MP
Haig
SM
Wagner
RS
Conflicting patterns of genetic structure produced by nuclear and mitochondrial markers in the Oregon Slender salamander (Batrachoseps wrighti): implications for conservation efforts and species management
Conserv Genet
2005
, vol. 
6
 (pg. 
275
-
287
)
Moritz
C
Applications of mitochondrial DNA analysis in conservation: a critical review
Mol Ecol
1994
, vol. 
3
 (pg. 
401
-
411
)
Moritz
C
Defining “evolutionary significant units” for conservation
Trends Ecol Evol
1994
, vol. 
9
 (pg. 
373
-
375
)
Moritz
C
Schneider
C
Wake
DB
Evolutionary relationships within the Ensatina eschscholtzii complex confirm the ring species interpretation
Syst Biol
1992
, vol. 
41
 (pg. 
273
-
291
)
Muller
RL
Macey
JR
Jaekel
M
Wake
DB
Boore
JL
Morphological homoplasy, life history evolution, and historical biogeography of plethodontid salamanders inferred from complete mitochondrial genomes
Proc Natl Acad Sci USA
2004
, vol. 
101
 (pg. 
13820
-
13825
)
Nei
M
Kumar
S
Molecular evolution and phylogenetics
2000
New York
Oxford University Press
Nijhuis
MJ
Kaplan
RH
Movement patterns and life history characteristics in a population of the Cascade torrent salamander (Rhyacotriton cascadae) in the Columbia River gorge, Oregon
J Herpetol
1998
, vol. 
32
 (pg. 
301
-
304
)
Nussbaum
RA
Brodie
ED
Jr
Storm
RM
Amphibians and reptiles of the Pacific Northwest
1983
Moscow (ID)
University of Idaho Press
pg. 
332
 
Nussbaum
RA
Tait
CK
Aspects of the life history and ecology of the Olympic salamander, Rhyacotriton olympicus (Gaige)
Am Midl Nat
1977
, vol. 
98
 (pg. 
176
-
199
)
Petranka
JW
Salamanders of the United States and Canada
1998
Washington (DC)
Smithsonian Institution Press
Ripplinger
J
Wagner
RS
Phylogeography of northern populations of the Pacific Chorus Frog, Pseudacris regilla
Northwest Nat
2004
, vol. 
85
 (pg. 
118
-
125
)
Saitou
N
Nei
M
The neighbour-joining method: a new method for reconstructing phylogenetic trees
Mol Biol Evol
1987
, vol. 
4
 (pg. 
406
-
425
)
Sambrook
J
Fritsch
EF
Maniatis
T
Molecular cloning: a laboratory manual
1989
2nd ed
Plainview (NY)
Cold Spring Harbor Laboratory Press
SmithSW,WangC,GillevetPM,GilbertW. 1992. Genetic data environment and Harvard genome database. Genome Mapping and Sequencing Cold Spring Harbor Laboratory [Internet] [cited 2006 November 20]. Available from: http://fastlink.nih.gov/gde_sw.html.
Sokal
RR
Oden
NL
Spatial autocorrelation analysis in biology 2. Some biological implications and four applications of evolutionary and ecological interest
Biol J Linn Soc
1978
, vol. 
10
 (pg. 
229
-
249
)
Soltis
DE
Gitzendanner
MA
Strenge
DD
Soltis
PE
Chloroplast DNA intraspecific phylogeography of plants from the Pacific Northwest of North America
Plant Syst Evol
1997
, vol. 
206
 (pg. 
353
-
373
)
Soltis
DE
Soltis
PS
Ranker
TA
Ness
BD
Chloroplast DNA variation in a wild plant, Tolmiea menziesii
Genetics
1989
, vol. 
121
 (pg. 
819
-
826
)
Templeton
AR
Crandall
KA
Sing
CF
A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation
Genetics
1992
, vol. 
132
 (pg. 
619
-
633
)
Templeton
AR
Routman
E
Phillips
CA
Separating population structure from history: a cladistic analysis of the geographic distribution of mitochondrial DNA haplotypes in the tiger salamander, Ambystoma tigrinum
Genetics
1995
, vol. 
140
 (pg. 
767
-
782
)
US Forest Service and US Bureau of Land Management
Forest ecosystem management: an ecological, economic, and social assessment
Report of the Forest Ecosystem Management Assessment Team
1994
Washington (DC)
US Government Printing Office 1993-793-071
Wagner
RS
Miller
MP
Crisafulli
C
Haig
SM
Geographic variation, genetic structure, and range expansion in the Larch Mountain salamander Plethodon larselli
Can J Zool
2005
, vol. 
83
 (pg. 
396
-
406
)
Wagner
RS
Miller
MP
Haig
SM
Phylogeography and genetic identification of newly-discovered populations of torrent salamanders (Rhyacotriton cascadae and R. variegatus) in the central Cascades (USA)
Herpetologica
2006
, vol. 
62
 (pg. 
63
-
70
)
Welsh
HR
Jr
Relictual amphibians and old-growth forests
Conserv Biol
1990
, vol. 
4
 (pg. 
309
-
319
)
Welsh
HH
Jr
Lind
AJ
McCullough
DR
Barrett
RH
Population ecology of two relictual salamanders from the Klamath Mountains of Northwestern California
Wildlife 2001: populations
1992
New York
Elsevier Applied Science
(pg. 
419
-
437
)

Author notes

Corresponding Editor: William Modi