Abstract

The acceptability of four different aphid species Macrosiphum albifrons (Essig), Macrosiphum euphorbiae (Thomas), Macrosiphum pseudorosae Patch, and Myzus persicae (Sulzer) (Hemiptera: Aphididae), as prey for four lady beetle species, one native species Coccinella trifasciata L, and three non-native Coccinella septempunctata L, Harmonia axyridis Pallas, Propylea quatuordecimpunctata L (Coleoptera: Coccinellidae) were tested in the laboratory. The relative field abundance of adults of the same lady beetle species on host vegetation, Lupinus polyphyllus Lindley (Fabales: Fabaceae), Solanum tuberosum L (Solanales: Solanaceae), and Rosa multiflora Thunberg (Rosales: Rosaceae), both with and without aphids present was also observed. In the laboratory, H. axyridis generally consumed the most aphids, while P. quatuordecimpunctata cons umed the fewest. The exception was P. quatuordecimpunctata, which consumed a greater number of M. albifrons nymphs, and C. trifasciata, which consumed a greater number of M. albifrons nymphs and adults, compared with the other two beetle species. Lady beetles consumed fewer M. albifrons compared with the other three aphid species, likely because of deterrent compounds sequestered by this species from its host plant. In the field, P. quatuordecimpunctata was the most abundant species found on L. polyphyllus and S. tuberosum.

Introduction

Lady beetles (Coleoptera: Coccinellidae) are known to be voracious predators of plant pests such as aphids (Hemiptera: Aphididae) (Hodek 1973; Gordon 1985). It is often assumed that aphidophagous lady beetles are highly polyphagous, consuming most (if not all) aphid species that they encounter (Pedigo and Rice 2006). However, there is evidence that not every aphid species is equally suitable for every lady beetle species (Obrycki and Orr 1990; Phoofolo and Obrycki 1997; Kalushkov 1998; Michaud 2000; Kalushkov and Hodek 2004; Mignault et al. 2006). For example, Michaud (2000) conducted choice tests with seven lady beetle species and two aphid species, Toxoptera citricida and Aphis spiraecola. Although all lady beetles tested consumed both aphid species, four species Coccinella septempunctata, Coleomegilla maculata fuscilabris, Coelophora inaequalis, and Olla v-nigrum, were not able to complete their developmental cycle with either aphid species. Depending on the aphid species consumed and the addition of supplements (pollen) to the diet, the other three species, Hippodamia convergens, Cycloneda sanguinea, and Harmonia axyridis, varied considerably in the number of eggs laid, egg viability, larval development time, and adult weight.

Lady beetles are commonly released to combat a diverse range of pests (Gordon 1985; Koch 2003), despite the fact that little is known about specific prey preferences of different species. The success of such pest control measures depends, in part, upon the willingness of the lady beetles to consume the pest in question. Releases of non-native species may supplement pest control by native species when their prey species do not overlap or when prey is plentiful. Native lady beetle abundance, however, may be reduced through competition with non-native species with overlapping prey preferences. Additionally, non-native lady beetles may alter aphid community structure. Determining differences in prey consumption by different lady beetle species may provide insight into changes that occur in systems where non-native species become established. In the laboratory, one native and three non-native lady beetle species were provided four different species of aphid prey and their consumption was recorded. To determine if any differences documented in the laboratory were reflected in the field, lady beetle species were observed for their association with these aphids under field conditions.

Materials and Methods

Study species

The four lady beetle species chosen for this study are aphidophagous (Gordon 1985) and abundant in Maine in the same habitats (Finlayson et al. 2008). The native lady beetle species used was Coccinella trifasciata perplexa Mulsant, which is found from Labrador south to New Jersey and west to California and Alaska (Gordon 1985). The non-native lady beetle species used were Coccinella septempunctata L., Harmonia axyridis Pallas, and Propylea quatuordecimpunctata L. These three species are Palearctic in origin and were intentionally and inadvertently introduced in North America. C. septempunctata has been established in North America since 1973 (Angalet and Jacques 1975), H. axyridis since 1988 (Chapin and Brou 1991; Tedders and Schaefer 1994), and P. quatuordecimpunctata since 1968 (Wheeler 1990).

Four aphid species that are abundant and readily available in the region were chosen to serve as the prey for the selected lady beetle species. The potato aphid, Macrosiphum euphorbiae (Thomas), feeds on over 200 plant species (Blackman and Eastop 1984). The green peach aphid, Myzus persicae (Sulzer), feeds on over 40 different plant families (Blackman and Eastop 1984). The hosts of the rose aphid, Macrosiphum pseudorosae (Patch), include the genus Rosa and a variety of herbaceous plants (Foottit and Maw 1997). The lupine aphid, Macrosiphum albifrons Essig, is a specialist, feeding exclusively on plants in the genus Lupinus (Blackman and Eastop 1984). While M. persicae is believed to be Palearctic in origin (Blackman and Eastop 1984), the other three aphid species are Nearctic (Stroyan 1981; Blackman and Eastop 1984).

Laboratory trials

Lady beetles were collected from the field 48-72 hours before test initiation, maintained on a 50/50 diet of honey/egg yolk, then provided with water, but no food, for 48 hours before test initiation. Lady beetles were collected from a variety of locations and plants in Orono, Maine (44.8835° N, 68.6721° W), that included mixed shrub (Solidago sp., Rubus sp., Prunus sp., Rosa sp., Cornus sericea, Alnus sp.), apple (Malus sp.), grain (Hordeum sp., Avena sp.), mixed organic crops (Solanum lycopersicon, Allium sp., Brassica sp., Pisum sp., Phaseolus sp.) and fallow fields (Phleum pratense, Trifolium sp., Cirsium sp., Vicia sp., Fragaria sp.).

Potato aphids and green peach aphids were obtained from colonies maintained in the laboratory. The colonies were originally founded by aphids collected from potato, Solanum tuberosum (Solanales: Solanaceae), in Presque Isle, Maine, and then maintained for at least 20 generations on excised potato foliage in the laboratory. Rose and lupine aphids were collected in the field from host vegetation including multi-flora rose, Rosa multiflora Thunberg (Rosales: Rosaceae), and lupine, Lupinus polyphyllus Lindley (Fabales: Fabaceae), respectively, and then maintained in the laboratory on excised host vegetation for up to 3 days before use in trials.

For each experiment, 10 aphids of the same species were placed, using a paintbrush, on an excised leaflet held within a 100 x 15 mm polystyrene Petri dish. Leaves used in trials were from the host plants from which aphids were collected in the field, as previously stated. Each trial was initiated when a single lady beetle previously housed in a separate Petri dish was added to the Petri dish containing the aphids by quickly exchanging lids between the two Petri dishes when the lady beetle was on the lid. After 24 hours, the beetle was removed and the number of aphids remaining in the dish was recorded. When a partial aphid remained, it was estimated to the 0.25 aphid. The experiment was conducted separately with adult apterae and with first to second instars. Sixty trials were conducted with each lady beetle species/aphid species pairing: 30 replicates with adult aphids and 30 replicates with the nymphs.

Lady beetles, aphid colonies, and test dishes were housed in Percival I-33VL Intellus environmental chambers at a 16:8 L:D photoperiod and 20⁰ C. Trials with M. euphorbiae and M. albifrons were conducted in 2005, from June 16 to August 12 and from June 2 to August 12, respectively. Trials with M. persicae and M. pseudorosae were conducted in 2006, from May 24 to August 16 and from August 10 to August 24, respectively. Trials were conducted continuously throughout the range of dates and in random order with respect to beetle species, aphid species, and choice of aphid and adults nymph or adult.

Field observations

Plots of L. polyphyllus, S. tuberosum, and R. multiflora were observed for 30 minutes each in Orono, ME (44.8974°N, 68.6873°W). Observations were made between 10:00 am and 2:00 pm in plots at least 0.1 ha in size where the vegetation of interest was dominant (≥ 50%). The number of adult lady beetles on host vegetation where aphids were absent (designated “absent”) or where M. albifrons, M. euphorbiae, or M. pseudorosae were present (designated “present”) was recorded. Because aphid populations were fairly contiguous where present, with no break in distribution greater than approximately one meter, each of the plots observed was designated as either “absent” or “present.” Forty observation trials were conducted for each of the three species. M. persicae were not found in the field in numbers sufficient to conduct observations. M. albifrons colonies were observed from June 2 to July 12, 2005,M. euphorbiae colonies were observed from June 17 to July 30, 2005, and M. pseudorosae colonies were observed from June 20 to August 24, 2006.

Statistical analyses

Normality of laboratory-generated data was tested using the Wilk-Shapiro test (PROC UNIVARIATE; SAS Institute Inc. 2002). The data were transformed using rank transformations (Conover and Iman 1989). Means and standard errors reported in this paper were calculated from the untransformed data. Differences between lady beetle species were analyzed separately for each aphid species using one-way ANOVA followed by Tukey’s multiple comparison test (PROC GLM; SAS Institute Inc. 2002). Analyses were conducted separately for aphid nymphs and adults.

Poisson regression (PROC GENMOD; SAS Institute Inc. 2002; SAS Institute Inc. 2005) was used to analyze lady beetle count data generated during field observations. Each plant species observed was analyzed separately, with the number of lady beetles as the response variable and lady beetle species and aphid presence/absence as the predictor variables. Overdispersion for M. albifrons and M. pseudorosae was corrected using a multiplicative overdispersion factor (Pearson chi-square divided by degrees of freedom) (Cox 1983; Allison 1999; SAS Institute Inc. 2005).

Results

Laboratory trials

There were always significant differences in the numbers of aphids consumed by different lady beetle species (Figure 1). H. axyridis consumed the most nymphs and adults of M. persicae (nymphs: F3,116 = 6.27, p < 0.0006; adults: F3,116 = 37.37, p < 0.0001), M. euphorbiae (nymphs: F3,116 = 11.98, p < 0.0001; adults: F3,116 = 20.67, p < 0.0001), and M. pseudorosae (nymphs: F3,116 = 32.59, p < 0.0001; adults: F3,116 = 48.47, p < 0.0001) compared with the other three lady beetle species, while P. quatuordecimpunctata consumed the fewest adults of these three aphid species and the fewest nymphs of M. persicae and M. euphorbiae. C. septempunctata consumed the lowest numbers of M. pseudorosae nymphs compared with the other three beetle species. Lady beetles generally consumed fewer M. albifrons (Figure 1) compared with the other three aphid species. C. trifasciata and P. quatuordecimpunctata consumed a greater number of M. albifrons nymphs compared with the other two beetle species (F3,116 = 11.86, p < 0.0004); C. trifasciata also consumed the greatest number of lupine aphid adults (F3,116 = 6.46, p < 0.0006).

Figure 1

Mean (± standard error) consumption of aphids by different lady beetle species (Ct = Coccinella trifasciata, Cs = Coccinella septemmpunctata, Ha = Harmonia axyridis, Pq = Propylea quaturodecimpunctata). For each aphid species, nymphs and adults were analyzed separately; means with the same letter are not significantly different. High quality figures are available online.

Field observations

All four lady beetle species were found on S. tuberosum, while only H. axyridis and P. quatuordecimpunctata were found on R. multiflora and only C. trifasciata and P. quatuordecimpunctata were found on L. polyphyllus (Table 1). There were significant differences in mean numbers of lady beetle species documented in two of the three vegetation types observed. The most abundant species in S. tuberosum was P. quatuordecimpunctata, followed by C. septempunctata (X2= 18.17, p < 0.0001), H. axyridis (X2 = 22.02, p < 0.0001), and C. trifasciata (X2 = 18.84, p < 0.0001). On L. polyphyllus, P. quatuordecimpunctata was more abundant than C. trifasciata (X2 = 5.52, p = 0.0188). However, there was no difference in the relative abundance of P. quatuordecimpunctata and H. axyridis on R. multiflora. Although mean lady beetle numbers were higher in six out of the eight occasions where aphids were present compared to absent (Table 1), those differences were not significant.

Table 1

Mean (± standard error) number of lady beetles documented during field observations. Mean beetles documented where aphids were present on vegetation are presented alongside mean beetles that were documented where aphids were absent

Plant/Aphid Species
potatoroselupine
Lady Beetle Speciespresentabsentpresentabsentpresentabsent
 22 18 26 14 36 
C. trifasciata Mean 0.05 0.06 d 0.39 0 b 
SE 0.045 0.055   0.1 51  
C. septempunctata Mean 0.36 0.1 7 b 
SE 0.105 0.090     
H. axyridis Mean 0.14 0.17 c 0.81 0.14 a 
SE 0.075 0.090 0.236 0.097   
P. quatuordecimpunctata Mean 1.36 0.89 a 0.46 0.36 a 1.25 0.5 a 
SE 0.242 0.196 0.149 0.169 0.377 0.289 
Plant/Aphid Species
potatoroselupine
Lady Beetle Speciespresentabsentpresentabsentpresentabsent
 22 18 26 14 36 
C. trifasciata Mean 0.05 0.06 d 0.39 0 b 
SE 0.045 0.055   0.1 51  
C. septempunctata Mean 0.36 0.1 7 b 
SE 0.105 0.090     
H. axyridis Mean 0.14 0.17 c 0.81 0.14 a 
SE 0.075 0.090 0.236 0.097   
P. quatuordecimpunctata Mean 1.36 0.89 a 0.46 0.36 a 1.25 0.5 a 
SE 0.242 0.196 0.149 0.169 0.377 0.289 

N = For the number of observations, out of 40, where aphids were either present or absent. each plant/aphid species, lady beetle species with the same letter are not significantly different.

Table 1

Mean (± standard error) number of lady beetles documented during field observations. Mean beetles documented where aphids were present on vegetation are presented alongside mean beetles that were documented where aphids were absent

Plant/Aphid Species
potatoroselupine
Lady Beetle Speciespresentabsentpresentabsentpresentabsent
 22 18 26 14 36 
C. trifasciata Mean 0.05 0.06 d 0.39 0 b 
SE 0.045 0.055   0.1 51  
C. septempunctata Mean 0.36 0.1 7 b 
SE 0.105 0.090     
H. axyridis Mean 0.14 0.17 c 0.81 0.14 a 
SE 0.075 0.090 0.236 0.097   
P. quatuordecimpunctata Mean 1.36 0.89 a 0.46 0.36 a 1.25 0.5 a 
SE 0.242 0.196 0.149 0.169 0.377 0.289 
Plant/Aphid Species
potatoroselupine
Lady Beetle Speciespresentabsentpresentabsentpresentabsent
 22 18 26 14 36 
C. trifasciata Mean 0.05 0.06 d 0.39 0 b 
SE 0.045 0.055   0.1 51  
C. septempunctata Mean 0.36 0.1 7 b 
SE 0.105 0.090     
H. axyridis Mean 0.14 0.17 c 0.81 0.14 a 
SE 0.075 0.090 0.236 0.097   
P. quatuordecimpunctata Mean 1.36 0.89 a 0.46 0.36 a 1.25 0.5 a 
SE 0.242 0.196 0.149 0.169 0.377 0.289 

N = For the number of observations, out of 40, where aphids were either present or absent. each plant/aphid species, lady beetle species with the same letter are not significantly different.

Discussion

Consumption rates of the four aphid species differed among the four lady beetle species. With the exception of M. albifrons, H. axyridis was the most voracious predator, while P. quatuordecimpunctata removed the least prey. There may be a number of reasons for these differences. First, consumption rates may have been affected by the size of the beetles and/or the size of the prey. C. septempunctata is the largest of the lady beetles studied, followed by H. axyridis, C. trifasciata, and P. quatuordecimpunctata (Finlayson unpublished data). Being the smallest in size, P. quatuordecimpunctata may be satiated with fewer aphids compared with the other species. M. albifrons is larger than the other aphid species, thus fewer M. albifrons may satiate a beetle compared with the other species offered. Consumption rate may also be affected by differences in handling (Pervez and Omkar 2005), nutritional suitability of prey (Houck 1991; Roger et al. 2001; Gagné et al. 2002), or chemical deterrence (Pasteels et al. 1983; Nishida and Fukami 1989).

Observations of adult beetles on field plots were generally consistent with expectations based on their consumption of aphids in the laboratory. H. axyridis consumed the most M. pseudorosae in laboratory trials and was one of two species found in the field with M. pseudorosae. C. trifasciata consumed the most M. albifrons in laboratory trials and was one of two species found in the field with M. albifrons. The other beetle species found with M. pseudorosae and M. albifrons was P. quatuordecimpunctata, the species that consumed the second largest number of M. pseudorosae and M. albifrons, although this difference was only statistically significant for M. albifrons nymphs. It is also not surprising to find P. quatuordecimpunctata in all observations because this species is probably the most abundant lady beetle in Maine (Finlayson et al. 2008).

Three of the species tested in this study, H. axyridis, C. septempunctata, and P. quatuordecimpunctata, are not native to Maine (Gordon 1985). Because lady beetle species differ in their prey consumption, decreases in the relative abundance of native species following the establishment of non-native lady beetle species that has been reported in a number of studies (Elliot et al. 1996; Brown and Miller 1998; Colunga-Garcia and Gage 1998; Michaud 2002; Brown 2003; Turnock et al. 2003; Alyokhin and Sewell 2004) may favor some aphid species over others. For example, Alyokhin et al. (2005) observed a significant reduction in both density and the amplitude of annual oscillations of populations of M. persicae and Aphis nasturtii following the establishment of H. axyridis and P. quatuordecimpunctata.

When compared with other aphidophagous coccinellid species, H. axyridis has been shown to have superior competitive abilities regarding its feeding rate (Michaud 2002), intraguild predation (Hironori and Katsuhiro 1997; Yasuda et al. 2001; Yasuda et al. 2004), and interactions with natural enemies (Dutcher et al. 1999; Saito and Bjørnson 2006; Finlayson et al. 2009). Similarly, in this study, H. axyridis exhibited greater preyconsumption of three of the four aphid species tested compared with the other lady beetle species tested. The true voracity of H. axyridis, however, may have been underestimated because it consumed close to the upper limit of what was made available in trials. Providing more than ten aphids may have improved the resolution of species differences.

M. albifrons is native to the study area (Stroyan 1981) and is known to sequester toxic compounds from its host plant that have been shown to cause a “narcotizing effect” on C. septempunctata (Gruppe and Roemer 1988). It is thus notable that H. axyridis and C. septempunctata, both introduced species without historical exposure to M. albifrons, consumed the lowest numbers of this species. In contrast, C. trifasciata, which is native to the area, consumed the most M. albifrons adults. It would seem that C. trifasciata may have evolved the ability to tolerate these compounds, whereas the recently introduced non-native species have yet to do so. By virtue of being able to exploit lupine aphids, C. trifasciata may enjoy a refuge from prey competition with the non-native species. These differences in prey consumption suggest that different lady beetle species should not be considered equal consumers of aphids.

Acknowledgments

The authors would like to thank the following for their assistance in the field and laboratory: Lauren Little, David Ginsberg, Allison Fleming, and Todd Finlayson. We would also like to thank Joseph Cannon, John Jemison, Black Bear Food Guild, and Orono Land Trust for providing access and guidance on their land, and Frank Drummond and Malcolm Hunter, Jr., J.P. Michaud, and two anonymous reviewers for providing comments on the manuscript. This research was supported by the Maine Agricultural and Forest Experiment Station (Hatch ME08466-01) and the National Science Foundation’s GK-12 Teaching Fellows Program (Grant # DGE – 0231642 to S. Brawley et al.). This is Publication No. 3034 of the Maine Agricultural and Forest Experiment Station.

References

Allison
PD
1999
Logistic Regression Using the SAS System: Theory and Application.
SAS Institute Inc.

Alyokhin
A
Sewell
G
2004
Changes in lady beetle community following the establishment of three alien species.
Biological Invasions
6
463
471

Alyokhin
A
Drummond
FA
Sewell
G
2005
Density-dependent regulation in populations of potato-colonizing aphids.
Population Ecology
47
257
266

Angalet
GW
Jacques
JR
1975
The establishment of Coccinella septempunctata L. in the continental United States. United States Department of Agriculture Cooperative Economic Insect Report
25
883
884

Blackman
RL
Eastop
VF
1984
Aphids on the World's Crops: An Identification and Information Guide.
John Wiley & Sons.

Brown
MW
Miller
SS
1998
Coccinellidae (Coleoptera) in apple orchards of eastern West Virginia and the impact of invasion by Harmonia axyridis.
Entomological News
109
136
142

Brown
MW
2003
Intraguild responses of aphid predators on apple to the invasion of an exotic species, Harmonia axyridis.
BioControl
48
141
153

Chapin
EA
1966
A new species of Myrmecophilous Coccinellidae, with notes on other Hyperspini (Coleoptera).
Psyche
73
278
283

Colunga-Garcia
M
Gage
SH
1998
Arrival, establishment, and habitat use of the multicolored Asian lady beetle (Coleoptera: Coccinellidae) in a Michigan landscape.
Environmental Entomology
27
1574
1580

Cox
DR
1983
Some remarks on overdispersion.
Biometrika
70
269
274

Dutcher
JD
Estes
PM
Dutcher
MJ
1999
Interaction in Entomology: Aphids, aphidophaga and ants in pecan orchards.
Journal of Entomological Science
34
40
56

Elliot
N
Kieckhefer
R
Kauffman
W
1996
Effects of an invading coccinellid on native coccinellids in an agricultural landscape.
Oecologica
105
537
544

Finlayson
CJ
Landry
KM
Alyokhin
AV
2008
Abundance of native and non-native lady beetles (Coleoptera: Coccinellidae) in different habitats in Maine.
Annals of the Entomological Society of America
101
1078
1087

Finlayson
CJ
Alyokhin
AV
Porter
EW
2009
Interactions of native and non-native lady beetle species (Coleoptera: Coccinellidae) with aphid-tending ants in laboratory arenas.
Environmental Entomology,
38
846
855

Foottit
RG
Maw
E
1997
Biological survey of Canada (terrestrial arthropods).
In:
Danks
HV
Downes
JA
, editors.
Insects of the Yukon
Canadian Museum of Nature.

Gagné
I
Coderre
D
Mauffette
Y
2002
Egg cannibalism by Coleomegilla maculata lengi neonates: preference even in the presence of essential prey.
Ecological Entomology
27
285
291

Gordon
RD
1985
The Coccinellidae (Coleoptera) of America north of Mexico.
Journal of New York Entomological Society
93
1
912

Gruppe
A
Roemer
P
1988
The lupin aphid (Macrosiphum albifrons Essig, 1911) (Hom., Aphididae) in West Germany: Its occurrence, host plants and natural enemies.
Journal of Applied Entomology
106
135
143

Hironori
Y
Katsuhiro
S
1997
Cannibalism and interspecific predation in two predatory ladybirds in relation to prey abundance in the field.
Entomophaga
42
53
163

Hodek
I
1973
Biology of Coccinellidae
W Junk Publisher.

Houck
MA
1991
Time and resource partitioning in Stethorus punctum (Coleoptera: Coccinellidae).
Enviromental Entomology
20
494
497

Kalushkov
P
1998
Ten aphid species (Sternorrhyncha: Aphididae) as prey for Adalia bipunctata (Coleoptera: Coccinellidae).
European Journal of Entomology
95
343
349

Kalushkov
P
Hodek
I
2004
The effects of thirteen species of aphids on some life history parameters of the ladybird
Coccinella septempunctata. BioControl
49
21
32

Koch
RL
2003
The multicolored Asian lady beetle, Harmonia axyridis: A review of its biology, uses in biological control, and non-target impacts.
Journal of Insect Science
3
32
, Available online:
http://insectscience.org/3.32

Michaud
JP
2000
Development and reproduction of ladybeetles (Coleoptera: Coccinellidae) on the citrus aphids Aphis spiraecola Patch and Toxoptera citricida (Kirkaldy) (Homoptera: Aphididae).
Biological Control
18
287
297

Michaud
JP
2002
Invasion of the Florida citrus ecosystem by Harmonia axyridis (Coleoptera: Coccinellidae) and asymmetric competition with a native species, Cycloneda sanguinea.
Environmental Entomology
31
827
835

Mignault
M-P
Roy
M
Brodeur
J
2006
Soybean aphid predators in Quebec and the suitability of Aphis glycines as prey for three Coccinellidae.
BioControl
51
89
106

Nishida
R
Fukami
H
1989
Host plant iridoid-based chemical defense of an aphid, Acyrthosiphon nipponicus, against ladybird beetles.
Journal of Chemical Ecology
15
1837
1845

Obrycki
JJ
Orr
CJ
1990
Suitability of three prey species for Nearctic populations of Coccinella septempunctata, Hippodamia variegata, and Propylea quatuordecimpunctata (Coleoptera: Coccinellidae).
Journal of Economic Entomology
83
1292
1297

Pasteels
JM
Grégoire
JC
Rowell-Rahier
M
1983
The chemical ecology of defense in arthropods.
Annual Review of Entomology
28
263
289

Pedigo
LP
Rice
ME
2006
Entomology and Pest Management
Pearson Prentice Hall.

Pervez
A
Omkar
2005
Functional responses of coccinellid predators: An illustration of a logistic approach.
Journal of Insect Science
5
5
, Available online:
http://insectscience.org/5.5

Phoofolo
MW
Obrycki
JJ
1997
Comparative prey suitability of Ostrinia nubilalis eggs and Acyrthosiphon pisum for Coleomegilla maculata.
Biological Control
9
167
172

Roger
C
Coderre
D
Vigneault
C
Boivin
G
2001
Prey discrimination by a generalist coccinellid predator: Effect of prey age or parasitism?
Ecological Entomology
26
163
172

SAS Institute Inc
2002
SAS Institute Inc.

SAS Institute Inc
2005
Fitting Poisson Regression Models Using the GENMOD Procedure Course Notes.
SAS Institute Inc.

Saito
T
Bjørnson
S
2006
Horizontal transmission of a microsporidium from the convergent lady beetle, Hippodamia convergens Guérin-Méneville (Coleoptera: Coccinellidae), to three coccinellid species of Nova Scotia.
Biological Control
39
427
433

Stroyan
HLG
1981
A North American lupin aphid found in Britain.
Plant Pathology
30
253

Tedders
WL
Schaefer
PW
1994
Release and establishment of Harmonia axyridis (Coleoptera: Coccinellidae) in the Southeastern United States.
Entomological News
105
228
243

Turnock
WJ
Wise
IL
Matheson
FO
2003
Abundance of some native coccinellids (Coleoptera: Coccinellidae) before and after the appearance of Coccinella septempunctata.
Canadian Entomologist
135
391
404

Wheeler
AG
1990
Propylea quatuorodecimpunctata: Additional records of an adventive lady beetle (Coleoptera: Coccinellidae).
Entomological News
101
164
166

Yasuda
H
Kikuchi
T
Kindlmann
P
Sato
S
2001
Relationships between attack and escape rates, cannibalism, and intraguild predation in larvae of two predatory ladybirds.
Journal of Insect Behavior
14
373
384

Yasuda
H
Evans
EW
Kajita
Y
Urakawa
K
Takizawa
T
2004
Asymmetric larval interactions between introduced and indigenous ladybirds in North America.
Oecologia
141
1432
1939

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, providedthe original work is properly cited.