Abstract

Dendritic cells (DC) generated in vitro have to be viable and phenotypically mature to be capable of inducing T cell-mediated immunity after in vivo administration. To facilitate optimization of DC-based vaccination protocols, we investigated whether the cytokine environment and the mode of activation affect maturation and survival of DC derived from monocytes by a short-term protocol. Monocytes cultured for 24 h with granulocyte macrophage-colony stimulating factor and interleukin-4 were stimulated with proinflammatory mediators for another 36 h to generate mature DC. Additional activation with CD40 ligand and interferon (IFN)-γ increased viability of DC and promoted definitive maturation as defined by maintenance of a mature phenotype after withdrawal of cytokines. Addition of IFN-α to DC cultures prior to stimulation further enhanced definitive maturation: IFN-α-primed DC expressed high levels of costimulatory molecules and CC chemokine receptor 7 (CCR7) up to 5 days after cytokine withdrawal. Compared with unprimed DC, IFN-α-primed DC displayed equal capacity to migrate upon CCR7 ligation and to prime antigen-specific T helper cell as well as cytolytic T cell responses. In conclusion, we show that optimal maturation and survival of monocyte-derived DC require multiple activation signals. Furthermore, we identified a novel role for IFN-α in DC development: IFN-α priming of monocytes promotes definitive maturation of DC upon activation.

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/pages/standard-publication-reuse-rights)
You do not currently have access to this article.