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Dengue virus receptors are relatively poorly characterized, but there has been recent interest in 2 C-type lectin

molecules, dendritic cell–specific intercellular adhesion molecule 3 (ICAM-3)–grabbing nonintegrin

(DC-SIGN) and its close homologue liver/lymph node–specific ICAM-3–grabbing integrin (L-SIGN), which

can both bind dengue and promote infection. In this report we have studied the interaction of dengue viruses

produced in insect cells, tumor cell lines, and primary human dendritic cells (DCs) with DC-SIGN and L-SIGN.

Virus produced in primary DCs is unable to interact with DC-SIGN but remains infectious for L-SIGN–

expressing cells. Skin-resident DCs may thus be a site of initial infection by insect-produced virus, but DCs will

likely not participate in large-scale virus replication during dengue infection. These results reveal that

differential glycosylation of dengue virus envelope protein is highly dependent on cell state and suggest that

studies of virus tropism using virus prepared in insect cells or tumor cell lines should be interpreted with

caution.

The global prevalence of the dengue virus (DENV) has

grown dramatically in recent decades, and it is now

endemic in .100 countries, with some 2.5 billion peo-

ple at risk of infection. Dengue is an arthropod-borne

flavivirus that can be subdivided into the 4 major

serotypes (DEN-1–DEN-4). Most dengue infections either

are asymptomatic or lead to a self-limiting febrile illness,

dengue fever. In some cases the illness is more severe,

leading to dengue hemorrhagic fever (DHF) with severe

plasma leakage and bleeding that can be life threatening.

DHF is more common in individuals undergoing

secondary heterologous dengue infection than those

suffering primary infections. There has been consider-

able work to understand the mechanism of severe

disease, but the increased frequency during secondary

infection and the occurrence of severe symptoms at a time

when virus loads are falling sharply imply that it likely

results from immunopathology driven by the acquired

immune responses, rather than from direct viral cytopa-

thology [1–4]. Levels of a number of cytokines, such as

interferon c and tumor necrosis factor a [5, 6], have been

shown to correlate with disease severity, and a storm of

inflammatory cytokine secretion has been proposed to

lead to the vascular leak characteristic of DHF.

Recent reports have identified monocytes as a major

cell target of viral replication, and heparin sulfates,

DC-SIGN, mannose receptor, and other glycoproteins

have been proposed as cellular receptors for DENV

[7–18]. DC-SIGN polymorphism has been shown to be

associated with the disease severity [19]. CLEC5A has

also recently been described as a proinflammatory re-

ceptor for DENV that contributes to lethal disease in

a mouse model [20].

As dengue virus circulates between 2 hosts, humans and

insects, it has to be adapted to replicate and infect both
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species. The majority of studies of dengue infection and tropism use

viruses produced in insect cell lines such as C6/36 or mammalian

tumor cell lines such as Vero cells. Infection of humans occurs in

a stepwise fashion: initial infection of cells with insect virus,

followed by sequential infection of cells by mammalian-produced

virus. We were interested to determine whether there were any

differences in the tropism of viruses produced in primary non-

transformed human cells.

MATERIALS AND METHODS

Viral Stocks and Cell Lines
The dengue-2 strain, 16681, was grown in C6/36 cells, Vero

cells, and monocyte-derived dendritic cells (DCs). Cell-free

supernatants were used either neat or after concentration by

ultracentrifugation at 45,000 rpm for 4 h at 4�C, and the virus

pellet was resuspended in 1.5% fetal bovine serum (FBS)/

Leibovitz L-15. To concentrate large volumes of low-titer DENV

supernatant, DENV were precipitated with 10% Polyethylene

glycol 8000 (Sigma) before ultracentrifugation. U937 were

maintained in 10% FBS/Roswell Park Memorial Institute me-

dium (RPMI). NIH/3T3, and DC-SIGN and L-SIGN NIH/3T3

cell lines were obtained through the AIDS Research and Refer-

ence Reagent Program (Division of AIDS, National Institute of

Allergy and Infectious Diseases, from Drs Thomas D. Martin

and Vineet N. Kewal Ramani) and maintained in 10% FBS/

Dulbecco’s Modified Eagle’s medium. All media were supple-

mented with 2 mmol/L L-glutamine, 100 U/mL penicillin, and

100 U/mL streptomycin.

The viral titers were determined by a focus-forming assay.

Briefly, virus was serially diluted and incubated with Vero

cells for 2 hours at 37�C. The monolayers were then overlaid

with 1.5% carboxymethylcellulose and incubated at 37�C for

2 days. Virus foci were stained with anti-E antibody followed

by peroxidase-conjugated anti-mouse immunoglobulin (Ig)

and visualized by the addition of 3,3#-Diaminobenzidine

tetrahydrochloride substrate.

Preparation of Primary Monocyte-Derived Dendritic Cells
DCs were cultured as described elsewhere [21]. Human CD141

monocytes were cultured in RPMI 1640 with 20 ng/mL rhuGM–

CSF (First Link) and 25 ng/mL rhuIL-4 (eBioscience). The

appropriate phenotype of immature DC (ie, lacking CD141 but

expressing major histocompatibility complex class I and class II

and DC-SIGN) was confirmed.

Monitoring DENV Infection
Cells were infected with DENV at a multiplicity of infection

(MOI) of 1 for 24 h. Cells were washed twice in FACS wash (FW;

Phosphate-Buffered Saline [PBS] containing .5% Bovine Serum

Albumin, 2% FBS, 1% Human Serum, .01% NaN3). Cells were

fixed with 4% paraformaldehyde/PBS for 10 minutes and

permeabilized with .5% saponin in FW for 10 minutes. Cells

were then incubated with anti-NS1 mAb or with anti-E mAb

followed by anti-mouse IgG/PE (DakoCytomation) in .5%

saponin/FW. Cells were resuspended in FW and analyzed by

FACScan (Becton Dickinson). Data were analyzed by using

Flowjo software (Tree Star). 3T3 and 293T were incubated with

20 U/mL heparin for 20 minutes at room temperature before

being infected with DENV.

Cell Binding Assay
Cells were incubated with DENV produced from different cell

types at equal amounts of E protein (measured by enzyme-

linked immunosorbent assay) for 2 h at room temperature.

After washing with ice-cold FW, cells were fixed with 4%

paraformaldehyde/PBS, and surface-bound virus was detected

with an anti-E mAb and anti-mouse IgG/PE followed by FACS

analysis.

Transient Transfection of 293T With L-SIGN
The pcDNA3-LL-SIGN plasmids expressing 7 (N7) and 5 (N5)

tandem neck region repeats or a mixture of N7 and N5 plasmids

(ratio 1:1) were transfected into 293T cells using the Fugene6

(Roche). L-SIGN expression was verified with L-SIGN–specific

antibody (clone 120604, R&D Systems).

Analysis of Glycan Residues on DENV Using Plant Lectins
DENV supernatant was precleared with protein A-agarose for

one h at 4�C. Bead-free supernatant was incubated with 10 lg of

4G2 at 4�C for 2 h followed by protein A-agarose for 1 h. The

beads were washed with .05% Tween/PBS 3 times and eluted

with nonreducing loading buffer. The sample was run on non-

reducing 10% Sodium dodecyl sulfate (SDS) polyacryramide

gels and electroblotted onto nitrocellulose membrane (Amer-

sham). Glycan types on DENV proteins were determined using

the DIG Glycan Differentiation Kit (Roche).

Endoglycosidase H (Endo H) or N-glycosidase F (PNGase F;

New England Biolabs) was performed as described elsewhere

[22]. Digested proteins were separated by 10% SDS poly-

acryramide gels and analyzed by western blot. E protein was

detected by anti-E mAb followed by peroxidase-conjugated

anti-mouse IgG Ab.

RESULTS

DENV Produced in Insect Cells But Not in DCs Can Infect DCs
Following the bite from an infected mosquito, the host first

encounters virus produced in the mosquito, and following

this initial inoculation subsequent rounds of infection are

driven by virus produced by host cells. To study these 2 dis-

tinct stages of pathogenesis, we compared viruses from C6/36

(insect cells) and virus produced from primary human

monocyte-derived dendritic cells. Viral supernatants were
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titered using a focus-forming assay on Vero cells, and equal

amounts of titered virus were used to infect Vero, 293T, or

DCs at an MOI of 1. The percentage of infected cells was

monitored by cytofluorometry staining of the intracellular

nonstructural dengue antigen NS1, which is produced only

following productive infection. Insect-derived virus was

equally competent at infecting the 3 cell types with high ef-

ficiency (Figure 1A–C). Surprisingly, DC-produced virus was

not able to reinfect DCs but was nevertheless fully competent

at infecting 293T and Vero cells.

The lack of infectivity of DC-produced virus on DCs was also

shown using a different mAb, 4G2, which reacts with an epitope

on dengue envelope protein (Figure 1C, lower panel). A time

course of infection was performed where DCs or Vero cells were

infected with virus produced in C6/36, Vero, or DCs, and

infection was monitored by FACS or using a focus-forming

assay to measure infectious virus harvested from the

supernatants of infected cells (Figure 1D–E). At 24, 48, and

72 h the DC-produced virus showed a much reduced ability to

infect DCs when compared with virus produced in C6/36 or

Vero cells.

The experiments we have described above used the dengue

serotype 2 strain 16681. To see whether these results could be

generalized, we checked infection of both DCs and Vero cells

with dengue serotype 2 strain New Guinea C, serotype 1 strain

Hawaii, serotype 3 strain H87, and serotype 4 strain H241.

Infection efficiency was measured by FACS at 24 and 48 hours

following infection with virus produced in either C6/36 cells or

DCs (Figure 2A–B). In all cases DC-produced virus was much

less infectious for DCs than insect-produced virus, whereas

infection of Vero cells was roughly equal.

It is known that mature DCs are relatively resistant to dengue

infection, so to rule out the possibility of any DC-produced

cofactors that might induce maturation or any other form of

resistance to infection we performed a mixing experiment

whereby DC-produced and C6/36-produced viruses were used

to infect DCs. In these experiments using mixed viruses the DCs

were again susceptible to infection, presumably by the C6/36-

produced virus fraction (Figure 2C).

The lack of reinfection of DCs by DC-produced virus may

reflect a difference in the surface binding interaction of

DC- versus insect-produced viruses to DCs. To test this Vero

cells and DCs were incubated with DENV produced from the

different sources, and binding to the cells was then assessed by

staining with the anti-E mAb 4G2. Virus produced in C6/36 cells

could bind to DCs, while binding of DC virus back onto DCs

was almost completely absent (Figure 2D). Conversely, both

DC- and insect-produced viruses were able to bind to Vero cells.

Figure 1. DC-produced dengue virus cannot re-infect DCs. A, Vero cells; B, 293T cells; and C, DCs were infected with C6/36-produced or DC-produced
DEN-2 (16681) at MOI 5 1. After 24 h, cells were intracellularly stained with anti–DEN-2 NS1 mAb (2G6) or anti-E mAb (4G2) and analyzed by flow
cytometry. D, DCs and Vero cells were infected with DC-produced, C6/36-produced, or Vero-produced DEN-2. At 24, 48, and 72 h, cells were intracellularly
stained with anti-NS1 mAb (2G6) and analyzed by flow cytometry. E, Cell supernatants were measured for viral progeny by focus-forming assay. The
results are shown as mean 6SE from 4 independent experiments.
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DC-Produced DENV Preferentially Infects via L-SIGN
To formally prove that the loss of infection of DCs was a result

of the loss of affinity of DC-produced virus for DC-SIGN, we

went on to test infection on 3T3 cells expressing DC-SIGN and

included in these assays the related C-type lectin L-SIGN

(Figure 3A), which has also been reported to be a receptor for

dengue virus. Insect-derived virus could efficiently infect both

DC-SIGN– and L-SIGN–expressing cells when compared with

control 3T3 cells (Figure 3B). Similar to the lack of observable

infection of DCs, the DC-derived virus showed a much lower level

of infection on DC-SIGN–expressing 3T3 cells, with ,2% in-

fection. Surprisingly, however, this virus progeny was still able to

infect cells expressing L-SIGN, with up to 13% infection observed.

Previous reports with dengue virus have suggested that the

virus shows equal tropism for both DC-SIGN and L-SIGN.

These reports were from virus produced in tumor cell lines and

not from primary cells. We tested the infectivity of virus pro-

duced in Vero cells, and in agreement with these previous

reports dengue produced in this tumor cell line was able to

efficiently infect 3T3 cells via either DC-SIGN or L-SIGN

(Figure 3C). Finally, we tested the binding of insect- and

DC-produced virus to the 3T3 transfectants (Figure 3D). In

agreement with the DC binding experiments DC-produced

virus was unable to bind to DC-SIGN–expressing DCs, whereas

both insect- and DC-derived viruses could bind to L-SIGN–

expressing cells.

DC-Produced DENV Contains Complex Glycan
To gain insight into the glycosylation profiles of DENV

produced in C6/36, Vero, and DC, purified virus was tested

against a panel of lectins with differing carbohydrate-binding

specificities by western blot (Figure 4A). Among the 5 plant

lectins tested, GNA is the only one that selectively interacts with

high- and pauci-mannose-type N-glycans. SNA and MAA bind

to sialic acid terminally linked to galactose by a2,6 linkage and

a2,3 linkage, respectively, which may occur on complex-type

N-glycans. DSA recognizes repeating N-acetyllactosamine

(galactosyl b1,4 N-acetylglucosamine) sequences; these may

also occur on complex-type N-glycans. PNA, unlike DSA,

binds preferentially to b1,3-linked terminal galactose, such as

galactosyl b1,3 N-acetylgalactosamine, a sequence commonly

occurring on O-glycosylated proteins and gangliosides.

Virus produced in C6/36 cells bound exclusively to GNA,

implying that it contained predominantly high- or pauci-mannose

N-glycans consistent with the glycosylation patterns seen in insect

cells. Vero-produced virus was bound by 3 of the lectins tes-

ted—GNA, SNA, and DSA—suggesting that the virus contained

a variety of high-mannose and complex- or hybrid-type N-glycans

Figure 2. DC-derived virus from all serotypes have reduced ability to reinfect DCs. (A–B ) DCs and Vero cells were infected with DEN-1 Hawaii, DEN-2
16681, DEN-3 H87, DEN-4 H241, and DEN-2 NGC derived from either DCs or C6/36 cells. At 24 and 48 h, cells were intracellularly stained with anti-NS1
mAb specific to all DENV serotypes (1F11) and analyzed by flow cytometry. C, DCs were incubated with a mixture of C6/36-produced and DC-produced
virus at MOI 5 1 and stained for infection with 2G6. D, Vero cells and DCs were incubated with C6/36-produced or DC-produced DENV, surface stained
with anti-E mAb (4G2), and analyzed by flow cytometry. The results are shown as mean 6 SE from 2–3 independent experiments.
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with or without a2,6-linked sialic acids, possibly on polyN-

acetyllactosamine outer chains. The DC-produced virus was

bound only by SNA and DSA, indicating that there was a lack

of high-mannose or hybrid N-glycans and that only complex-type

N-glycans were present. All of the lectin binding signals occurred

at the same position on the gels as E protein in the region of

60 kDa; we did not see any signal at 19 kDa where prM would be

expected to migrate. However, this could be due to a low level of

prM on these viruses.

Finally, we assessed the N-linked glycan on the envelope

protein by digestion with either Endo H, which will remove

high-mannose simple glycans containing 3 or more terminal

mannose residues, or PNGase F, which removes all simple or

complex N-linked glycan (Figure 4B). DC-produced virus

showed a mobility shift of around 3 or 6 kDa corresponding

to the addition of 1 or 2 complex carbohydrates at positions

67 and 153. This was completely resistant to digestion with

Endo H, indicating the presence of complex low-mannose

carbohydrate.

For both insect- and Vero-produced virus, envelope protein

migrating at �2 or 4 kDa higher than the PNGase F-digested

material indicated, as with DC-produced virus, that envelope

had either 1 or 2 added sugars. Following Endo H digestion

a complex pattern of bands was revealed, indicating that some of

the added sugars were Endo H sensitive and therefore contained

.3 terminal mannose residues, whereas others were Endo H

resistant and contained more heavily processed structures,

which is in agreement with a recent report [23].

We conclude from these experiments that in C6/36, Vero

cells, and DCs both N-linked glycosylation sites can be used but

that a single site is used in �50% of cases. Envelope from

DC-produced virus contains complex, highly processed Endo

H–resistant carbohydrate. However, in both C6/36 and Vero,

a proportion of the sugar is high mannose and therefore will

allow interaction with DC-SIGN, which is consistent with the

results from lectin blotting shown above.

Heterogeneity of L-SIGN Neck Length Has No Effect on DENV
Infection
L-SIGN contains a tandem repeat in its neck region, N-

terminal to the carbohydrate recognition domain, which can

be of variable length between 3 and 9 repeats. L-SIGN exists as

tetramers, and previous studies have suggested that hetero-

geneity in the tandem repeat region of the L-SIGN neck region

may contribute to severe acute respiratory syndrome (SARS)

susceptibility by altering the viral Env-receptor affinity [24].

To determine whether heterogeneous L-SIGN neck lengths

affect DENV infection levels, we examined the effects of

Figure 3. DC-produced virus selectively infects via L-SIGN. (A) DC-SIGN and L-SIGN expression was verified by immunostaining with DC-SIGN– and
L-SIGN–specific antibodies. (B ) Dengue produced in DCs or C6/36 were used to infect DC-SIGN–expressing, L-SIGN–expressing, and wild-type 3T3 cells.
After 24 h, cells were checked for infection by intracellular staining with anti-NS1 mAb (2G6). The results are shown as mean 6SE from 2 independent
experiments. (C ) Dengue virus produced in Vero cells was used to infect DC-SIGN–expressing, L-SIGN–expressing, and wild-type 3T3. After 24 hours,
infected cells were revealed by intracellular staining with anti-NS1 mAb (2G6). The profiles are examples of 3 independent experiments. (D) DC-SIGN–
expressing, L-SIGN–expressing, and wild-type 3T3 were used to detect the binding with DC- and C6/36-produced virus in the presence of heparin.
Dengue infection and binding data shown in panels B–D for L-SIGN were derived by gating the L-SIGN–positive population.
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a single length repeat and compared it with cells expressing 2

different-length L-SIGN alleles simultaneously. We examined

this by transient transfection, and 293T cells were used for

these assays as they can be transiently transfected to a high

level. 293T were transfected with L-SIGN containing 5 or 7

repeats singly or together in equal amounts. L-SIGN expres-

sion was confirmed by surface staining and flow cytometry.

Equal expression of alternate-length L-SIGN constructs was

also confirmed by western blotting. Transfectants were then

infected with dengue virus, and infection was monitored by

intracellular staining together with an antibody specific to

L-SIGN to reveal transfected cells. All transfectants were

equally infected with no reduction in cells expressing both

L-SIGN alleles, suggesting that heterotetrameric L-SIGN was

as effective as homotetrameric L-SIGN at promoting infection

(Figure 5).

Figure 4. Dengue produced in DC contained complex glycans. (A) Immunoprecipitated DC-, Vero-, and C6/36-produced DENV were run on 10% SDS
Sodium dodecyl sulfate polyacrylamide gel electrophoresis followed by western blotting. Viral strips were incubated with a set of lectins, GNA, SNA,
MMA, PNA, and DSA, as a company's instruction. Anti-E mAb (4G2) was used to indicate the position of the dengue E protein. (B ) C6/36-, DC-, and Vero-
derived DENV were undigested (U) or digested with Endo H (H) or PNGase F (F) and separated on 10% SDS PAGE followed by western blotting and
detected by 4G2.

Figure 5. Infection via L-SIGN with heterologous and homologous neck tandem repeat regions. 293T cells were transfected with L-SIGN constructs
expressing 5 or 7 repeats or both 5 and 7 in combination. Cells were first stained with anti–L-SIGN to show equal levels of expression of the 2 constructs
(A). Cells were then stained with anti–L-SIGN and 4G2 to reveal dengue-infected cells (B–D). The data are representative of 2 independent experiments.
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Infectivity of DC-Produced DENV Is Enhanced by Anti-Dengue
Antibodies
Finally, although DC-produced virus cannot reinfect DCs effi-

ciently, we were interested to determine whether DC-produced

virus was still able to infect cells by antibody-dependent

enhancement (ADE), which would allow it to replicate by in-

fection of Fc receptor–expressing cells. C6/36- and DC-derived

viruses were incubated with increasing levels of pooled conva-

lescent dengue immune serum and subsequently used to infect

U937, a monocyte cell line that expresses the Fc receptor and

which shows relatively low infectivity without the presence of

enhancing antibodies. Viruses produced in both DCs and insect

cells were susceptible to enhancement, over the same range of

antibody concentrations, showing that DC-produced virus

could exploit ADE to replicate in individuals undergoing a sec-

ondary dengue infection (Figure 6A). In a final series of

experiments we investigated whether DC-produced virus could

be induced to infect primary human DCs by ADE (Figure 6B).

DC-produced virus could be enhanced to infection by .20-fold,

whereas the already high level of infection of DCs by insect-

produced virus was not enhanced further by dengue serum.

DISCUSSION

During natural dengue infection, mosquito saliva containing

DENV particles is injected into the skin during a blood meal.

Skin-resident immature DCs have been proposed to be the

primary site of infection for insect-derived DENV [25]. The

primary receptor on DCs for dengue virus is believed to be

DC-SIGN. DC-SIGN binds N-linked high-mannose oligo-

saccharides, including glycans with terminal fucose residues that

include the blood group Lewisx and Lewisa eptitopes [26].

L-SIGN, like DC-SIGN, binds to intercellular adhesion mol-

ecule 3(ICAM-3) and is thought to establish cellular interactions

with ICAM-3–expressing T cells. L-SIGN is able to capture

a variety of viruses (including the related Flaviviridae hepatitis C

virus [HCV] and West Nile virus [WNV] as well as human

immunodeficiency virus [HIV] type 1, cytomegalovirus, and

SARS) [27–31]. DC-SIGN and L-SIGN preferentially bind

pyranose sugars, in particular mannose. A study comparing

L-SIGN– and DC-SIGN–specific ligands using glycan arrays

revealed a restricted repertoire of glycan ligands for L-SIGN,

namely, the high-mannose-type N-glycans. In contrast, DC-

SIGN bound to fucosylated glycans in addition to high-

mannose-type N-glycans [32].

The dengue E protein has 2 potential N-linked glycosylation

sites at positions 67 and 153. Cryo-electron microscopy re-

constructions of dengue virus complexed to soluble DC-SIGN

show interaction with the glycan at position 67 [33]. There have

been several reports on the N-linked glycosylation of dengue

envelope. Some reports suggest the use of both sites, whereas

others suggest that only one is used [23, 34–36]. We show that in

C6/36, Vero cells, and DCs either one or both sites are used for

the dengue 2 serotype 16681. Although both glycosylation sites

can play important roles in infectivity and viral replication,

functional studies have confirmed the importance of Asn-67 for

infection of DC-SIGN–expressing cells [33]. WNV E protein

contains a single N-linked glycosylation site at position 154 that

is absent from some virus strains [37]. Both dengue and WNV

contain a single N-linked site in prM, and although prM is

cleaved by furin during viral maturation, a substantial fraction

of uncleaved prM is found on some dengue viruses, particularly

that produced in insect cells, and such partially cleaved viruses

can still be infectious. For WNV the N-linked site on prM can

also mediate interaction with L-SIGN, and in common with

glycan at position 154 this also showed differential specificity for

L-SIGN when expressed in mammalian cell lines, perhaps me-

diated by the presence of N-acetylglucosamine–terminated

structures [29].

The difference in the binding specificities of dengue viruses

produced in Vero versus primary dendritic cells was somewhat

surprising and likely related to the expression of high-mannose

moieties in Vero. A number of tumor cell lines express

high-mannose sugars, and we have previously described the

Figure 6. Anti-dengue antibodies enhance infectivity of DC-produced
DENV. A, U937 were infected with C6/36-produced and DC-produced
virus (DEN-2 16681) in the presence of an increasing concentration of
pooled convalescent dengue immune serum. Infection was detected by
intracellular staining with anti-NS1 mAb (2G6). B, ADE of DCs infected
with DC-produced virus. The results are shown as mean 6 SE from
3 independent experiments.
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generation of a monoclonal antibody that recognizes a variety of

tumor cell types and which binds to high-mannose moieties

[38]. The differential affinity of DC-SIGN for ligands expressed

by tumor cell lines versus primary cells has been observed before

and led some to speculate that DC-SIGN may participate in

tumor surveillance [39]. There appears to be a further added

level of complexity as the glycosylation profiles may vary in

a given cell line depending on the exact position of the N-linked

site within the polypeptide chain [29].

In humans, L-SIGN expression is restricted to endothelial

cells beneath the subcapsular sinus in lymph nodes [40], sinu-

soidal endothelial cells in the liver [27, 41], alveolar and endo-

thelial cells in the lung [42], and capillaries in the villous lamina

propria of terminal ileum and Peyer patches [43]. Dengue

antigens have been demonstrated in the sinusoidal tissue of the

liver and vascular endothelium of the lung and spleen and may

provide an explanation for the unique pathology observed in

these organs [44, 45]. The accumulation of antigen in L-SIGN–

expressing tissue may also result in an increase in localized

transinfection in a similar way that L-SIGN is thought to be

responsible for the capture of HCV from the blood and trans-

mission to hepatocytes or in the case of HIV, to CD41 T cells

[28, 41].

We conclude that skin-resident DCs are a likely target for

initial infection by dengue virus injected by the infecting

mosquito; however, subsequent dissemination of the virus to

monocytes and other cell types will no longer use DC-SIGN as

a primary receptor and may rely in part on a shift to L-SIGN as

the primary lectin receptor. The differential glycosylation of the

DENV E protein during replication in primary mammalian cells

suggests that studies of virus tropism using virus prepared in

insect cells or tumor cell lines should be interpreted with

caution.
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