Abstract

In this paper, we introduce a new algebra called ‘EQ-algebra’, which is an alternative algebra of truth values for formal fuzzy logics. It is specified by replacing implication as the main operation with a fuzzy equality. Namely, EQ-algebra is a semilattice endowed with a binary operation of fuzzy equality and a binary operation of multiplication. Implication is derived from the fuzzy equality and it is not a residuation with respect to multiplication. Consequently, EQ-algebras overlap with residuated lattices but are not identical with them. We choose one class of suitable EQ-algebras (good EQ-algebras) and develop a formal theory of higher-order fuzzy logic called ‘basic fuzzy type theory’ (FTT). We develop in detail its syntax and semantics, and we prove some basic properties, including the completeness theorem with respect to generalized models. The paper also provides an overview of the present state of the art of FTT.

References

[1]
Andrews
P
An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof
 , 
2002
Dordrecht
Kluwer
[2]
Andrews
P
Bishop
M
Brown
CE
McAllester
D
System description: TPS: A theorem proving system for type theory
2000
Springer
 
Automated Deduction — CADE-17; 17th Int. Conf. on Automated Deduction, vol. 1831 of Lecture Notes in Artificial Intelligence
[3]
Blyth
T
Lattices and Ordered Algebraic Structures
 , 
2005
London
Springer
[4]
Běhounek
L
Cintula
P
Fuzzy class theory
Fuzzy Sets and Systems
 , 
2005
, vol. 
154
 (pg. 
34
-
55
)
[5]
Castañeda
H
Leibniz’s syllogistico-propositional calculus
Notre Dame Journal of Formal Logic XVII
 , 
1976
, vol. 
4
 (pg. 
338
-
384
)
[6]
Church
A
A formulation of the simple theory of types
J. Symb. Logic
 , 
1940
, vol. 
5
 (pg. 
56
-
68
)
[7]
Cintula
P
Hájek
P
Horčík
R
Formal systems of fuzzy logic and their fragments
Annals of Pure and Applied Logic
 , 
2007
, vol. 
150
 (pg. 
40
-
65
)
[8]
El-Zekey
M
 
Representable good EQ-algebras. Soft Computing (to appear)
[9]
El-Zekey
M
Novák
V
Mesiar
R
Semicopula-based EQ-algebras
Fuzzy Sets and Systems
  
(submitted)
[10]
Esteva
F
Godo
L
Monoidal t-norm based logic: towards a logic for left-continuous t-norms
Fuzzy Sets and Systems
 , 
2001
, vol. 
124
 (pg. 
271
-
288
)
[11]
Farmer
WM
A partial functions version of Church’s simple theory of types
Journal of Symbolic Logic
 , 
1990
, vol. 
55
 (pg. 
1269
-
1291
)
[12]
Farmer
WM
The seven virtues of simple type theory
Journal of Applied Logic
 , 
2008
, vol. 
6
 (pg. 
267
-
286
)
[13]
Fox
C
Lappin
S
Foundations of Intensional Semantics
 , 
2005
Malden
Blackwell Publishing
[14]
Goguen
JA
The logic of inexact concepts
Synthese
 , 
1968
, vol. 
19
 (pg. 
325
-
373
)
[15]
Hájek
P
Metamathematics of Fuzzy Logic
 , 
1998
Dordrecht
Kluwer
[16]
Hájek
P
Fuzzy logics with noncommutative conjuctions
Journal of Logic and Computation
 , 
2003
, vol. 
13
 (pg. 
469
-
479
)
[17]
Hájek
P
Cintula
P
On theories and models in fuzzy predicate logics
Journal of Symbolic Logic
 , 
2006
, vol. 
71
 
3
(pg. 
863
-
880
)
[18]
Henkin
L
Completeness in the theory of types
J. Symb. Logic
 , 
1950
, vol. 
15
 (pg. 
81
-
91
)
[19]
Henkin
L
A theory of propositional types
Fundamenta Math
 , 
1963
, vol. 
52
 (pg. 
323
-
344
)
[20]
Materna
P
Concepts and Objects
 , 
1998
Helsinki
 
Acta Philosophica Fennica 63
[21]
Materna
P
Conceptual Systems
 , 
2004
Berlin
Logos Verlag
[22]
Novák
V
On the syntactico-semantical completeness of first-order fuzzy logic I, II
Kybernetika
 , 
1990
, vol. 
26
 (pg. 
47
-
66, 134–154
)
[23]
Novák
V
Descriptions in the full fuzzy type theory
Neural Network World 5
 , 
2003
(pg. 
559
-
565
)
[24]
Novák
V
2003
From fuzzy type theory to fuzzy intensional logic, in: Proc. Third Conf. EUSFLAT 2003
Zittau, Germany
University of Applied Sciences at Zittau/Goerlitz
[25]
Novák
V
Fuzzy type theory as higher order fuzzy logic
2005
in: Proc. 6th Int. Conference on Intelligent Technologies (InTech’05), Dec. 14–16, 2005, Fac. of Science and Technology
Bangkok, Thailand
Assumption University
[26]
Novák
V
On fuzzy type theory
Fuzzy Sets and Systems
 , 
2005
, vol. 
149
 (pg. 
235
-
273
)
[27]
Novák
V
EQ-algebras: primary concepts and properties
2006
in: Proc. Czech-Japan Seminar, Ninth Meeting, Kitakyushu & Nagasaki, August 18–22, 2006, Graduate School of Information
Japan
Waseda University
[28]
Novák
V
Castillo
O
EQ-algebras in progress
Theoretical Advances and Applications of Fuzzy Logic and Soft Computing
 , 
2007
Berlin
Springer
(pg. 
876
-
884
)
[29]
Novák
V
Principal fuzzy type theories for fuzzy logic in broader sense
2008
Málaga, Spain
University of Málaga
 
in: Proc. Conf. IPMU’2008
[30]
Novák
V
de Baets
B
EQ-algebras
Fuzzy Sets and Systems
 , 
2009
, vol. 
160
 (pg. 
2956
-
2978
)
[31]
Novák
V
Dyba
M
Non-commutative EQ-logics and their extensions
2009
Portugal
Lisbon
 
in: Proc. World Congress IFSA-EUSFLAT 2009, Calouste Gulbenkian Foundation
[32]
Novák
V
Perfilieva
I
Močkoř
J
Mathematical Principles of Fuzzy Logic
 , 
1999
Boston
Kluwer
[33]
Pavelka
J
On fuzzy logic I, II, III
Zeitschrift für Mathematische Logik und Grundlagen der Mathematik
 , 
1979
, vol. 
25
 (pg. 
45
-
52
119–134, 447–464
[34]
Ramsey
F
The foundations of mathematics
Proceedings of the London Mathematical Society
 , 
1926
, vol. 
25
 (pg. 
338
-
384
)
[35]
Russell
B
Mathematical logic as based on the theory of types
American Journal of Mathematics
 , 
1908
, vol. 
30
 (pg. 
222
-
262
)
[36]
Tourlakis
G
Mathematical Logic
 , 
2008
New York
J. Wiley & Sons