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Patients in whom virologic suppression is achieved with highly active antiretroviral therapy (HAART) retain
long-lived cellular reservoirs of human immunodeficiency virus type 1 (HIV-1); this retention is an obstacle
to sustained control of infection. To assess the impact that initiating treatment during primary HIV-1 infection
has on this cell population, we analyzed the decay kinetics of HIV-1 DNA and of infectivity associated with
cells activated ex vivo in 27 patients who initiated therapy before or !6 months after seroconversion and in
whom viremia was suppressed to !50 copies/mL. The clearance rates of cellular reservoirs could not be
distinguished by these techniques (median half-life, 20 weeks) during the first year of HAART. The clearance
of HIV-1 DNA slowed significantly during the subsequent 3 years of treatment (median half-life, 70 weeks),
consistent with heterogeneous cellular reservoirs being present. Total cell-associated infectivity (CAI) after 1
year of treatment was undetectable (!0.07 infectious units/million cells [IUPM]) in most patients initiating
treatment during primary infection either before (9/9) or !6 months after (6/8) seroconversion. In contrast,
all 17 control patients who initiated HAART during chronic infection retained detectable CAI after 3–6 years
of treatment (median reservoir size, 1.1 IUPM; ). These results suggest that treatment !6 monthsP ! .0005
after seroconversion may facilitate long-term control of cellular reservoirs that maintain HIV-1 infection
during treatment.

Treatment of HIV-1 infection with highly active anti-

retroviral therapy (HAART) suppresses plasma viremia

to !50 copies/mL in many patients. However, sensitive

assays have demonstrated that CD4+ T cells retain rep-

lication-competent viral DNA and may be reactivated

to produce virus even after years of viral suppression

[1–3]. The elimination or control of this latent viral

reservoir is thus an important goal in the refinement

of long-term treatment strategies for HIV-1 infection
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[4]. The CD4+ T cell reservoir is established during

primary infection [5, 6]. However, the slow turnover

of latently infected cells during chronic infection [7, 8]

suggests that this reservoir might continue to fill over

months to years and thus might be smaller during pri-

mary infection. One patient treated before serocon-
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version had no detectable cell-associated infectivity (CAI) [9],

which is consistent with a limited reservoir size at the time of

seroconversion.

The clearance kinetics of the latent virus population after in-

itiation of HAART in patients during chronic infection remains

controversial. In a cohort initiating therapy during chronic in-

fection, Finzi et al. estimated the half-life of the CD4+ T cell

latent reservoir to be 44 months [7]. Using a similar technique,

Ramratnam et al. measured a half-life of 6 months in a cohort

that included both chronically and acutely infected patients [8].

This shorter half-life suggests the possibility of eradication of

HIV-1 from an infected patient by treatment with HAART. The

discrepancy between these different measured clearance rates

might be related to residual replication [8] or study duration

[10], but it remains the subject of debate [11].

Although terminal dilution cocultures have been used to quan-

tify cellular reservoirs of potentially infectious HIV-1, quantifi-

cation of HIV-1 DNA level in peripheral blood mononuclear

cells (PBMCs) provides a more sensitive alternate measure of

reservoir size. Total HIV-1 DNA level has been shown to be stable

throughout [12] and predictive of [13] disease progression, sug-

gesting that it may be a useful marker for treatment decisions.

After initial clearance of short- and long-lived productively in-

fected cells [14], HIV-1 DNA is cleared with a half-life of 5–6

months in both chronic [14] and primary [15] infection. Whether

the long-lived cells identified as containing HIV-1 DNA are

dynamically related to the latent pool studied by quantitative

coculture remains an important question.

The treatment of any patient identified with primary HIV-

1 infection must be based on a rapid, individualized decision

made on the basis of available information about potential

long-term benefits and risks. Cumulative toxicity and the risk

of developing or selecting for drug-resistant virus [16] argue

against early treatment. Potential benefits to the patient include

more-complete viral suppression [17] and long-term mainte-

nance of HIV-1–specific CD4+ [18] and CD8+ [19, 20] T cell

responses. Successful viral control has been observed when early

treatment was followed by structured treatment interruptions

in animal model studies [21, 22] and in humans [23, 24], al-

though the duration of control varies. These results contrast

notably with those of studies of therapy interruptions after

treatment during chronic infection [25–28]. Thus, even if viral

eradication by available therapies is not possible, there may

nevertheless be significant benefits to early treatment.

A quantitative understanding of the dynamics of long-lived

cellular reservoirs of HIV-1 in patients treated during primary

HIV-1 infection may thus help refine long-term treatment reg-

imens for HIV-1 infection. To assess the potential benefits of

early treatment for the control of HIV-1 latency, we sought to

extend previous results by comparing the size and clearance

rate of the latent viral reservoir, as measured by both activated

coculture and HIV-1 DNA level, in patients initiating therapy

at different stages of primary infection.

PATIENTS AND METHODS

Patient population. Patients were recruited to primary-infec-

tion studies in San Diego and Los Angeles between 1996 and

1999, on the basis of clinical symptoms or exposure history [29].

A subgroup of these patients volunteered to enroll in the present

study. All participants gave written, informed consent, in accor-

dance with the requirements of the local institutional review

board. All 28 patients who elected to receive treatment and in

whom viremia was suppressed to !50 copies/mL in plasma, as

determined by the Roche Amplicor Ultrasensitive assay, were

included in this analysis. They received continuous suppressive

drug therapy for the duration of this study. In some patients in

whom viremia had been suppressed to !50 copies/mL, the reap-

pearance of low (150 and !200 copies/mL) but detectable levels

of viremia (“blips,” or intermittent viremia) occurred episodi-

cally, as has previously been reported in chronically infected pa-

tients [24]. All patients were male and had homosexual contact

as a primary risk factor. Patients initiating therapy while results

of an HIV-1 ELISA were negative and results of a Western blot

were negative, indeterminate, or evolving (�4 detectable bands)

were designated as being “preseroconversion.” Patients initiating

therapy later but while results of a detuned ELISA were still

consistent with infection during the past 6 months (OD, !1.0)

were defined as “postseroconversion.”

Fourteen patients who initiated HAART during chronic in-

fection in clinical trial DMP266 [30] and 3 patients from clinical

trial MRK035 [29] were also included, for cross-sectional com-

parison. These patients were also predominantly male but, as

a group, had lower CD4+ T cell counts and plasma HIV-1 RNA

levels at the time of treatment (median, 260 cells/mm3 and 4.78

log copies/mL, respectively).

HIV-1 DNA assays. PBMCs were extracted and then as-

sayed for total HIV-1 DNA level by use of the Roche Monitor

DNA assay [31]. Copy numbers per CD4+ T cell were computed

using flow-activated cell (FAC) counts of the proportion of

CD4+ T cells in a sample drawn simultaneously.

Coculture assays. Seventeen patients who agreed to donate

the larger (80–160 mL) blood volumes necessary were pro-

spectively enrolled in a protocol to quantify CAI. Recovery of

virus from resting CD4+ T cells was accomplished by an ex

vivo activation procedure [1, 32]. Either Rosette Sep (Stem Cell

Technologies) or VarioMacs (Miltenyi-Biotec) was employed,

in accordance with the manufacturers’ instructions, to isolate

CD4-enriched patient T cells and CD8-depleted donor cells by

negative selection. Cells were then stimulated with immobilized

anti-CD3 (Pharmingen) and interleukin (IL)–2. FAC analysis

indicated that !2% of the remaining cells were CD8+ or CD14+,

and, typically, 185% were CD4+. For each assay, CD8-depleted
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cells pooled from at least 2 healthy control donors were acti-

vated with phytohemagglutinin (Sigma) and IL-2.

Cultures were performed with – cells/well in a4 61 � 10 3 � 10

3-fold dilution series. Each cell dilution was assayed in quad-

ruplicate. Fresh media and fresh activated donor PBMCs were

added weekly, and supernatants were assayed for p24 by ELISA

at days 7, 14, and 21. In 3 patients in whom no virus was detected

in any well, 300 mL of whole blood was analyzed according to

the above procedure, and 6–9 replicates of 3�106 cells were

available. The assay sensitivity varied from 0.03 to 0.05 infectious

units/million CD4+ T cells (IUPM) for these samples.

To assess the ability of this assay to reliably detect low levels

of CAI, the same coculture procedure was used for 17 patients

who had initiated HAART during chronic infection and in

whom viremia had been suppressed to !50 copies/mL for 3–

6 years. Dilution series used for these samples varied, but most

included 24 replicates of cells. The limit of detection51 � 10

in these assays was 0.17–0.40 IUPM.

Statistical methods. CAI was quantified as IUPM by use

of a maximum-likelihood method, under an assumption of

single-hit Poisson kinetics [33]. The sensitivity limit was defined

as the maximum-likelihood estimate for an assay with 1 ad-

ditional positive well at the lowest dilution (0.07 IUPM for a

quadruplicate assay with wells containing patient cells63 � 10

each). Viral reservoir sizes at 1 year were estimated by inter-

polating or extrapolating from available measurements, under

an assumption of exponential decay after 4 weeks of treatment.

When no decay rate could be measured in a given patient, the

population median decay rate was assumed. Statistical com-

parison between groups, however, was based on a Mann-Whit-

ney U test using only measured values (with undetectable values

imputed as 0.07 IUPM). Total body viral reservoir sizes were

estimated by assuming that peripheral blood CD4+ T cells were

in equilibrium with total CD4+ T cells [34].111.5 � 10

CAI clearance rates and reservoir sizes for individual patients

were estimated using a maximum-likelihood fit under an as-

sumption of log-normal errors. Clearance rates of HIV-1 DNA

were estimated by least-squares minimization. Data before week

4 were excluded from all longitudinal analyses. Decay rates

could be estimated in only 12 patients. In 5 patients, all in the

preseroconversion cohort, CAI became undetectable by the first

time point after 4 weeks, which prevented a quantitative rate

estimate. Analyses were also performed with all data from be-

fore week 12 excluded; all group differences reported as sig-

nificant were unaffected by this choice of start time. HIV-1

DNA clearance rates during the first year and subsequent years

were compared using a paired Wilcoxon test. Correlations were

computed using the Pearson correlation coefficient, and their

significance was tested using a Wilcoxon rank-sum test.

RESULTS

Baseline characteristics of the patient population. Of 40 orig-

inal study subjects, 30 consented to high-volume blood draws

for CAI studies, whereas 10 provided lower-volume blood do-

nations suitable only for HIV-1 DNA measurements. An addi-

tional 14 patients were subsequently excluded from the study,

either because they did not initiate HAART or sustain suppres-

sion ( ) or because of insufficient follow-up ( ).n p 10 n p 4

Baseline characteristics of the patients who finally qualified

for the study are given in table 1. There were no significant

differences in pretreatment CD4+ T cell counts, HIV-1 DNA

copy number per microgram of PBMC DNA, or CAI between

the preseroconversion and postseroconversion cohorts (P 1 .5

in all cases), nor was there a major difference in the proportion

of patients exhibiting intermittent viremia between the 2 co-

horts (5/13 in the preseroconversion cohort; 6/14 in the post-

seroconversion cohort). The frequency of intermittent viremia

in these patients was in line with those reported in the study

of chronically infected patients receiving HAART [35]. The

median pretreatment HIV-1 RNA level was higher in patients

treated before seroconversion (1500,000 copies/mL) than in

patients treated after seroconversion (190,000 copies/mL), but

the baseline viral load did not differ significantly between co-

horts ( ).P p .31

CAI clearance during the first year of HAART. CAI de-

cayed rapidly during the first month of therapy, as reported

elsewhere [36]. Decay of CAI was therefore measured beginning

at week 4 of treatment, before which the majority of both

productively infected cells and any cells in a preintegration form

of latency would have cleared. The median half-lives in the

preseroconversion and postseroconversion cohorts were 14 weeks

and 20 weeks, respectively; this difference did not approach

statistical significance ( ). The median half-life in theP p .8

combined primary-infection cohort after week 4 of HAART

was 20 weeks; excluding all data collected before week 12 did

not affect this estimate (figure 1).

HIV-1 DNA clearance during the first year of HAART.

HIV-1 DNA assays were performed longitudinally on 23 pa-

tients (table 1). In 8 of these patients, banked PBMC samples

were analyzed retrospectively for 3–4 years after initiation of

HAART. During the first year, HIV-1 DNA decayed with a

median half-life of 30 weeks (range, 10–110 weeks; figure 2).

Because CD4+ T cell counts recovered substantially during the

first year of treatment, the clearance of HIV-1 DNA per CD4+

T cell was significantly faster than clearance per PBMC. The

median half-life of HIV-1 DNA in this normalization was 18

weeks in both treatment cohorts (table 2).

Nonlinear kinetics of HIV-1 DNA clearance. Analysis of the

9 patients with longer follow-up demonstrated that decay of HIV-

1 DNA was not simply exponential during the 4-year treatment

period (figure 3). In the 8 patients followed after the first year,
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Table 1. Summary of baseline patient characteristics.

Time of inititation of treatment,
patient ID

Baseline CD4+

T cell count,
cells/mL

Baseline log10

HIV-1 RNA level,
copies/mL

Baseline HIV-1
DNA level,
copies/mg

Baseline
coculture

infectivity, IUPM HAART regimen Blip

Before seroconversion
001 687 15.7 NA 110 D4T, 3TC, ABC, NVP, HU No
002 45 15.7 NA 45 D4T, DDI, NFV Yes
004 847 5.3 34 NA AZT, 3TC, IDV No
009 468 5.2 NA 110 D4T, 3TC, NFV Yes
017 1521 4.0 15 3.2 D4T, 3TC, APV No
019 185 15.7 144 2.02 D4T, 3TC, NFV No
020 497 15.7 298 37.3 AZT, 3TC, ABC No
021 637 4.2 171 13.7 D4T, 3TC, ABC, NVP Yes
044 408 15.7 355 NA AZT, 3TC, NFV No
045 291 5.3 547 NA ABC, APV Yes
056 909 3.7 120 NA EFV, IDV Yes
178 474 4.2 1466 15.7 3TC, D4T, ABC, RTV, APV No
404 1031 15.7 NA 57 AZT, 3TC, NFV No

After seroconversion
003 605 5.0 60 NA AZT, 3TC, IDV No
013 304 5.3 NA 110 AZT, 3TC, ABC No
022 785 15.7 NA NA D4T, 3TC, LPV, RTV Yes
031 1048 15.7 17 NA AZT, ddC, LPV, RTV Yes
054 427 15.7 188 NA AZT, 3TC, NFV Yes
063 344 5.1 236 NA 3TC, D4T, NFV No
065 305 5.3 2439 NA AZT, 3TC, NFV Yes
118 593 4.7 124 110 DDI, D4T, EFV, NFV Yes
122 348 5.0 247 44 AZT, 3TC, ABC, APV No
125 426 5.3 451 1.1 3TC, AZT, ABC, APV Yes
133 230 3.6 1422 NA AZT, 3TC, ABC, APV No
135 542 15.7 65 1.57 AZT, 3TC, RTV, IDV No
143 596 5.5 233 9.5 DDI, D4T, EFV, NFV No
185 528 15.7 47 NA 3TC, D4T, ABC, RTV, APV No

Median (all patients) 486 5.3 180 16
Median (before seroconversion) 497 15.7 157 16
Median (after seroconversion) 468 5.3 211 27

NOTE. ABC, abacavir; APV, amprenavir; AZT, zidovudine; ddC, zalcitabine; DDI, didanosine; D4T, stavudine; EFV, efavirenz; HAART, highly active antiretroviral
therapy; HU, hydroxyurea; IDV, indinavir; IUPM, infectious units per million cells; LPV, lopinavir; NA, not available; NFV, nelfinavir; NVP, nevirapine; RTV, ritonavir;
3TC, lamivudine.

the median decay of HIV-1 DNA per unit of PBMC DNA was

�0.0093 per week (range, �0.024 to 0.0005 per week), corre-

sponding to a half-life of 70 weeks. The median decay of HIV-

1 DNA per CD4+ T cell was �0.012 per week (range, �0.026

to �0.0002 per week), corresponding to a half-life of 60 weeks.

In both normalizations, DNA clearance was significantly slower

( ) after the first year than between weeks 4 and 48 ofP ! .001

treatment. Thus, DNA decay was estimated independently for

the first year (weeks 4–48) and for subsequent years.

Residual cellular reservoirs of HIV-1. The total size of the

latent CD4+ T cell reservoir after 1 year of treatment could not

be directly measured in the primary-infection cohort. Specif-

ically, virus eventually could no longer be recovered from any

of the 9 patients who were treated before seroconversion. The

treatment duration at which CAI fell below the assay threshold

varied from 4 to 62 weeks. By direct measurement, we found

that the reservoir size was !0.07 IUPM in all patients who

initiated HAART before seroconversion and in 6 of 8 patients

who initiated HAART !6 months after seroconversion. Ex-

trapolated estimates of the reservoir size indicated median res-

ervoir sizes of 0.03 IUPM and 0.09 IUPM, in the pre- and

postseroconversion cohorts, respectively.

Among 36 samples taken from 17 chronically infected pa-

tients after 3–6 years of virologic suppression, the same acti-

vation protocol resulted in virus detection in 30 samples, de-

spite examination of typically fewer cells from these patients.

At least 1 sample from each patient retained detectable CAI.

The median CAI was 1.1 IUPM, which was significantly higher

than in patients treated before ( ) or !6 months afterP p .00002

( ) seroconversion.P p .0005

The total number of replication-competent latently infected

cells was also estimated for each patient (figure 4). For patients
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Figure 1. Decay of cell-associated infectivity (CAI). After an initial rapid
decline during the first month of highly active antiretroviral therapy (HAART),
CAI decayed with a median half-life of 14 weeks in patients who initiated
HAART before seroconversion (A) and 20 weeks in patients who initiated
HAART !6 months after complete seroconversion (B). By the end of the
first year of treatment, CAI had fallen below the level of detection (red
dashed line) in 12 patients, including all 9 acutely infected patients shown
in panel A. Black dashed lines show the median decay slope and median
residual CAI (table 2).

Figure 2. Decay of HIV-1 DNA during the first year of highly active
antiretroviral therapy (HAART). During the first year of HAART, HIV-1 DNA
in peripheral blood mononuclear cells (PBMCs) was cleared with a median
half-life of 30 weeks, with no significant difference between patients ini-
tiating treatment before (A) or after (B) seroconversion. This estimated half-
life is in line with published estimates for both chronic [14] and acute [15]
infection. When normalized to CD4+ T cell counts, HIV-1 DNA clearance is
faster (median half-life, 18 weeks) because of CD4+ T cell recovery on
HAART. After initial clearance of labile molecular forms of HIV-1, the kinetics
of DNA in this latter normalization were indistinguishable from the kinetics
of infectivity (figure 1), suggesting that viral DNA dynamics parallel the
dynamics of replication-competent virus.

in the pre- and postseroconversion cohorts, reservoir sizes after

48 weeks of HAART were estimated as described in Patients

and Methods. Reservoir sizes in patients who initiated treat-

ment during chronic infection were estimated at the time of

collection of available samples, after 3–6 years of HAART. The

median estimated reservoir sizes were 4000 cells for patients

who initiated therapy before seroconversion, 13,000 cells for

patients who initiated therapy !6 months after seroconversion,

and 160,000 cells for chronically infected patients.

DISCUSSION

Sustained control of cellular reservoirs of HIV-1 remains an

important goal in the development of antiretroviral therapies.

Although estimates of the duration of HAART that is required

to eradicate the latently infected cell population from chroni-

cally infected patients extend into decades [7], treatment early

during infection might limit the establishment or alter the clear-

ance kinetics of this population. We investigated both of these

hypotheses by longitudinally following patients initiating ther-

apy before and soon after seroconversion.

After 1 year of treatment, replication-competent virus could

not be detected (!0.07 IUPM) in 9 of 9 patients who initiated

HAART before seroconversion or in 6 of 8 patients who ini-

tiated HAART !6 months after seroconversion. We assume that

the lack of recovery of viable virus did not indicate the absence

of latently infected cells in vivo but reflected their relative in-

frequency in these patients and blood-volume limits. Two pa-

tients who initiated therapy during early infection harbored

intermediate numbers of latently infected cells, which is con-

sistent with previous reports of detectable cellular reservoirs in

patients treated during primary infection [5, 9]. Larger reser-

voirs (median, 1.1 IUPM), consistent with previous measure-

ments [6, 7], were observed in patients treated for an average

of 6 years after therapy initiation during chronic HIV-1 infec-
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Table 2. Summary of cellular reservoir size and clearance characteristics.

Time of initiation of treatment,
patient ID

Baseline HIV-1
DNA level,
copies/mg

Decay constant (per week) Residual size at week 48

HIV-1 DNA
HIV-1 DNA/
CD4+ T cell Infectivity

Infectivity,
IUPM

HIV-1 DNA level,
copies/mg

Before seroconversion
001 … … … �0.12 0.03 …
002 … … … 0.0003 0.106 …
004 34 �0.0421 �0.0374 … … 4
009 … … … ND 0.015 …
017 15 �0.0308 �0.0484 ND 0.015 4
019 144 0.01183 … … 0.02 10
020 298 �0.02177 �0.03 �0.033 0.114 11
021 171 �0.0178 �0.0293 ND 0.015 68
044 355 �0.0231 �0.0258 … … 42
045 547 �0.0209 �0.0387 … … 269
056 120 �0.0421 �0.0493 … … 11
178 1466 �0.05219 �0.0812 �0.069 0.07 71
404 … … … �0.151 0.07 …

After seroconversion
003 60 �0.0248 �0.0244 ND … 18
013 … … … �0.17 0.031 …
022 … �0.06899 … ND 0.015 4
031 17 �0.021 �0.0423 … … 5
054 188 �0.0191 �0.0241 … … 38
063 236 �0.0125 �0.0119 … … 82
065 2439 �0.0354 �0.0435 … … 205
118 124 0.013406 �0.0063 �0.139 0.08 120
122 247 �0.0183 �0.0381 �0.011 0.034 37
125 451 �0.027817 �0.0404 0.0148 0.78 151
133 1422 �0.07486 �0.0772 … … 67
135 65 �0.04975 �0.1105 �0.047 0.25 18
143 233 �0.019398 �0.0239 �0.035 0.07 51
185 47 �0.0231 �0.0726 �0.031 0.34 13

Median (all patients) 180 �0.022 �0.038 �0.035 0.033 38
Median (before seroconversion) 211 �0.022 �0.039 �0.035 0.087 38
Median (after seroconversion) 157 �0.022 �0.037 �0.051 0.025 27

NOTE. Ellipses (…) indicate that no sample was available. IUPM, infectious units per million cells; ND, not determined because �2 cocultures
after week 4 contained detectable infectivity.

tion. If we assume that proportionality between peripheral

blood T cells and tissue T cells [37] is established early during

infection [38], these measurements suggest a median of only

5000 latently infected CD4+ T cells in patients initiating HAART

!6 months after seroconversion. In chronically infected patients,

this median was 1160,000 cells after several years of treatment,

which is consistent with previous estimates [6, 7]. These results

demonstrate that early treatment limits the size of the latent

reservoir, as suggested by a previous cross-sectional study [9].

The first year of treatment resulted in a significant clearance

of cellular reservoirs of HIV-1. During primary HIV-1 infection,

patients may have a greater proportion of infected cells re-

sponding specifically to HIV-1 antigens [39]; these cells would

encounter their cognate antigens frequently, resulting in rapid

cell turnover. Previous studies have also demonstrated an el-

evated state of immune activation in primary HIV-1 infection

[40–43], suggesting that cell clearance might be enhanced by

nonspecific activation. Alternatively, immune clearance of in-

fected cells by HIV-1–specific cytotoxic T lymphocytes (CTLs),

which are preserved by early initiation of HAART [18, 20],

might more effectively contribute to clearance. Finally, the

smaller observed reservoir sizes in patients treated during pri-

mary infection could represent a more profound inhibition of

viral replication [45, 53] in such patients, as is supported by

one study of residual viremia in patients treated during primary

infection [57]. However the proportion of patients with inter-

mittent viremia (“blips”)—a surrogate for residual viral rep-

lication—who started treatment before and after seroconver-

sion was no different from proportions reported in studies of

chronically infected patients [24].

Because CAI was undetectable by the end of the first year

in a majority of patients with primary infection, subsequent
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Figure 3. Slower-than-exponential decay of HIV-1 DNA during the first
4 years of highly active antiretroviral therapy (HAART). Clearance during
the first year occurred with a median half-life of 30 weeks in both the
preseroconversion (figure 2A) and postseroconversion (figure 2B ) cohorts.
At the end of the first year, HIV-1 DNA was not significantly different
between the 2 groups. A subgroup of 8 patients with longer follow-up is
shown above. The decay kinetics during the first year (red) are statistically
indistinguishable from those of the entire cohort. During the 4-year period
shown, clearance of HIV-1 DNA was not simply exponential, with signifi-
cantly slower clearance ( ) during the subsequent 3 years (green)P p .001
of suppressive therapy (median half-life, 70 weeks). These nonlinear kinetics
might be due to heterogeneity of cellular reservoirs [10], so that clearance
progressively selects for the most-stable latent cells.

Figure 4. Attenuation of residual cellular reservoirs of culturable HIV-
1 by initiation of highly active antiretroviral therapy (HAART) during pri-
mary infection. Patients treated either before or !6 months after sero-
conversion harbored smaller reservoirs of recoverable HIV-1 after 1 year
of HAART than did patients treated with HAART for 3–6 years after
initial treatment during chronic infection. In samples from the majority
of patients with primary infection (9/9 in the preseroconversion cohort
and 6/8 in the postseroconversion cohort), infectious virus could no longer
be cultured by the end of the study period; the values shown were
extrapolated to week 48 of HAART, by use of the population median
clearance. Replication-competent virus was recovered from all 17 chron-
ically infected control individuals shown, despite a less sensitive assay
and 2–5 additional years of suppressive HAART (chronic vs. preserocon-
version, ; chronic vs. postseroconversion, ). Thus,P p .00002 P p .0005
establishment of long-lived cellular reservoirs of HIV-1 begins before
seroconversion but occurs predominantly 16 months after seroconversion.

quantification was based on HIV-1 DNA level, a more sensitive

measure of the population size of cellular reservoirs. The re-

lationship between HIV-1 DNA level and CAI, both of which

are measures of the size of the cellular reservoir of HIV-1, is

not well understood. During antiretroviral therapy, the majority

of HIV-1 DNA in infected cells is integrated into the host

genome [44]. However, unintegrated linear and circular forms

of HIV-1 DNA are also present. Although the former are short

lived, the latter may be very stable [45–47] but represent a

small minority of the total HIV-1 DNA [9].

Our results provide empirical evidence that HIV-1 DNA level

can serve as a useful measure of the dynamics of CAI after the

initial month of therapy. We observed a rapid decline in CAI

during the first month of treatment, with no parallel decline in

HIV-1 DNA level (figure 1). This is consistent with the existence

of a subset of cells with labile, unintegrated, full-length HIV-1

DNA, previously estimated to have a functional half-life of 6 days

[36], provided that these unintegrated molecular forms are, on

average, more likely to give rise to productive infection than are

integrated HIV-1 genomes during the period immediately after

initiation of suppressive therapy. Because our coculture assays

were performed on CD4-enriched cells, the clearance rates of

HIV-1 DNA per CD4+ T cell were computed for comparison.

During weeks 4–48 of HAART, the median decay half-lives of

HIV-1 DNA and CAI were the same (20 weeks). The parallel

kinetics of HIV-1 DNA and CAI suggest that HIV-1 DNA level

may provide a convenient marker of the cellular reservoir of

virus after approximately the fourth week of treatment and that

the proportion of HIV-1 DNA genomes that are replication com-

petent remains stable through this period.

Previous studies of the dynamics of HIV-1 latency have been

performed under the assumption that the clearance of this

reservoir was exponential [7, 8]. However, we found that the

clearance rates of HIV-1 DNA declined substantially after the

first year of treatment. This is consistent with the findings of

a study reporting that cellular reservoirs of HIV-1 contain cells

that clear at different rates [10]. In 8 patients followed for 3–

4 years, the median half-life of DNA (per CD4+ T cell) after

the first year of HAART was 60 weeks, which was statistically

different ( ) from the 20-week half-life observed in theP p .003

same patients during the first year. This difference did not reflect

a change in the degree of viral suppression, since all patients

retained plasma HIV-1 RNA levels !50 copies/mL throughout

the study. This range of values is consistent with those from

previous studies of both chronic and primary infection [6, 14,

15]. The change in clearance kinetics might reflect decreasing

activation rates after viral suppression [48]. Alternatively, cells
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recognizing common antigens may be preferentially activatedand

cleared during the first year, leaving latently infected memory

cells that recognize rarely encountered antigens to activate slowly

in subsequent years [10, 49]. The different dynamics of phe-

notypically distinct populations of long-lived cells, including

memory T cells, naive T cells [50], thymocytes, and other cell

types [51–53], might also contribute to the decline in clearance.

Although our results do not address the mechanism under-

lying changing HIV-1 DNA clearance rates, they suggest that

the rapid clearance of CAI during the first year may not be

sustained thereafter. If CAI kinetics continues to parallel that

of HIV-1 DNA at the rate observed after the first year, spon-

taneous clearance of the reservoir would require ∼15 years of

HAART, even for patients initiating HAART before serocon-

version. The observation that DNA clearance decreases during

the first few years of HAART, however, suggests the possibility

that this deceleration continues, which is consistent with dy-

namically heterogeneous cellular reservoirs being present [10].

Progressively decelerating clearance [49] might explain why

previous studies of chronic infection have found variable half-

lives [7, 8], with longer half-lives associated with longer follow-

up [54]. If clearance continues to slow through subsequent years

of infection, even the small cellular reservoirs we observed

would not be eradicated in a patient’s lifetime. If, as has been

proposed, the latent reservoir is responsible for viral rebound

during therapy interruption [25], this small reservoir size may

explain the delayed rebound during interruptions in patients

with primary infection [24, 55].

Although eradication of infection appears unachievable with

currently available treatment, the difference in reservoir char-

acteristics for patients treated early during primary infection

may nonetheless be significant. Novel strategies designed to

mobilize virus from resting CD4+ T cells [56] or immune mod-

ulation strategies, such as therapeutic vaccination [57], may

have the greatest likelihood of success in patients treated early

enough to both limit the extent of cellular reservoirs and pre-

serve antiviral immune function. The high degree of suppres-

sion and limitation of reservoir size seen in this primary-

infection cohort may enhance the long-term durability of

treatment responses, since higher levels of viral production have

been reported to result in the acquisition of some drug-resis-

tance mutations, even in patients generally responding to po-

tent therapy [59]. Latently infected cells may be an important

source of residual infectious virus during sustained [58] and

interrupted treatment. Thus, smaller reservoirs may facilitate

the use of simplified maintenance regimens [59] or planned

treatment interruptions, reducing the toxicity and cost of long-

term antiretroviral therapy. Thus, initiation of HAART during

primary infection may increase patients’ future options for

long-term control of HIV-1 infection.
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