A Randomized Phase II/III Trial of 3 Weekly Intraperitoneal versus Intravenous Carboplatin in Combination with Intravenous Weekly Dose-dense Paclitaxel for Newly Diagnosed Ovarian, Fallopian Tube and Primary Peritoneal Cancer

Keiichi Fujiwara1,*, Eriko Aotani2, Tetsutaro Hamano2, Shoji Nagao1, Hiroyuki Yoshikawa3, Toru Sugiyama4, Junzo Kigawa5, Daisuke Aoki6, Noriyuki Katsumata7, Masahiro Takeuchi2 and Mitsuaki Suzuki8

1Department of Gynecologic Oncology, Saitama Medical University International Medical Center, Hidaka-City, Saitama, 2Clinical Trial Coordinating Center, Kitasato University Research Center for Clinical Pharmacology, Tokyo, 3Department of Obstetrics and Gynecology, Tsukuba University, Tsukuba, Ibaraki, 4Department of Obstetrics and Gynecology, Iwate Medical University, Iwate, 5Department of Gynecologic Oncology, Tottori University Cancer Center, Yonago, Tottori, 6Department of Obstetrics and Gynecology, Keio University, Shinjuku-ku, 7Division of Medical Oncology, National Cancer Center Hospital, Tokyo and 8Department of Obstetrics and Gynecology, Jichi Medical University, Shimono, Tochigi, Japan

*For reprints and all correspondence: Keiichi Fujiwara, Department of Gynecologic Oncology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka-City, Saitama 350-1298, Japan. E-mail: fujiwara@saitama-med.ac.jp

Received July 21, 2010; accepted August 29, 2010

Retrospective studies and a Phase II trial demonstrated the promising efficacy and safety of intraperitoneal administration of carboplatin in ovarian, fallopian tube and primary peritoneal cancer. A Japanese Gynecologic Oncology Group 3016 randomized Phase III trial for these cancers showed dose-dense weekly administration of paclitaxel significant improvement of progression-free survival and overall survival over every 3-week administration. From June 2010, we have been conducting a randomized Phase II/III trial of intravenous versus intraperitoneal administration of carboplatin every 3 week in combination with dose-dense weekly administration of paclitaxel. The purpose of this trial is to prove the superiority of intraperitoneal administration of carboplatin over intravenous administration. Primary endpoint is progression-free survival and secondary endpoints include overall survival, quality of life assessment and cost–benefit. The first 120 patients will be evaluated for the feasibility of intraperitoneal arm and a total of 746 patients will be enrolled in a Phase III study.

Key words: ovarian cancer – intraperitoneal chemotherapy – carboplatin – paclitaxel – dose-dense chemotherapy

INTRODUCTION

In Japan, it is estimated that incidence of epithelial ovarian cancer is approximately 8000 per year and almost half of the patients died of this disease. There is no established screening method; therefore, 60–70% of the patients are at Stages III or IV when newly diagnosed. A standard treatment strategy for the advanced ovarian cancer is a maximum debulking surgery followed by chemotherapy. The standard chemotherapy regimen has been a combination of carboplatin at AUC of 5–6 and paclitaxel at 175 mg/m² given intravenously every 3 weeks (1). This regimen has been utilized as standard since 1999, yet the prognosis of advanced ovarian cancer is poor. Numerous efforts have been made to improve the survival, and two distinct innovations on the chemotherapy were achieved recently, which are intraperitoneal chemotherapy and weekly dose-dense administration of paclitaxel.

Three large randomized trials have been conducted in the USA and all of them showed improvement of overall survival (OS) and/or progression-free survival (PFS) (2–4). US National Cancer Institute and Gynecology Oncology Group (GOG) conducted a metaanalysis and found that
intraperitoneal (IP) chemotherapy improved OS at the hazard ratio of 0.78 (5). In response to this result, US NCI has issued a clinical announcement in 2006 to recommend IP cisplatin-based chemotherapy for optimally debulked Stage III ovarian cancer patients. In spite of these efforts, IP chemotherapy has not been accepted in the gynecologic cancer community, mainly because of the toxicity. It is expected that replacement of cisplatin to carboplatin may reduce the toxicity without sacrificing the efficacy (6).

Another innovation was the application of dose-dense weekly paclitaxel. Japanese Gynecologic Oncology Group (JGOG) has conducted a large-scale randomized trial and demonstrated significant improvement in PFS and OS (7).

Therefore, it is of great expectation that the combination of dose-dense weekly administration of paclitaxel with IP administration of carboplatin will improve the prognosis further.

This protocol was designed by the Protocol Committee of Gynecologic Oncology Trial and Investigation Consortium (GOTIC) and Ovarian Committee member of JGOG. The protocol was approved by Clinical Trial Review Committee of GOTIC as GOTIC-001 on 9 September 2009, and that of JGOG as JGOG-3019 on 26 April 2010. The protocol was submitted for the Evaluation System of Investigational Medical Care of Ministry of Health, Labor and Welfare, Japan, and was approved to conduct under the Japanese governmental health insurance system on 16 April 2010. This trial was registered at the UMIN Clinical Trials Registry as UMIN000003670 (http://www.umin.ac.jp/ctr/index.htm).

PROTOCOL DIGEST OF GOTIC-001/JGOG-3019

PURPOSE
This study was designed to prove superiority of IP administration of carboplatin over IV administration in newly diagnosed carcinoma of the ovary, fallopian tube and primary peritoneum. The combination of paclitaxel is the dose-dense weekly fashion based on the JGOG-3016 trial result.

STUDY SETTING
This is a multi-institutional randomized Phase II/III trial.

RESOURCE
Grants-in Aid for Cancer Research (H21–014), from the Ministry of Health, Labor and Welfare, Japan. Gynecologic Oncology Trial and Investigation Consortium and JGOG support this trial.

ENDPOINTS
The primary endpoint of this study is PFS. Secondary endpoints are OS, response rate in patients with measurable disease, quality of life assessment and cost–benefit.

ELIGIBILITY CRITERIA
(i) The patient must be planned to undergo laparotomy surgery for formal registration. Since this trial includes patents with both optimal and suboptimal residual disease, the patients with exploratory laparotomy are also eligible.
(ii) Patient who is preoperatively anticipated to be FIGO II to IV epithelial ovarian, fallopian tube or primary peritoneal cancer is eligible for pre-registration. And the patient must be clinically at Stages II–IV at the time of formal registration.
(iii) Patient who signed the consent for the placement of IP port system when she is assigned to the IP arm.
(iv) The patients who are planned to receive chemotherapy within 8 weeks after initial surgery.
(v) ECOG performance status must be 0–2.
(vi) Patient must have adequate organ functions.
(vii) Survival can be expected 3 month or more.
(viii) Age 20 or older.

Written informed consent must be obtained from the patient or legal guardian.

EXCLUSION CRITERIA
(i) Patients with borderline malignancies.
(ii) Patients who have received chemotherapy or radiation therapy for the current disease before enrolment.
(iii) Patients with any of the active concurrent malignancies or past history of malignancies of which the follow-up is within 5 years.
(iv) Patients with severe complications: patients with severe heart disease or cerebrovascular disease, or uncontrolled diabetes or hypertension, pulmonary fibrosis, interstitial pneumonitis, active bleeding, active gastrointestinal ulcer or sever neuropathy.
(v) Patients with history of hypersensitivity polyoxyethylene castor oil.
(vi) Patients with pleural effusion that need continuous drainage.
(vii) Patients with active infectious disease.
(viii) Patients with possibility of pregnancy or under breast-feeding.
(ix) Patients with symptomatic brain metastasis.
(x) Patients whose circumstances at the time of entry onto the study would not permit completion of study or required follow-up.

STUDY FLOW
The patient who is anticipated to have Stage II, III or IV carcinoma of the ovary, fallopian tube or primary peritoneum will be pre-registered through Web Registration System of Kitasato University Clinical Trial Coordinating Center (CTCC), after written informed consent was obtained. At the time of surgery, the physician will call to the Kitasato CTCC.
before closure of the abdominal wall. The coordinator will ask the stratification factors, clinical stages and the size of residual disease, then randomization result will be informed. This is considered as a formal registration. When the patient is randomized to IP arm, the Bard IP Port (#14 Fr) will be placed according to the surgical manual. For patient who randomized to the IV arm, IP port will not be placed. The protocol chemotherapy will be started within 8 weeks after confirmation of histology as epithelial cancer.

CONTROL ARM TREATMENT

For patients randomized to IV arm will receive paclitaxel at 80 mg/m² as 1 h intravenous (IV) infusion followed by carboplatin at AUC 6 as a 30–120 min IV infusion on Day 1. IV administration of paclitaxel will be repeated at 80 mg/m² on days 8 and 15. This regimen is considered as one cycle.

EXPERIMENTAL ARM TREATMENT

For patients randomized to IP arm will receive paclitaxel at 80 mg/m² as 1 h intravenous (IV) infusion followed by carboplatin at AUC 6 as a 30–120 min IV infusion on Day 1. IV administration of paclitaxel will be repeated at 80 mg/m² on days 8 and 15. This regimen is considered as one cycle.

Number of Cycles

The protocol treatment will be repeated for six cycles for patients with chemotherapy only after primary surgery. However, in patient, who will undergo interval debulking surgery after response to the suboptimal residual disease, they may receive up to eight cycles. Interval debulking surgery can be performed after three to five cycles of protocol chemotherapy, and then patient can receive three more cycles of chemotherapy.

Study Design and Statistical Considerations

This study was designed as a randomized Phase II/III trial. Target sample sizes and event were as follows.

- **Phase A**: 60 patients/arm
- **Phase B**: 510 events (target sample size: 746 patients, including Phase A patients)

Planned patient accrual duration is 3 year and planned follow-up duration will be either 3 year or until the time when the 510 events are observed, whichever it comes first.

Sample sizes were determined based on the following considerations.

Phase II Part (Phase A)

In the previous JGOG3016 study, treatment completion rate for dose-dense paclitaxel plus carboplatin (dd-TC) was 47.0%, and hematologic adverse event (more than or equal to grade 3) rate for dd-TC was the following, neutropenia: 91.7%, leukocytes: 80.4%, hemoglobin: 68.6%, platelets: 43.6%. Furthermore, the response rate for dd-TC was 55.8%.

According to above evidence, we performed statistical simulations for these factors to find a sample size which would be necessary to obtain 95% confidence intervals of these estimates with 15% precisions in the IV arm, and we calculated that 46 patients is needed. We also assumed that treatment completion rate in the IP arm is expected to be lower than the IV arm and hematologic adverse event rates defined above are expected to be higher, thereby the required sample size in the IP arm would be larger than those of the IV arm. Furthermore, we also assumed that some patients would not have a measurable site. Thus, we plan the sample size of 120 patients (60 patients for each arm) to be targeted. Phase II patients will be included in the Phase III analysis.

Phase III Part (Phase A + Phase B)

The primary endpoint of this study is PFS. In the previous JGOG3016 study, the median PFS was approximately 28 months for dd-TC. Furthermore, in a meta-analysis conducted by the National Cancer Institute (NCI) and the Gynecologic Oncology Group, the hazard ratio for PFS in the IP as compared with the IV was 0.784, indicating the 21.6% hazard reduction in the IP treatment).

According to above evidence, we assumed that the median PFS was 28 months for the IV arm and the hazard ratio for PFS in the IP arm as compared with the IV arm was 0.78. The 22% hazard reduction would be acceptable as a new standard treatment regimen. With an accrual period of 3 years and a minimum follow-up period of 3 years, 746 patients (373 patients for each arm) and 510 events (239 in IP arm) are required in order to detect this hazard ratio using the log-rank test with an overall two-sided type I error of 0.05 and a power of 80%. The final analysis will be performed either after the required events will be observed or after the minimum follow-up period will be completed, whichever comes first. If the required events will not be observed after the minimum follow-up period will be completed, extension of the follow-up duration will be considered.

Randomization and Stratifications

Patients will be centrally randomized. A minimization technique will be used for random treatment allocation stratifying by the enrolling institutions, initial FIGO stage of disease (II, III or IV) and the size of residual disease (complete, less than 1 cm, between 1 and 2 cm and more than 2 cm).

Analysis Method

Phase III part: analysis set. Efficacy analyses will be performed on all randomly assigned patients based on the intent-to-treat principle. Patients receiving at least one partial infusion of the study drug will be qualified for safety analysis.

Primary efficacy analysis. The PFS curves will be estimated using Kaplan–Meier method. Non-parametric 95% confidence intervals will be calculated for the median PFS, and the curves will be compared in the two treatment groups based on the two-sided log-rank test with an overall significance level of 5%. Multiplicity adjustments in regard to interim analysis will be noted in the section of the interim analysis.

Secondary efficacy analysis. The OS curves will be also estimated using Kaplan–Meier technique and compared using log-rank test. The response rates in the case with measurable site, and the treatment completion rates will be estimated by arms. We define the treatment completion case as the patient who receives treatment to the sixth cycle. Exact 95% confidence intervals will be calculated for each response rate and treatment completion rate. The rates for the two treatment groups will be compared using Fisher’s exact test and a normally approximated 95% confidence interval for the odds ratio.

Interim analysis. Under the proportional hazard assumption, alternative hypothesis and uniformly patients’ enrollment, the half of the required events (255 events) would be observed when approximately 3.2 years go by from a starting point of this trial. One interim analysis will be carried out either when 3.5 years go by from a starting point of this trial or when the required events will be observed, whichever comes first. In order to maintain an overall significance level of 5%, the PFS curves would be compared with Type I error of 0.3% in the interim analysis and of 4.7% in the final analysis calculated by the O’Brien and Fleming-type alpha spending function.

Subgroup analysis. In order to support analyses of primary and secondary endpoints, all comparisons and estimates will be stratified by randomization factors and other demographic data.

Exploratory analysis. Statistical models (e.g. Cox’s proportional hazard model and logistic regression model) will be used for further explorations.

Safety analysis. The number of patients for each adverse event will be summarized for each treatment group. The rates of adverse events will be estimated for each group and compared using an approximate 95% confidence interval for the odds ratio.

Quality of life and Cost-effectiveness analyses. Quality of life (QOL) and cost-effectiveness (CE) of IP arm and IV arm will be analyzed when 2 years go by from a starting point of this trial, assuming that 300 qualified patients would be observed at that time. CE data are also analyzed at the same time of QOL analysis. These endpoints will also be analyzed after the study completion (or study termination) with efficacy endpoints. Baseline QOL score will be analyzed using linear model adjusting for age and baseline ECOG performance status (PS). Other QOL scores will be analyzed using linear mixed model with age, PS and baseline QOL scores. Further details of QOL and CE analysis will be specified in the statistical analysis plan.

Analysis results of QOL evaluation will be published after 2 years go by from a starting point of this trial, assuming that 300 qualified patients would be observed at that time. For CE analysis, we define the analysis set of all patients who will be registered and agreed with informed consents of CE analysis. Analysis and report of cost-effectiveness with primary endpoints will be reviewed.

Feasibility analysis. In the Phase II period, the feasibility of combination of IV dose-dense paclitaxel and IP carboplatin will be evaluated. The number of patients for treatment completion, hematologic and non-hematologic toxic effects will be summarized for each treatment group. The rates of toxic effects will be estimated for each group. Furthermore, the rates at the end of the treatment will be estimated for each treatment group. Exact 95% confidence intervals will be calculated for each rate. These rates for the two treatment groups will be compared using Fisher’s exact test and an approximate 95% confidence interval for the odds ratio to aid the IDMC in reaching decisions about study continuation.

Study Monitoring

Study monitoring will be performed by the Kitasato University Clinical Trial Coordinating Center, to ensure data submission, patient eligibility, protocol compliance, safety and on-schedule study progress. On-site monitoring on the selective institution will be performed once a year. The monitoring reports will be submitted to the Independent Data and Safety Monitoring Committee every 6 months.

Participating Institutions

Leading institution as the study under the Evaluation System of Investigational Medical Care (ESIMeC) is Saitama Medical University International Medical Center. Other institutions waiting for the governmental approval for the ESIMeC as of 15 July 2010 are as follows. Iwate University, Jichi Medical University, Keio University, National Cancer Center Hospital, Tottori University, Tsukuba University, Gunma University and Saitama Medical University Medical Center. Other institutions are under the process of ESIMeC submission.
Funding

Conflict of interest statement

None declared.

References

