Abstract

Largely shallow and putatively explosive divergences in the family Leporidae (rabbits and hares; order: Lagomorpha) have resulted in phylogenetic relationships that remain currently unresolved. These rapid radiations in different branches of the leporid tree have resulted in conflicting phylogenetic hypotheses. However, this phylogenetic incongruence may also result from inadequate taxon or character sampling, due to the high number of extinct and difficult to sample extant species, and highly conserved morphological characters. Sylvilagus (cottontail rabbits) constitute about 30% of the known extant leporid species. New species are routinely being recognized, and phylogenetic relationships with respect to other leporid genera, and within the genus, have failed to be recovered with certainty. Within Sylvilagus, the South American S. brasiliensis is the most widespread and poorly known taxon, likely comprising multiple species. Here, we reanalyze previously published molecular data from phylogenetic studies on Leporidae, focusing on the S. brasiliensis group, and assessing phylogenetic relationships using bifurcating trees and split networks to identify phylogenetic regions with polytomies. We estimate differentiation and phylogenetic relationships of molecular lineages within the S. brasiliensis group. Our analyses suggest that this group contains a number of divergent taxa, well differentiated from other cottontail species. We discern two major polytomies during leporid diversification. The first, at the base of the leporid radiation, likely resulted from a combination of hard (rapid radiation) and soft polytomies (high number of unsampled extinct species). The second polytomy likely resulted from a rapid radiation during the initial diversification of the genus Sylvilagus. We conclude that only a molecular phylogeny based on a broader taxonomic representation will fully resolve leporid phylogeny.

Divergências recentes, e provavelmente explosivas, na família de mamíferos Leporidae (coelhos e lebres; ordem: Lagomorpha) resultaram em relações filogenéticas ainda por resolver. Rápidas radiações em diferentes ramos da árvore dos leporídeos têm originado hipóteses filogenéticas conflitantes. Contudo, a incongruência filogenética pode ser resultado de amostragem taxonômica ou de caracteres inadequadas, devido a um alto número de taxa extintos e de espécies viventes difíceis de amostrar, ou a caracteres morfológicos bastante conservados. O gênero Sylvilagus (coelhos americanos) compreende cerca de 30% das espécies de leporídeos viventes. Novas espécies de Sylvilagus estão continuamente sendo descritas e, nem as relações filogenéticas com outros gêneros de leporídeos, nem as relações dentro do próprio gênero foram ainda recuperadas com certeza. Dentro de Sylvilagus, o táxon sul americano S. brasiliensis é o mais amplamente distribuído e menos conhecido, provavelmente incluindo múltiplas espécies. Neste trabalho, examinamos hipóteses filogenéticas moleculares previamente publicadas para Leporidae, expandindo a representação taxonômica do grupo S. brasiliensis e verificando as relações filogenéticas usando árvores bifurcadas e redes filogenéticas para identificar regiões de politomia. Nós estimamos a diferenciação e relações filogenéticas das linhagens moleculares dentro do grupo S. brasiliensis. As nossas análises sugerem que o grupo de espécies S. brasiliensis contém taxa bem divergentes das outras espécies do gênero. Além disso, observamos duas politomias principais ocorridas durante a diversificação dos leporídeos. A primeira, na base da sua radiação, provavelmente resultou da combinação de rápida radiação e elevado número de espécies extintas não amostradas. A segunda politomia provavelmente provém da rápida radiação durante a fase inicial de diversificação de Sylvilagus. Nós concluímos que apenas filogenias moleculares baseadas numa representação taxonômica mais ampla conseguirão resolver a filogenia dos leporídeos.

Assessment of relationships and phylogenetic reconstructions of pikas, hares, and rabbits (Lagomorpha) have historically been difficult. These mammals were described as—and considered—rodents for the first century and a half of the Linnean era (Gidley 1912; Arnason et al. 2002; Asher 2005; Kraatz et al. 2009; Ruedas et al. 2018). Similarly, the shallow phylogenetic relationships among hares and rabbits (Leporidae) also have been inconsistently resolved (Yamada et al. 2002; Matthee et al. 2004; Robinson and Matthee 2005; Ruf 2014). Not even combining cytogenetic, molecular, and morphological data has shed significant light on their relationships, because homoplasy, convergence, and autapomorphies have, in concert, hampered attaining more conclusive phylogenetic inferences (Robinson and Matthee 2005; Ruf 2014; Ge et al. 2015).

Introgression (Melo-Ferreira et al. 2009; Liu et al. 2011), natural selection and adaptation (Carneiro et al. 2012; Melo-Ferreira et al. 2014), and rapid radiations in different regions of the leporid tree as currently resolved (Halanych and Robinson 1999; Halanych et al. 1999; Robinson and Matthee 2005; Ruedas et al. 2017) have resulted in complex evolutionary histories and distinct phylogenetic hypotheses. The phylogenetic incongruencies could also have resulted from soft polytomies (i.e., insufficient data—Coddington and Scharff 1996). The most comprehensive molecular phylogenetic matrices of Lagomorpha published to date either used a multilocus approach and 25 of at least 67 extant leporid species (Matthee et al. 2004: figure 3: molecular supermatrix; Burgin et al. 2018), or were based on mtDNA only, comprising 31 species (Ge et al. 2013: figure 3). Resolving soft polytomies in the phylogeny of Leporidae is a difficult task, not only because of the number of extant species and the combination of a conservative bauplan with potentially homoplasious morphological characters, but also due to the elusive behavioral habits and low densities of the majority of the species, which hinders their sampling and study, as well as because of the large number of extinct species. Up to 30 genera of extinct leporids have been described to date (Flynn et al. 2014). Thus, both patterns of phylogenetic relationships and species diversity within the family, extinct and extant, remain unresolved (Jin et al. 2010; Pelletier et al. 2015; Ruedas 2017).

Sylvilagus (Gray, 1867), the American cottontail rabbits, occurs from southeastern Canada to northern Argentina. This genus is of particular interest with respect to the aforementioned topics: phylogenetic relationships in particular, both among congeners as well as other leporid genera, have been inconsistently determined (Halanych and Robinson 1997; Matthee et al. 2004; Ge et al. 2013; Bonvicino et al. 2015; Ruedas et al. 2017). A rapid speciation rate within the genus was observed by Ruedas et al. (2017) to have been accompanied with low extinction rates. Recognized Sylvilagus species constitute 22% of all Lagomorpha and 33% of the extant leporids’ diversity (Burgin et al. 2018; Smith et al. 2018). However, taxonomic uncertainties remain, with new species having been recently recognized (Ruedas 1998, 2017; Durant and Guevara 2001), and the number of IUCN Data Deficient and Threatened species in Sylvilagus being the highest among lagomorphs (Verde Arregoitia et al. 2015).

Until recently, Sylvilagus brasiliensis (Linnaeus, 1758), the South American cottontail, was considered the most widespread American lagomorph, occurring from Mexico to Argentina (Silva Jr. et al. 2005; AMCELA et al. 2008). However, ongoing detailed analyses are discriminating among taxa in what is now recognized as a complex of species (Ruedas and Salazar-Bravo 2007; Ruedas 2017; Ruedas et al. 2017). Previously, over 25 subspecies have, at one time or another, been subsumed within S. brasiliensis, making this one of the most polytypic taxa in the genus (Hoffmann and Smith 2005). Morphological and genetic data, allied with biogeographic and ecological niche-based analyses, suggest that S. brasiliensis (sensu stricto) is restricted to a narrow forested area within the Pernambuco Endemism Center of the northeastern Atlantic Forest biome, Brazil (Ruedas et al. 2017). Sylvilagus tapetillus (Thomas, 1913), formerly included within S. brasiliensis, is either extinct or restricted to a minute coastal plain region (Serra do Mar ecoregion—da Silva et al. 2004; Dinerstein et al. 2017), in the southeastern Atlantic Forest biome (Bonvicino et al. 2015; Ruedas et al. 2017). Specimens from central and southern Atlantic Forest (formerly assigned either to S. brasiliensis or S. tapetillus), and Cerrado taxa (putatively S. brasiliensis, S. minensis [Thomas, 1901], or S. paraguensis [Thomas, 1901]) currently have an unclear taxonomic status (Ruedas et al. 2017). Occurrence records of putative S. brasiliensis specimens within the Amazon forest and Caatinga were not considered in the IUCN Red List, nor have these been discriminated with a subspecific epithet (Silva Jr. et al. 2005; AMCELA et al. 2008; Dantas et al. 2016). In addition, populations putatively ascribed to S. brasiliensis are considered Endangered in Rio Grande do Sul state, southern Brazil (state decree 51797, 8 September 2014). Moreover, the European brown hare (Lepus europaeus) and European rabbit (Oryctolagus cuniculus) both are expanding their ranges across South America (Novillo and Ojeda 2008; Bonino et al. 2010; Costa and Fernandes 2012; Galende 2014). Thus, cottontail rabbits within the region are most likely already competing for resources with these larger-sized competitors, given that both are highly successful invasive species and constitute major conservation challenges wherever they have been introduced (Lees and Bell 2008; Novillo and Ojeda 2008).

Traditional representation of phylogenetic hypotheses as bifurcating trees might be uninformative or even misleading when evolutionary histories include rapid radiations (Suh 2016), such as those hypothesized for leporids (Halanych and Robinson 1999; Halanych et al. 1999; Robinson and Matthee 2005; Ruedas et al. 2017). Instead, comparing bifurcating trees to phylogenetic networks can help identify problematic nodes and possible explosive radiation events, thereby ruling out soft polytomies (Huson and Bryant 2006; Suh et al. 2015; Hahn and Nakhleh 2016). Supernetworks are particularly useful as they enable combining data sets with different terminal taxa, resulting in a more comprehensive set of phylogenetic evidence (Huson et al. 2004).

Here, we reanalyze previously published molecular data from phylogenetic studies on leporids (Matthee et al. 2004; Ge et al. 2013; Ruedas et al. 2017), focusing on the S. brasiliensis species group, and assess phylogenetic relationships based on bifurcating trees and split networks. Our purpose was to identify otherwise cryptic divergent molecular lineages previously ascribed to S. brasiliensis, test the hypothesis of a common origin of these lineages, and describe evolutionary relationships among lineages (putative species), their congeners, and other genera of leporids.

Materials and Methods

Taxon sampling.

We sampled the recently described (Ruedas et al. 2017) neotype of S. brasiliensis (Universidade Federal de Pernambuco [UFPE] no. 1740), 11 Brazilian specimens from the S. brasiliensis group never before included in any previous phylogenetic inference, and a L. europaeus specimen (Table 1; Fig. 1). We also used sequences retrieved from the GenBank from 81 leporids used in other studies (Appendix I) to perform the phylogenetic analyses detailed below. Newly collected S. brasiliensis specimens were obtained from different phytophysiognomic regions and latitudes, and could potentially be assigned to species distinct from S. brasiliensis (sensu Ruedas et al. 2017; Table 1). These specimens were collected under the auspices of Brazilian permit number 43504 (MMA/ICMBio/SISBIO) and following ASM guidelines (Sikes et al. 2016).

Fig. 1.

The most accepted distribution of Sylvilagus brasiliensis (sensu lato; shaded area—AMCELA et al. 2008). Point locations for all samples used from the S. brasiliensis group (except for S. gabbi and S. dicei), and Lepus europaeus (L). New samples correspond to localities 1–12, and samples from previous studies correspond to point locations 13–22 (see Table 1 and Appendix I for more information). Symbols correspond to the clades in Table 2 (black triangle, SbrNeot: S. brasiliensis Neotype UFPE 1740; black and gray diamonds, Smn, S. minensis; black circles, EAM, Eastern Amazon; black squares, SW, Southwest; black cross, CR, Costa Rica; and the four divergent specimens, respectively, named in the map).

Table 1.

Geographic sampling information. Taxonomic assignments were attributed following Ruedas et al. (2017) and this study. A sample from Lepus europaeus (*) was also included. The ecoregion assigned was the main type in the area of occurrence, following Dinerstein et al. (2017). Numbers correspond to point locations depicted in Fig. 1. Institutional abbreviations: UFPE, Federal University of Pernambuco; UFMG, Federal University of Minas Gerais; UERJ, Rio de Janeiro State University; LABEC, Laboratory of Evolutionary Biology and Conservation of Vertebrates, São Paulo University; DEPAVE, Department of Parks and Green Areas of São Paulo—Faunal Division; LBM, Laboratory of Molecular Biology; MPEG, Museu Paraense Emílio Goeldi; MCNU, Museum of Natural Sciences—Lutheran University of Brazil. Neot.: Neotype. Ecoregion abbreviations: PIE, Pernambuco interior forests; Ce, Cerrado; BIF, Bahia interior forests; SMCF, Serra do Mar coastal forests; APAF, Alto Paraná Atlantic forest; MGTDF, Mato Grosso tropical dry forests, TPMF, Tocantins/Pindare moist forest; **collection locality imprecise: this region is in a transition zone between TPMF, Ce, and Maranhão Babaçu forests.

SampleInstitutionSpeciesLocalityEcoregion
Ruedas et al. (2017)This study
UFPE 1740 UFPE S. brasiliensis Neot.  Mata da Privativa, Paudalho, Pernambuco PIE 
M1380 UFMG S. minensis S. minensisParque das Mangabeiras, Belo Horizonte, Minas Gerais Ce 
M1778 UFMG S. minensis S. minensisSão Gonçalo do Rio Abaixo, Minas Gerais BIF 
M1770 UFMG S. minensis S. minensisNova Xavantina, Mato Grosso Ce 
LG479 UERJ S. minensis S. minensisJequitinhonha Valley, Bahia BIF 
DPV 53580 LABEC/DEPAVE S. minensis S. minensisSão Paulo state SMCF 
SP01 LBM/MPEG S. minensis S. minensisParque Anhanguera, São Paulo, São Paulo SMCF 
RS01 LBM/MPEG S. minensis S. paraguensis Parque Estadual do Turvo, Rio Grande do Sul APAF 
M1796 UFMG Sylvilagus sp. Sylvilagus sp. 1 Paraupebas, Pará MGTDF 
10 TOC013 LABEC/DEPAVE Sylvilagus sp. Sylvilagus sp. 2 Maranhão state ** 
11 MPEG 45455 MPEG Sylvilagus sp. Sylvilagus sp. 2 Benjamin Constant, Pará TPMF 
12 MPEG 45456 MPEG Sylvilagus sp. Sylvilagus sp. 2 Mirasselvas, Pará TPMF 
MCNU 1561* MCNU Lepus europaeus  São José das Missões, Rio Grande do Sul  
SampleInstitutionSpeciesLocalityEcoregion
Ruedas et al. (2017)This study
UFPE 1740 UFPE S. brasiliensis Neot.  Mata da Privativa, Paudalho, Pernambuco PIE 
M1380 UFMG S. minensis S. minensisParque das Mangabeiras, Belo Horizonte, Minas Gerais Ce 
M1778 UFMG S. minensis S. minensisSão Gonçalo do Rio Abaixo, Minas Gerais BIF 
M1770 UFMG S. minensis S. minensisNova Xavantina, Mato Grosso Ce 
LG479 UERJ S. minensis S. minensisJequitinhonha Valley, Bahia BIF 
DPV 53580 LABEC/DEPAVE S. minensis S. minensisSão Paulo state SMCF 
SP01 LBM/MPEG S. minensis S. minensisParque Anhanguera, São Paulo, São Paulo SMCF 
RS01 LBM/MPEG S. minensis S. paraguensis Parque Estadual do Turvo, Rio Grande do Sul APAF 
M1796 UFMG Sylvilagus sp. Sylvilagus sp. 1 Paraupebas, Pará MGTDF 
10 TOC013 LABEC/DEPAVE Sylvilagus sp. Sylvilagus sp. 2 Maranhão state ** 
11 MPEG 45455 MPEG Sylvilagus sp. Sylvilagus sp. 2 Benjamin Constant, Pará TPMF 
12 MPEG 45456 MPEG Sylvilagus sp. Sylvilagus sp. 2 Mirasselvas, Pará TPMF 
MCNU 1561* MCNU Lepus europaeus  São José das Missões, Rio Grande do Sul  
Table 1.

Geographic sampling information. Taxonomic assignments were attributed following Ruedas et al. (2017) and this study. A sample from Lepus europaeus (*) was also included. The ecoregion assigned was the main type in the area of occurrence, following Dinerstein et al. (2017). Numbers correspond to point locations depicted in Fig. 1. Institutional abbreviations: UFPE, Federal University of Pernambuco; UFMG, Federal University of Minas Gerais; UERJ, Rio de Janeiro State University; LABEC, Laboratory of Evolutionary Biology and Conservation of Vertebrates, São Paulo University; DEPAVE, Department of Parks and Green Areas of São Paulo—Faunal Division; LBM, Laboratory of Molecular Biology; MPEG, Museu Paraense Emílio Goeldi; MCNU, Museum of Natural Sciences—Lutheran University of Brazil. Neot.: Neotype. Ecoregion abbreviations: PIE, Pernambuco interior forests; Ce, Cerrado; BIF, Bahia interior forests; SMCF, Serra do Mar coastal forests; APAF, Alto Paraná Atlantic forest; MGTDF, Mato Grosso tropical dry forests, TPMF, Tocantins/Pindare moist forest; **collection locality imprecise: this region is in a transition zone between TPMF, Ce, and Maranhão Babaçu forests.

SampleInstitutionSpeciesLocalityEcoregion
Ruedas et al. (2017)This study
UFPE 1740 UFPE S. brasiliensis Neot.  Mata da Privativa, Paudalho, Pernambuco PIE 
M1380 UFMG S. minensis S. minensisParque das Mangabeiras, Belo Horizonte, Minas Gerais Ce 
M1778 UFMG S. minensis S. minensisSão Gonçalo do Rio Abaixo, Minas Gerais BIF 
M1770 UFMG S. minensis S. minensisNova Xavantina, Mato Grosso Ce 
LG479 UERJ S. minensis S. minensisJequitinhonha Valley, Bahia BIF 
DPV 53580 LABEC/DEPAVE S. minensis S. minensisSão Paulo state SMCF 
SP01 LBM/MPEG S. minensis S. minensisParque Anhanguera, São Paulo, São Paulo SMCF 
RS01 LBM/MPEG S. minensis S. paraguensis Parque Estadual do Turvo, Rio Grande do Sul APAF 
M1796 UFMG Sylvilagus sp. Sylvilagus sp. 1 Paraupebas, Pará MGTDF 
10 TOC013 LABEC/DEPAVE Sylvilagus sp. Sylvilagus sp. 2 Maranhão state ** 
11 MPEG 45455 MPEG Sylvilagus sp. Sylvilagus sp. 2 Benjamin Constant, Pará TPMF 
12 MPEG 45456 MPEG Sylvilagus sp. Sylvilagus sp. 2 Mirasselvas, Pará TPMF 
MCNU 1561* MCNU Lepus europaeus  São José das Missões, Rio Grande do Sul  
SampleInstitutionSpeciesLocalityEcoregion
Ruedas et al. (2017)This study
UFPE 1740 UFPE S. brasiliensis Neot.  Mata da Privativa, Paudalho, Pernambuco PIE 
M1380 UFMG S. minensis S. minensisParque das Mangabeiras, Belo Horizonte, Minas Gerais Ce 
M1778 UFMG S. minensis S. minensisSão Gonçalo do Rio Abaixo, Minas Gerais BIF 
M1770 UFMG S. minensis S. minensisNova Xavantina, Mato Grosso Ce 
LG479 UERJ S. minensis S. minensisJequitinhonha Valley, Bahia BIF 
DPV 53580 LABEC/DEPAVE S. minensis S. minensisSão Paulo state SMCF 
SP01 LBM/MPEG S. minensis S. minensisParque Anhanguera, São Paulo, São Paulo SMCF 
RS01 LBM/MPEG S. minensis S. paraguensis Parque Estadual do Turvo, Rio Grande do Sul APAF 
M1796 UFMG Sylvilagus sp. Sylvilagus sp. 1 Paraupebas, Pará MGTDF 
10 TOC013 LABEC/DEPAVE Sylvilagus sp. Sylvilagus sp. 2 Maranhão state ** 
11 MPEG 45455 MPEG Sylvilagus sp. Sylvilagus sp. 2 Benjamin Constant, Pará TPMF 
12 MPEG 45456 MPEG Sylvilagus sp. Sylvilagus sp. 2 Mirasselvas, Pará TPMF 
MCNU 1561* MCNU Lepus europaeus  São José das Missões, Rio Grande do Sul  
Table 2.

Within and between clades uncorrected p-distances for mitochondrial 12S gene in individuals of the Sylvilagus brasiliensis group. Standard error estimates are shown above the diagonal. SbrNeot: S. brasiliensis Neotype UFPE 1740; Smn, S. minensis; EAM, Eastern Amazon; SW, Southwest; CR, Costa Rica. A * symbol indicates that the group is represented by a single sample. These groups are represented by different symbols and colors in the map of Fig. 1.

SbrNeot*SmnEAMSWM1796*MN24041ROM105515*CRCR1hsr*
SbrNeot*  0.002 0.002 0.003 0.003 0.006 0.004 0.006 0.007 
Smn 0.003 0.000 0.004 0.003 0.003 0.006 0.003 0.006 0.007 
EAM 0.004 0.008 0.002 0.004 0.004 0.007 0.006 0.007 0.008 
SW 0.010 0.010 0.010 0.004 0.003 0.006 0.004 0.006 0.007 
M1796* 0.007 0.007 0.010 0.010  0.006 0.004 0.005 0.007 
MN24041* 0.025 0.023 0.027 0.027 0.024  0.005 0.003 0.006 
ROM105515* 0.011 0.008 0.015 0.014 0.010 0.023  0.005 0.007 
CR 0.026 0.024 0.027 0.028 0.024 0.006 0.023 0.003 0.006 
CR1hsr* 0.042 0.040 0.040 0.043 0.041 0.027 0.038 0.027  
SbrNeot*SmnEAMSWM1796*MN24041ROM105515*CRCR1hsr*
SbrNeot*  0.002 0.002 0.003 0.003 0.006 0.004 0.006 0.007 
Smn 0.003 0.000 0.004 0.003 0.003 0.006 0.003 0.006 0.007 
EAM 0.004 0.008 0.002 0.004 0.004 0.007 0.006 0.007 0.008 
SW 0.010 0.010 0.010 0.004 0.003 0.006 0.004 0.006 0.007 
M1796* 0.007 0.007 0.010 0.010  0.006 0.004 0.005 0.007 
MN24041* 0.025 0.023 0.027 0.027 0.024  0.005 0.003 0.006 
ROM105515* 0.011 0.008 0.015 0.014 0.010 0.023  0.005 0.007 
CR 0.026 0.024 0.027 0.028 0.024 0.006 0.023 0.003 0.006 
CR1hsr* 0.042 0.040 0.040 0.043 0.041 0.027 0.038 0.027  
Table 2.

Within and between clades uncorrected p-distances for mitochondrial 12S gene in individuals of the Sylvilagus brasiliensis group. Standard error estimates are shown above the diagonal. SbrNeot: S. brasiliensis Neotype UFPE 1740; Smn, S. minensis; EAM, Eastern Amazon; SW, Southwest; CR, Costa Rica. A * symbol indicates that the group is represented by a single sample. These groups are represented by different symbols and colors in the map of Fig. 1.

SbrNeot*SmnEAMSWM1796*MN24041ROM105515*CRCR1hsr*
SbrNeot*  0.002 0.002 0.003 0.003 0.006 0.004 0.006 0.007 
Smn 0.003 0.000 0.004 0.003 0.003 0.006 0.003 0.006 0.007 
EAM 0.004 0.008 0.002 0.004 0.004 0.007 0.006 0.007 0.008 
SW 0.010 0.010 0.010 0.004 0.003 0.006 0.004 0.006 0.007 
M1796* 0.007 0.007 0.010 0.010  0.006 0.004 0.005 0.007 
MN24041* 0.025 0.023 0.027 0.027 0.024  0.005 0.003 0.006 
ROM105515* 0.011 0.008 0.015 0.014 0.010 0.023  0.005 0.007 
CR 0.026 0.024 0.027 0.028 0.024 0.006 0.023 0.003 0.006 
CR1hsr* 0.042 0.040 0.040 0.043 0.041 0.027 0.038 0.027  
SbrNeot*SmnEAMSWM1796*MN24041ROM105515*CRCR1hsr*
SbrNeot*  0.002 0.002 0.003 0.003 0.006 0.004 0.006 0.007 
Smn 0.003 0.000 0.004 0.003 0.003 0.006 0.003 0.006 0.007 
EAM 0.004 0.008 0.002 0.004 0.004 0.007 0.006 0.007 0.008 
SW 0.010 0.010 0.010 0.004 0.003 0.006 0.004 0.006 0.007 
M1796* 0.007 0.007 0.010 0.010  0.006 0.004 0.005 0.007 
MN24041* 0.025 0.023 0.027 0.027 0.024  0.005 0.003 0.006 
ROM105515* 0.011 0.008 0.015 0.014 0.010 0.023  0.005 0.007 
CR 0.026 0.024 0.027 0.028 0.024 0.006 0.023 0.003 0.006 
CR1hsr* 0.042 0.040 0.040 0.043 0.041 0.027 0.038 0.027  

Laboratory procedures.

We extracted genomic DNA from fresh tissue samples and samples from tissues preserved in ethanol using the DNeasy Blood & Tissue kit (Qiagen, Valencia, California). We amplified the molecular markers used by Matthee et al. (2004): two mitochondrial genes (cytochrome b [Cytb] and 12S ribosomal RNA [12S]) and five nuclear introns (mast cell growth factor [MGF], protein kinase C iota [PRKCI], thyroid-stimulating hormone beta [THY], beta spectrin nonerythrocytic protein 1 [SPTBN], and thyroglobin [TG]). PCR conditions and primers followed Matthee et al. (2004) (with minor modifications; Supplementary Data SD1) and Ruedas et al. (2017) for mtDNA loci. PCR products were visually inspected after electrophoresis in a 1% agarose gel. Positive results were purified using PEG8000 2.5M (Hawkins et al. 1994). Sequences for both strands were obtained in an ABI 3130 automatic sequencer, using the Big Dye Terminator v3.01 kit, following the manufacturer’s protocol (Applied Biosystems, Foster City, California).

Genetic diversity patterns within the S. brasiliensis group.

All new sequences generated for this study were deposited in GenBank, with accession numbers MH115201–MH115262. New sequences were first visually inspected in Chromas (http://technelysium.com.au/wp/chromas/) and aligned using ClustalW (Thompson et al. 1994) as implemented in Bioedit 7 (Hall 2011). The PHASE algorithm implemented in DnaSP 5 was used to describe haplotypes for nuclear molecular markers (Stephens and Scheet 2005; Librado and Rozas 2009). MCMC chains were run for 1,000 iterations with a burn-in of 100. Genetic diversity indices and Tajima’s D neutrality tests were obtained using DnaSP (Librado and Rozas 2009). For the complete S. brasiliensis group, we used the 12S locus only (Appendix I) to estimate mean uncorrected p-distances in MEGA 5, running 1,000 bootstrap replications (Tamura et al. 2011).

Data sets.

Different sets of species and loci were used to obtain improved resolution of problematic nodes and to assess the effect of soft polytomies on leporid phylogeny, as follows: Data set 1—expanded molecular supermatrix: included all loci, and only Matthee et al. (2004) sequences and our new Sylvilagus sequences (n = 38 ingroup taxa; 4,792 base pairs [bp]); Data set 2—Cytb data set (n = 56 ingroup taxa; 582 bp); Data set 3—12S data set (n = 72 ingroup taxa; 742 bp); and Data set 4—Cytb and 12S data sets combined (n = 93 ingroup taxa; 1,324 bp; Supplementary Data SD1). Cytochrome b is the locus with greatest taxonomic representation in Leporidae, with 47 species represented in GenBank, whereas 12S is the most comprehensive data set for Sylvilagus species, with 39 species.

Phylogenetic analyses.

We used sequences of Tamiasciurus hudsonicus (Rodentia, Sciuridae) and Ochotona princeps (Lagomorpha, Ochotonidae) as outgroups in our phylogenetic analyses (Appendix I; Matthee et al. 2004). Sequences were aligned as above. When necessary, sequences were trimmed to decrease missing data. Maximum likelihood (ML) trees were obtained using RAxML 8.1.21 (Stamatakis 2014) with the graphical interface raxmlGUI 1.3.1 (Silvestro and Michalak 2012), generating 1,000 replicates with the rapid bootstrap algorithm (options -f a), and branch lengths calculated independently for each partition. Best substitution models implemented in RAxML were compared, and the best set of partitions was estimated in PartitionFinder (Lanfear et al. 2012) for each data set. The Cytb data set was divided into two partitions (codon positions 1 + 2 and 3), and Cytb alignment in the expanded molecular supermatrix data set was divided by codon position. All other alignments corresponded to a single partition. A GTR-GAMMA mutation model was used in both ML and Bayesian inferences (BI). Multilocus coalescent Bayesian trees were reconstructed using BEAST 1.8 (Drummond et al. 2012) at the CIPRES Science Gateway 3.3 (www.phylo.orgMiller et al. 2010). Initial runs were carried out under a relaxed-molecular-clock approach with an uncorrelated lognormal distribution and a speciation Yule process as tree prior (Yule 1925; Drummond et al. 2012; Heled and Drummond 2015). Final runs consisted of at least two independent chains with a length of 108 generations. Effective sample sizes (ESS) and the convergence of the chains were assessed using Tracer 1.5; the initial 10% of each independent run was excluded as burn-in (Drummond and Rambaut 2007). Trees were combined with LogCombiner (Drummond et al. 2012), and tree topologies assessed using TreeAnnotator (Drummond et al. 2012) and FigTree 1.4 (http://tree.bio.ed.ac.uk/software/figtree/). File formats were converted using ALTER (http://sing.ei.uvigo.es/ALTER/Glez-Peña et al. 2010).

Rapid diversification events in leporid evolution.

In order to visualize conflicting nodes, we followed the recommendations of Hahn and Nakhleh (2016) and Suh (2016), and constructed split networks for each molecular marker, and supernetworks for combined data sets (expanded molecular supermatrix, all sequences from all loci and taxa combined, separate Cytb and 12S sequences from taxa represented in the expanded molecular supermatrix, and full Cytb and 12S data sets combined; Appendix I). We used SplitsTree 4.14 (Huson et al. 2004; Huson and Bryant 2006), with 500 runs to estimate supernetworks.

Results

Genetic diversity patterns within the S. brasiliensis group.

We sequenced a total of 2,152 bp of mtDNA and 2,815 bp of nDNA introns. Several heterozygote sequences were found in all nDNA (except for SPTBN), and only two indels were observed, in 12S and PRKCI, respectively. No departures from neutrality were found. For the newly acquired S. brasiliensis species group sequences, the number of segregating sites varied from 4 (in PRKCI, SPTBN, and THY) to 87 (in Cytb), the number of haplotypes from 4 (SPTBN) to 12 (Cytb), and nucleotide diversity from 1.11 × 10−3 (THY) to 2.79 × 10−2 (Cytb).

Pairwise differences between samples assigned to the S. brasiliensis group reached 5% (uncorrected p-distance; x¯ = 0.016, range 0.00–0.048; Supplementary Data SD2). Sylvilagus dicei (Harris, 1932) and S. gabbi (Allen, 1877), previously assigned to S. brasiliensis (Diersing 1981; Ruedas and Salazar-Bravo 2007), were not included in p-distances calculations (but see Ruedas et al. 2017, appendix 2). The neotype of S. brasiliensis differed on average by 1.3% from the other samples of the group (0.003–0.042; Supplementary Data SD2). Lower distances were observed between South American clades and the neotype (x¯ < 1%), and higher distances were estimated between the neotype and the Central American clades (x¯ > 4%; Table 2).

In most phylogenies, neotype sequences clustered as sister to samples putatively assigned to S. minensis, except for RS01 (Fig. 2; Supplementary Data SD3, node A). This latter sample, from southern Atlantic Forest, Brazil, grouped with samples previously attributed to S. b. paraguensis and S. b. peruanus (Hershkovitz, 1950) for the 12S data set (Fig. 2C; Supplementary Data SD3, node E; SW group in Fig. 1 and Table 2). DPV 53580 and SP01, from southeastern Brazil, were recovered as monophyletic in two data sets (Figs. 2A and 2B; Supplementary Data SD3, node B). Specimens from the Amazonia formed two clades (Figs. 2B and 2C; Supplementary Data SD3, nodes C and D, corresponding to eastern Amazon EAM group and M1796 in Table 2, respectively). A Central American clade grouped samples from Costa Rica and MN24041 (Sbr24041) from Pernambuco (Fig. 2C; Supplementary Data SD3, node F), the latter identified as S. brasiliensis, and S. gabbi and S. dicei, as previously observed by Ruedas et al. (2017).

Fig. 2.

Phylogenetic trees for Leporidae species inferred from maximum likelihood for the extended molecular supermatrix (A), Cytb (B), and 12S (C) data sets. Values above branches indicate bootstrap support (≥ 50) for each node, and letters reference nodes and clades discussed in the text. Labels include specimen voucher if more than one sample was attributed to the same species; new samples have their locality of origin in brackets as in Table 1 and Fig. 1 (see also Appendix I for a full list of sequences used). Bayesian phylogenies are given in Supplementary Data SD3.

Evolutionary relationships among taxa in the S. brasiliensis group, their congeners, and the other leporids.

Bayesian inferences and ML trees presented considerable differences both in tree topologies and nodal support (Fig. 2; Supplementary Data SD3). BI for the expanded molecular supermatrix data set had little nodal support (Supplementary Data SD3). Relationships among genera were inconsistent across analyses. However, polytypic genera were supported as monophyletic with the exception of those represented in the expanded molecular supermatrix data set. Brachylagus idahoensis was supported as the sister clade to either Sylvilagus or Lepus, depending on the partitioning of the data and taxonomic representation. As mentioned above, samples assigned to the S. brasiliensis group were paraphyletic within the framework of the 12S data set (Fig. 2C; Supplementary Data SD3C). Central American samples grouped with S. dicei and S. gabbi (Fig. 2C; Supplementary Data SD3C, node F), while our novel samples grouped in an exclusively South American clade. The sister clade to the S. brasiliensis group likewise was inconsistently resolved. Either all other Sylvilagus, or S. floridanus (Allen, 1890) + S. obscurus (Chapman et al. 1992), alternatively had support as the sister clade under distinct phylogenetic analytical frameworks (Fig. 2; Supplementary Data SD3).

Rapid diversification events in leporid evolution.

Supernetworks for the expanded molecular supermatrix data set presented several zones of polytomy. We hypothesize that this may in part be due to missing data for the nDNA loci (Figs. 3A and 3B; Appendix I), given that using only mtDNA sequences from our data set decreased the number of polytomies (Fig. 3C). A supernetwork for Cytb and 12S data sets combined, comprising about twice the number of species represented in the expanded molecular supermatrix data set, resulted in only two polytomy zones (Fig. 3D). A polytomy zone is observed at the base of Leporidae, the other at the basal diversification of Sylvilagus.

Fig. 3.

Supernetworks for Leporidae based on (A) expanded molecular supermatrix, (B) all sequences combined, (C) Cytb and 12S from the expanded molecular supermatrix, and D) Cytb and 12S full data sets combined. In order to increase resolution, not all Sylvilagus samples were labeled. The origin of the new samples named is given in brackets as in Table 1 and Fig. 1. ▲ Neotype for S. brasiliensis (fully labeled networks are available upon request from the corresponding author).

Discussion

Genetic distances between what are considered valid species within Sylvilagus have been demonstrated to be variable. Recently diverged species (sister taxa) might be indistinguishable using mtDNA (e.g., S. obscurus versus S. transitionalis [Bangs, 1895]—Litvaitis et al. 1997; Ruedas et al. 2017), but others may differ by up to 5% (e.g., S. aquaticus [Bachman, 1837] versus S. palustris [Bachman, 1837]—Ruedas et al. 2017). As expected, we observed geographic partitioning: there was high divergence between Central and South American clades nominally constituted by putative S. brasiliensis (p-distances > 2.5%). Our analyses further revealed the existence of at least three divergent molecular lineages in Central America (Fig. 2, node F), more closely related to S. gabbi and S. dicei, both acknowledged as valid species-level taxa (Diersing 1981; Ruedas and Salazar-Bravo 2007). Our analyses also confirm the existence of multiple molecular lineages in the South American clade, among which the neotype stands out as a distinct lineage (Fig. 2; Supplementary Data SD3, node A), supporting the hypothesis that more comprehensive sampling remains to be undertaken. Nevertheless, samples attributed to S. minensis (sensu Ruedas et al. 2017; see Table 1) are closer to the neotype (p-distance = 0.03; Table 2), but appear to segregate from it, and into three distinct molecular lineages: one including different specimens from distinct ecoregions in central Brazil, another from the Serra do Mar coastal forests in the southeastern Atlantic Forest (DPV 53580 and SP01; Fig. 1, gray diamonds; Fig. 2; Supplementary Data SD2, node B), and a third from Alto Paraná Atlantic Forest in the southern Atlantic Forest (RS01). The first two clades should both be assigned to S. minensis, since they are not reciprocally monophyletic (Fig. 2; Supplementary Data SD3, clade A). RS01, which falls within a southwestern clade (Fig. 2; Supplementary Data SD3, node E), likely represents S. paraguensis (see also Ruedas et al. 2017: figures A20 and A24). Notwithstanding, several lineages remain to be excluded from the S. brasiliensis species group in this western South America clade (Ruedas 2017; Ruedas et al. 2017). Individuals from east and southeast Amazonia appear to constitute two distinct molecular lineages (Fig. 2; Supplementary Data SD3, nodes C and D). Table 1 summarizes our taxonomic conclusions on the new specimens analyzed.

Our analyses, particularly those using split networks (Fig. 3), demonstrate that the S. brasiliensis species assemblage, here including S. dicei and S. gabbi, represents a divergent evolutionary lineage, well differentiated from all other species in the genus. We also are confident in refuting the subgenus Tapeti (Gray, 1867) as a taxonomic entity, as we found no molecular evidence for grouping S. brasiliensis with the S. palustris + S. aquaticus lineage (see also Bonvicino et al. 2015; Ruedas et al. 2017). Furthermore, contrary to the most recent morphometric analyses focused on Central America and the north Andean region (Diersing and Wilson 2017), our results support the hypothesis of Ruedas et al. (2017) that S. andinus (Thomas, 1897) is a distinct species-level taxon that does not cluster with Central American S. brasiliensis specimens, nor within the S. brasiliensis group (Figs. 2C, 3B, and 3D; Supplementary Data SD3C).

Our supernetworks enable a more comprehensive phylogenetic hypothesis for Sylvilagus. These results show that the basal relationships among most cottontail species correspond to a zone of polytomy, even for data sets with a better taxonomic representation (Fig. 3), supporting the hypothesis of a rapid radiation in cottontails (Ruedas et al. 2017). The burst of diversification in Sylvilagus appears to have affected the current basal phylogenetic resolution of the genus, and this radiation has not slowed down (Ruedas et al. 2017). Moreover, our data corroborate previous findings that most cottontail species consistently cluster in pairs of sister species, such as S. palustris + S. aquaticus, S. floridanus + S. obscurus, and S. nuttallii (Bachman, 1837) + S. audubonii (Baird, 1858) (Matthee et al. 2004; Robinson and Matthee 2005; Ruedas et al. 2017). However, recovering phylogenetic relationships among these species pairs, as well as the sister species—if present—of the S. brasiliensis group has still not been achieved (this study; Bonvicino et al. 2015; Ruedas et al. 2017). Our data corroborate that the S. brasiliensis group is represented by far more than a pair of species (S. gabbi, S. dicei, S. brasiliensis, S. paraguensis, and others yet to be clarified—Ruedas et al. 2017). A better taxonomic understanding of polytypic species, including S. floridanus, S. bachmani (Waterhouse, 1839), and S. nuttallii, is required for a better understanding of the evolutionary history of the genus, as shown by the phylogenetic trees we obtained (Fig. 2; Supplementary Data SD3). Although morphological characters have overall low phylogenetic signal (Robinson and Matthee 2005; Ruf 2014; Ge et al. 2015), analyses of the third lower premolar and meticulous analysis of cranial characters have been successful in establishing species limits within Sylvilagus (Ruedas and Salazar-Bravo 2007) and appear to work well even in other closely related species (Ruedas 1998, 2017).

Brachylagus has been identified as the sister genus to Sylvilagus, albeit inconsistently (this study; Robinson and Matthee 2005; Ge et al. 2013; Ruedas et al. 2017). In this case, not even our approach using phylogenetic networks resolved this riddle. Yet the results of our supernetwork analyses show that Brachylagus and all the other leporid genera are included in a basal leporid polytomy (Fig. 3), justifying the support for monophyly in the different genera, despite the obscured phylogenetic relationships among them (Yamada et al. 2002; Matthee et al. 2004; Robinson and Matthee 2005; Ruf 2014). Therefore, on the one hand, the molecular variability assessed to date might be insufficient to resolve relationships among the Leporidae, particularly under the scenario of extremely rapid diversification that our results support (Halanych and Robinson 1999; Robinson and Matthee 2005; Ruedas et al. 2017): a rapid radiation alone could account for unresolved phylogenetic relationships (Suh 2016). On the other hand, increasing taxonomic representation by adding species in Sylvilagus and Lepus—i.e., decreasing soft polytomies—has had little effect in resolving the core zone of polytomy: the basal radiation of Leporidae. This might be due to the large number of leporids, from numerous genera, that became extinct during the Pleistocene (Ge et al. 2013; Flynn et al. 2014). Notwithstanding, the reduction of the polytomy basal to Lepus with more hare species sampled (Figs. 3C versus D) suggests that an increase in taxonomic representation of leporid taxa is favorable to decreasing the polytomies in their phylogeny, in spite of the scenario of rapid radiation.

In fact, for Lepus, supernetworks for 12S and Cytb data sets combined, the most comprehensive taxa data set for the genus, underscore the dissimilarity among recognized species (Fig. 3D), in particular, the dissimilarities between co-occurring or geographically proximal Lepus species. For instance, the relationships between L. americanus and the other North American and Mexican hares (Ramírez-Silva et al. 2010), or L. brachyurus from Japan and L. mandshuricus from the Asian mainland, support the existence of numerous bursts of radiation (Matthee et al. 2004; Ge et al. 2013). Moreover, and although bifurcating trees add limited or inconsistent support for most Lepus relationships, we unambiguously discriminated several clades in the networks, including monotypic lineages.

Our data have shed some light on the explosive basal radiation of Leporidae. The results of our analyses demonstrate the necessity to expand efforts at increased taxonomic and molecular sampling of additional leporid species. It is becoming increasingly evident that only by improving the taxonomic representation of species across the numerous branches of the leporid tree, it will be possible to clarify their phylogeny.

Nomenclature statement.

A life science identifier (LSID) number was obtained for this publication: urn:lsid:zoobank.org:pub:B727FE72-D2F8-4FE3-80D3-B2B5A2C7386D.

Supplementary Data

Supplementary data are available at Journal of Mammalogy online.

Supplementary Data SD1.—PCR conditions.

Supplementary Data SD2.—Pairwise uncorrected p-distances (lower diagonal) and standard error (upper diagonal) for mitochondrial 12S gene between samples attributed to the Sylvilagus brasiliensis group.

Supplementary Data SD3.—Phylogenetic trees for Leporidae species inferred from Bayesian inference for the extended molecular supermatrix (A), Cytb (B), and 12S (C) data sets. Values above branches indicate posterior probabilities (≥ 50) for each node, and letters reference nodes discussed in the text. Labels include specimen voucher if more than one sample was attributed to the same species, and new samples have their locality of origin in brackets as in Table 1 and Fig. 1 (see Appendix I for a full list of sequences used).

Acknowledgments

We thank D. A. de Moraes (Universidade Federal de Pernambuco), L. Geise (Universidade Estadual do Rio de Janeiro), J. Summa (Departamento de Parques e Áreas Verdes de São Paulo – Divisão de Fauna, DEPAVE), F. Santos and F. Perini (Universidade Federal de Minas Gerais), A. Cristoff (Universidade Luterana do Brasil do Rio Grande do Sul), and A. Bessa for access to specimens under their care; DEPAVE-SP staff (particularly M. Nardi and L. Lopes), L. Oliveira, U. Schulz, and M. Ferraz (Universidade do Vale do Rio dos Sinos), D. Meller, staff from Parque Estadual do Turvo (particularly V. Grutzmann), N. Simbera (Projeto Quatis), P. Avelino (UFMG), G. Dantas (Pontifícia Universidade Católica de Minas Gerais), A. Pavan (Universidade de São Paulo), and M. de Vivo (Museu de Zoologia da Universidade de São Paulo) for field support; and staff from MPEG for laboratory support. Fundação Amazônia de Amparo a Estudos e Pesquisas (ICAAF 009/2015) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (MCTI/CNPq/Universal 447460/2014-5) funded field and lab work. SMS was funded by a fellowship from the Programa Nacional de Pós Doutorado/Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (PNPD/CAPES) at the Department of Zoology in the Museu Paraense Emílio Goeldi/Universidade Federal do Pará (PPGZOOL/MPEG/UFPA), and LHS by a scholarship from the Programa Institucional de Bolsas de Iniciação Científica (Conselho Nacional de Desenvolvimento Científico e Tecnológico) at the Department of Zoology MPEG/UFPA. LAR received support for portions of this work from National Science Foundation (grant DEB-0616305). We also acknowledge the comments and suggestions from the anonymous reviewers, which greatly improved this work.

Literature Cited

Álvarez-Castañeda
,
S. T.
, and
C.
Lorenzo
.
2017
.
Phylogeography and phylogeny of Lepus californicus (Lagomorpha: Leporidae) from Baja California Peninsula and adjacent islands
.
Biological Journal of the Linnean Society
121
:
15
27
.

AMCELA (Mexican Association for Conservation and Study of Lagomorphs)
,
F. J.
Romero Malpica
, and
H.
Rangel Cordero
.
2008
.
Sylvilagus brasiliensis
.
The IUCN Red List of Threatened Species
2008
:
e.T41298A10418161
. 10.2305/IUCN.UK.2008.RLTS.T41298A10418161.en. Accessed 29 September 2017.

Arnason
,
U.
, et al. 
2002
.
Mammalian mitogenomic relationships and the root of the eutherian tree
.
Proceedings of the National Academy of Sciences of the United States of America
99
:
8151
8156
.

Asher
,
R. J
.
2005
.
Stem Lagomorpha and the antiquity of Glires
.
Science
307
:
1091
1094
.

Bonino
,
N.
,
D.
Cossios
, and
J.
Menegheti
.
2010
.
Dispersal of the European hare, Lepus europaeus in South America
.
Folia Zoologica
59
:
9
.

Bonvicino
,
C. R.
, et al. 
2015
.
Chromosomes and phylogeography of Sylvilagus (Mammalia, Leporidae) from eastern Brazil
.
Oecologia Australis
19
:
158
172
.

Burgin
,
C. J.
,
J. P.
Colella
,
P. L.
Kahn
, and
N. S.
Upham
.
2018
.
How many species of mammals are there
?
Journal of Mammalogy
99
:
1
11
.

da Silva
,
J. M. C., M. C.
de Sousa
, and
C. H. M.
Castelletti
.
2004
.
Areas of endemism for passerine birds in the Atlantic forest, South America
.
Global Ecology and Biogeography
13
:
85
92
.

Carneiro
,
M.
, et al. 
2012
.
Evidence for widespread positive and purifying selection across the European rabbit (Oryctolagus cuniculus) genome
.
Molecular Biology and Evolution
29
:
1837
1849
.

Coddington
,
J. A.
, and
N.
Scharff
.
1996
.
Problems with “soft” polytomies
.
Cladistics
12
:
139
145
.

Costa
,
M. D.
, and
F. A. B.
Fernandes
.
2012
.
Primeiro registro de Lepus europaeus Pallas, 1778 (Mammalia, Lagomorpha, Leporidae) no sul do Estado de Minas Gerais e uma síntese dos registros conhecidos para o sudeste do Brasil
.
Revista Brasileira de Zoociências
12:311–314
.

Dantas
,
A. R. C.
,
F. H.
Menezes
,
K. S.
Serra
,
E. D. O.
Barbosa
, and
H.
Fernandes-Ferreira
.
2016
.
First record of Sylvilagus brasiliensis (Linnaeus, 1758) (Lagomorpha: Leporidae) in Rio Grande do Norte state, Northeast Brazil
.
Check List
12
:
1856
.

Diersing
,
V. E
.
1981
.
Systematic status of Sylvilagus brasiliensis and S. insonus from North America
.
Journal of Mammalogy
62
:
539
556
.

Diersing
,
V. E.
, and
D. E.
Wilson
.
2017
.
Systematic status of the rabbits Sylvilagus brasiliensis and S. sanctaemartae from northwestern South America with comparisons to Central American populations
.
Journal of Mammalogy
98
:
1641
1656
.

Dinerstein
,
E.
, et al. 
2017
.
An ecoregion-based approach to protecting half the terrestrial realm
.
BioScience
67
:
534
545
.

Drummond
,
A. J.
, and
A.
Rambaut
.
2007
.
BEAST: Bayesian evolutionary analysis by sampling trees
.
BMC Evolutionary Biology
7
:
214
.

Drummond
,
A. J.
,
M. A.
Suchard
,
D.
Xie
, and
A.
Rambaut
.
2012
.
Bayesian phylogenetics with BEAUti and the BEAST 1.7
.
Molecular Biology and Evolution
29
:
1969
1973
.

Durant
,
P.
, and
M. A.
Guevara
.
2001
.
A new rabbit species (Sylvilagus, Mammalia: Leporidae) from the lowlands of Venezuela
.
Revista de Biologia Tropical
49
:
369
381
.

Flynn
,
L. J.
, et al. 
2014
.
The Leporid datum: a late miocene biotic marker
.
Mammal Review
44
:
164
176
.

Galende
,
G
.
2014
.
Oryctolagus cuniculus Linneaus, 1758 (Mammalia: Lagomorpha: Leporidae): new record in the Nahuel Huapi National Park, Patagonia, Argentina
.
Check List
10
:
1179
1183
.

Ge
,
D.
, et al. 
2013
.
Evolutionary history of lagomorphs in response to global environmental change
.
PLoS One
8
:
e59668
.

Ge
,
D.
,
L.
Yao
,
L.
Xia
,
Z.
Zhang
, and
Q.
Yang
.
2015
.
Geometric morphometric analysis of skull morphology reveals loss of phylogenetic signal at the generic level in extant lagomorphs (Mammalia: Lagomorpha)
.
Contributions to Zoology
84
:
267
284
.

Gidley
,
J. W
.
1912
.
The lagomorphs an independent order
.
Science
36
:
285
286
.

Glez-Peña
,
D.
,
D.
Gómez-Blanco
,
M.
Reboiro-Jato
,
F.
Fdez-Riverola
, and
D.
Posada
.
2010
.
ALTER: program-oriented conversion of DNA and protein alignments
.
Nucleic Acids Research
38
:
W14
W18
.

Hahn
,
M. W.
, and
L.
Nakhleh
.
2016
.
Irrational exuberance for resolved species trees
.
Evolution
70
:
7
17
.

Halanych
,
K. M.
,
J. R.
Demboski
,
B. J.
van Vuuren
,
D. R.
Klein
, and
J. A.
Cook
.
1999
.
Cytochrome b phylogeny of North American hares and jackrabbits (Lepus, Lagomorpha) and the effects of saturation in outgroup taxa
.
Molecular Phylogenetics and Evolution
11
:
213
221
.

Halanych
,
K. M.
, and
T. J.
Robinson
.
1997
.
Phylogenetic relationships of cottontails (Sylvilagus, Lagomorpha): congruence of 12S rDNA and cytogenetic data
.
Molecular Phylogenetics and Evolution
7
:
294
302
.

Halanych
,
K. M.
, and
T. J.
Robinson
.
1999
.
Multiple substitutions affect the phylogenetic utility of cytochrome b and 12S rDNA data: examining a rapid radiation in Leporid (Lagomorpha) evolution
.
Journal of Molecular Evolution
48
:
369
379
.

Hall
,
T. A.
, and
Ibis Biosciences
.
2011
.
BioEdit: an important software for molecular biology
.
GERF Bulletin of Biosciences
2
:
60
61
.

Hawkins
,
T. L.
,
T.
O’Connor-Morin
,
A.
Roy
, and
C.
Santillan
.
1994
.
DNA purification and isolation using a solid-phase
.
Nucleic Acids Research
22
:
4543
.

Heled
,
J.
, and
A. J.
Drummond
.
2015
.
Calibrated birth–death phylogenetic time-tree priors for Bayesian inference
.
Systematic Biology
64
:
369
383
.

Hoffmann
,
R. S.
, and
A. T.
Smith
.
2005
.
Order lagomorpha
. Pp.
185
211
in
Mammal species of the world
(
D. E.
Wilson
and
D. M.
Reeder
, eds.). 3rd ed.
Johns Hopkins University Press
,
Baltimore, Maryland
.

Huson
,
D. H.
, and
D.
Bryant
.
2006
.
Application of phylogenetic networks in evolutionary studies
.
Molecular Biology and Evolution
23
:
254
267
.

Huson
,
D. H.
,
T.
Dezulian
,
T.
Klopper
, and
M. A.
Steel
.
2004
.
Phylogenetic super-networks from partial trees
.
IEEE/ACM Transactions on Computational Biology and Bioinformatics
1
:
151
158
.

Jin
,
C.
,
Y.
Tomida
,
Y.
Wang
, and
Y.
Zhang
.
2010
.
First discovery of fossil Nesolagus (Leporidae, Lagomorpha) from Southeast Asia
.
Science China Earth Sciences
53
:
1134
1140
.

Kinoshita
,
G.
,
M.
Nunome
,
S. H.
Han
,
H.
Hirakawa
, and
H.
Suzuki
.
2012
.
Ancient colonization and within-island vicariance revealed by mitochondrial DNA phylogeography of the mountain hare (Lepus timidus) in Hokkaido
.
Japanese Zoological Science
29
:
776
785
.

Kong
,
L.
,
W.
Wang
,
H.
Cong
,
T.
son Nguyen
,
Q.
Yang
,
Y.
Wu
, and
Y.
Li
.
2016
.
Molecular evidence revealed Lepus hainanus and L. peguensis have a conspecific relationship
.
Mitochondrial DNA Part A
,
27
:
265
269
.

Kraatz
,
B. P.
,
D.
Badamgarav
, and
F.
Bibi
.
2009
.
Gomphos ellae, a new mimotonid from the middle Eocene of Mongolia and its implications for the origin of Lagomorpha
.
Journal of Vertebrate Paleontology
29
:
576
583
.

Lanfear
,
R.
,
B.
Calcott
,
S. Y. W.
Ho
, and
S.
Guidon
.
2012
.
PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses
.
Molecular Biology and Evolution
29
:
1695
1701
.

Lees
,
A. C.
, and
D. J.
Bell
.
2008
.
A conservation paradox for the 21st century: the European wild rabbit Oryctolagus cuniculus, an invasive alien and an endangered native species
.
Mammal Review
38
:
304
320
.

Librado
,
P.
, and
J.
Rozas
.
2009
.
DnaSP v5: a software for comprehensive analysis of DNA polymorphism data
.
Bioinformatics
25
:
1451
1452
.

Litvaitis
,
M. K.
,
W.-J.
Lee
,
J. A.
Litvaitis
, and
T. D.
Kocher
.
1997
.
Variation in the mitochondrial DNA of the Sylvilagus complex occupying the northeastern United States
.
Canadian Journal of Zoology
75
:
595
605
.

Liu
,
J.
, et al. 
2011
.
Reticulate evolution: frequent introgressive hybridization among Chinese hares (genus Lepus) revealed by analyses of multiple mitochondrial and nuclear DNA loci
.
BMC Evolutionary Biology
11
:
223
.

Lopes
,
A. M.
,
S.
Marques
,
E.
Silva
,
M. J.
Magalhães
,
A.
Pinheiro
,
P. C.
Alves
,
J.
Le Pendu
,
P. J.
Esteves
,
G.
Thompson
, and
J.
Abrantes
.
2014
.
Detection of RHDV strains in the Iberian hare (Lepus granatensis): earliest evidence of rabbit lagovirus cross-species infection
.
Veterinary Research
45
:
94
.

Matthee
,
C. A.
,
B. J.
Van Vuuren
,
D.
Bell
,
T. J.
Robinson
, and
J.
Sullivan
.
2004
.
A molecular supermatrix of the rabbits and hares (Leporidae) allows for the identification of five intercontinental exchanges during the Miocene
.
Systematic Biology
53
:
433
447
.

Melo‐Ferreira
,
J.
,
P.
Boursot
,
F.
Suchentrunk
,
N.
Ferrand
, and
P. C.
Alves
.
2005
.
Invasion from the cold past: extensive introgression of mountain hare (Lepus timidus) mitochondrial DNA into three other hare species in northern Iberia
.
Molecular Ecology
14
:
2459
2464
.

Melo-Ferreira
,
J.
,
P. C.
Alves
,
H.
Freitas
,
N.
Ferrand
, and
P.
Boursot
.
2009
.
The genomic legacy from the extinct Lepus timidus to the three hare species of Iberia: contrast between mtDNA, sex chromosomes and autosomes
.
Molecular Ecology
18
:
2643
2658
.

Melo-Ferreira
,
J.
,
P.
Boursot
,
M.
Carneiro
,
P. J.
Esteves
,
L.
Farelo
, and
P. C.
Alves
.
2011
.
Recurrent introgression of mitochondrial DNA among hares (Lepus spp.) revealed by species-tree inference and coalescent simulations
.
Systematic Biology
61
:
367
381
.

Melo-Ferreira
,
J.
,
J.
Vilela
,
M. M.
Fonseca
,
R. R.
da Fonseca
,
P.
Boursot
, and
P. C.
Alves
.
2014
.
The elusive nature of adaptive mitochondrial DNA evolution of an arctic lineage prone to frequent introgression
.
Genome Biology and Evolution
6
:
886
896
.

Miller
,
M. A.
,
W.
Pfeiffer
, and
T.
Schwartz
.
2010
.
Creating the CIPRES science gateway for inference of large phylogenetic trees
. Pp.
1
8
in
2010 Gateway Computing Environments workshop (GCE)
.
IEEE
,
New Orleans, Louisiana
.

Naidu
,
A.
,
R. R.
Fitak
,
A.
Munguia-Vega
, and
M.
Culver
.
2012
.
Novel primers for complete mitochondrial cytochrome b gene sequencing in mammals
.
Molecular Ecology Resources
12
:
191
196
.

Nalls
,
A. V.
,
L. K.
Ammerman
, and
R. C.
Dowler
.
2012
.
Genetic and morphologic variation in the Davis Mountains cottontail (Sylvilagus robustus)
.
The Southwestern Naturalist
1
7
.

Novillo
,
A.
, and
R.
Ojeda
.
2008
.
The exotic mammals of Argentina
.
Biological Invasions
10
:
1333
1344
.

Nunome
,
M.
,
H.
Torii
,
R.
Matsuki
,
G.
Kinoshita
, and
H.
Suzuki
.
2010
.
The influence of Pleistocene refugia on the evolutionary history of the Japanese hare, Lepus brachyurus
.
Zoological Science
27
:
746
754
.

Pelletier
,
M.
,
D.
Cochard
,
M.
Boudadi-Maligne
,
J.-Y.
Crochet
, and
L.
Bourguignon
.
2015
.
Lower pleistocene leporids (Lagomorpha, Mammalia) in Western Europe: new data from the Bois-de-Riquet (Lézignan-la-Cèbe, Hérault, France)
.
Comptes Rendus Palevol
14
:
371
385
.

Ramírez-Silva
,
J. P.
,
F. X.
González-Cózatl
,
E.
Vázquez-Domínguez
, and
F. A.
Cervantes
.
2010
.
Phylogenetic position of Mexican jackrabbits within the genus Lepus (Mammalia: Lagomorpha): a molecular perspective
.
Revista Mexicana de Biodiversidad
81:721–731
.

Robinson
,
T. J.
, and
C. A.
Matthee
.
2005
.
Phylogeny and evolutionary origins of the Leporidae: a review of cytogenetics, molecular analyses and a supermatrix analysis
.
Mammal Review
35
:
231
247
.

Ruedas
,
L. A
.
1998
.
Systematics of Sylvilagus Gray, 1867 (Lagomorpha: Leporidae) from Southwestern North America
.
Journal of Mammalogy
79
:
1355
1378
.

Ruedas
,
L. A
.
2017
.
A new species of cottontail rabbit (Lagomorpha: Leporidae: Sylvilagus) from Suriname, with comments on the taxonomy of allied taxa from northern South America
.
Journal of Mammalogy
98
:
1042
1059
.

Ruedas
,
L. A.
, et al. 
2017
.
A prolegomenon to the systematics of South American cottontail rabbits (Mammalia, Lagomorpha, Leporidae: Sylvilagus)
.
Miscellaneous Publications, Museum of Zoology, University of Michigan
205
:
1
67
.

Ruedas
,
L. A.
,
J. M.
Mora
, and
H. C.
Lanier
.
2018
.
Evolution of lagomorphs
. Pp.
4
8
in
Lagomorphs: the pikas, rabbits, and hares of the world
(
A. T.
Smith
,
K.
Hackländer
,
P. C.
Alves
, and
C. H.
Johnston
, eds.).
Johns Hopkins
,
Baltimore, Maryland
.

Ruedas
,
L. A.
, and
J.
Salazar-Bravo
.
2007
.
Morphological and chromosomal taxonomic assessment of Sylvilagus brasiliensis gabbi (Leporidae)
.
Mammalia
71
:
63
69
.

Ruf
,
I
.
2014
.
Comparative anatomy and systematic implications of the turbinal skeleton in Lagomorpha (Mammalia)
.
The Anatomical Record
297
:
2031
2046
.

Shan
,
W. J.
, and
Y. G.
Liu
.
2016
.
The complete mitochondrial DNA sequence of the cape hare Lepus capensis pamirensis
.
Mitochondrial DNA Part A
,
27
:
4572
4573
.

Sikes
,
R. S.
, and
The Animal Care and Use Committee of the American Society of Mammalogists
.
2016
.
2016 Guidelines of the American Society of Mammalogists for the use of wild mammals in research and education
.
Journal of Mammalogy
97
:
663
688
.

Silva Jr.
,
J. de S. e.
,
J. A.
Oliveira
,
P. A.
Dias
, and
T. G.
de Oliveira
.
2005
.
Update on the geographical distribution and habitat of the tapiti (Sylvilagus brasiliensis: Lagomorpha, Leporidae) in the Brazilian Amazon
.
Mammalia
69
:
245
250
.

Silvestro
,
D.
, and
I.
Michalak
.
2012
.
raxmlGUI: a graphical front-end for RAxML
.
Organisms Diversity & Evolution
12
:
335
337
.

Smith
,
A. T.
,
C. H.
Johnston
,
P. C.
Alves
, and
K.
Hackländer
.
2018
.
Lagomorphs: pikas, rabbits, and hares of the world
.
JHU Press
,
Baltimore, Maryland
.

Stamatakis
,
A
.
2014
.
RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies
.
Bioinformatics
30
:
1312
1313
.

Stephens
,
M.
, and
P.
Scheet
.
2005
.
Accounting for decay of linkage disequilibrium in haplotype inference and missing-data imputation
.
The American Journal of Human Genetics
76
:
449
462
.

Suh
,
A
.
2016
.
The phylogenomic forest of bird trees contains a hard polytomy at the root of Neoaves
.
Zoologica Scripta
45
:
50
62
.

Suh
,
A.
,
L.
Smeds
, and
H.
Ellegren
.
2015
.
The dynamics of incomplete lineage sorting across the ancient adaptive radiation of neoavian birds
.
PLoS Biology
13
:
e1002224
.

Tamura
,
K.
,
D.
Peterson
,
N.
Peterson
,
G.
Stecher
,
M.
Nei
, and
S.
Kumar
.
2011
.
MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods
.
Molecular Biology and Evolution
28
:
2731
2739
.

Thompson
,
J.
,
D.
Higgins
, and
T.
Gibson
.
1994
.
CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice
.
Nucleic Acids Research
22
:
4673
4680
.

Verde Arregoitia
,
L. D.
,
K.
Leach
,
N.
Reid
, and
D. O.
Fisher
.
2015
.
Diversity, extinction, and threat status in lagomorphs
.
Ecography
38
:
1155
1165
.

Yamada
,
F.
,
M.
Takaki
, and
H.
Suzuki
.
2002
.
Molecular phylogeny of Japanese Leporidae, the Amami rabbit Pentalagus furnessi, the Japanese hare Lepus brachyurus, and the mountain hare Lepus timidus, inferred from mitochondrial DNA sequences
.
Genes & Genetic Systems
77
:
107
116
.

Yule
,
U. G
.
1925
.
A mathematical theory of evolution, based on the conclusions of Dr. JC Willis, FRS
.
Philosophical Transactions of the Royal Society of London Series B
213
:
21
87
.

Appendix I

Sample vouchers, GenBank accession numbers, and references for all sequences used in this study.

Voucher/isolateSpeciesaCYTB12SMGFPRKCITGTHYSPTBNReferencesLocality Fig. 1
UFPE1740 Sbr MH115201 KU057257 MH115213 MH115222 MH115239 MH115251 MH115230 Ruedas et al. (2017); this study 
M1380 Smn MH115202 MH115190 MH115214  MH115240 MH115252  This study 
M1770 Smn MH115203 MH115191 MH115215 MH115223 MH115241 MH115253 MH115231 This study 
M1778 Smn MH115204 MH115192 MH115216 MH115224 MH115242 MH115254 MH115232 This study 
LG479 Smn MH115205 MH115193 MH115217 MH115225 MH115243 MH115255 MH115233 This study 
DPV53580 Smn MH115206 MH115194   MH115244  MH115234 This study 
SP01 Smn MH115207 MH115195   MH115245  MH115235 This study 
RS01 Smn MH115208 MH115196 MH115218 MH115226 MH115246 MH115256 MH115236 This study 
M1796 Ssp MH115209 MH115197 MH115219 MH115227 MH115247 MH115257 MH115237 This study 
TOC013 Ssp MH115210 MH115198   MH115248   This study 10 
MPEG45455 Ssp MH115211 MH115199 MH115220 MH115228 MH115249  MH115238 This study 11 
MPEG45456 Ssp MH115212 MH115200 MH115221 MH115229 MH115250 MH115258  This study 12 
MCNU1561 Leu MH115259 MH115260  MH115261 MH115262   This study 
 Bid AY292721 AY292695 AY292745 AY292772 AY292840 AY292669 AY292814 Matthee et al. (2004)  
 Bmn AY292718 AY292692 AY292742 AY292769 AY292837 AY292666 AY292811 Matthee et al. (2004)  
 Chs AY292719 AY292693 AY292743 AY292770 AY292838 AY292667 AY292812 Matthee et al. (2004)  
 Lam AY292733 AY292707 AY292757 AY292784 AY292852 AY292681 AY292826 Matthee et al. (2004)  
 Lcf AY292731 AY292705 AY292755 AY292782 AY292850 AY292679 AY292824 Matthee et al. (2004)  
 Lcp AY292732 AY292706 AY292756 AY292783 AY292851 AY292680 AY292825 Matthee et al. (2004)  
 Lsx AY292730 AY292704 AY292754 AY292781 AY292849 AY292678 AY292823 Matthee et al. (2004)  
 Ltm AY292728 AY292702 AY292752 AY292779 AY292847 AY292676 AY292821 Matthee et al. (2004)  
 Ltw AY292729 AY292703 AY292753 AY292780 AY292848 AY292677 AY292822 Matthee et al. (2004)  
 Nnt  AY292709 AY292759 AY292786 AY292854 AY292683  Matthee et al. (2004)  
 Ntm  AY292710 AY292760 AY292787 AY292855 AY292684 AY292828 Matthee et al. (2004)  
 Ocn AY292717 AY292691 AY292741 AY292768 AY292836 AY292665 AY292810 Matthee et al. (2004)  
 Pcr AY292738 AY292714 AY292764 AY292791 AY292859 AY292688 AY292832 Matthee et al. (2004)  
 Pfr AY292720 AY292694 AY292744 AY292771 AY292839 AY292668 AY292813 Matthee et al. (2004)  
 Pmr    AY292767 AY292835   Matthee et al. (2004)  
 Prn AY292737 AY292713 AY292763 AY292790 AY292858 AY292687 AY292831 Matthee et al. (2004)  
 Prp AY292735 AY292711 AY292761 AY292788 AY292856 AY292685 AY292829 Matthee et al. (2004)  
 Psa AY292736 AY292712 AY292762 AY292789 AY292857 AY292686 AY292830 Matthee et al. (2004)  
 Rdi AY292734 AY292708 AY292758 AY292785 AY292853 AY292682 AY292827 Matthee et al. (2004)  
 Saq AY292726 AY292700 AY292750 AY292777 AY292845 AY292674 AY292819 Matthee et al. (2004)  
 Sau AY292722 AY292696 AY292746 AY292773 AY292841 AY292670 AY292815 Matthee et al. (2004)  
 Sfl AY292724 AY292698 AY292748 AY292775 AY292843 AY292672 AY292817 Matthee et al. (2004)  
 Snt AY292723 AY292697 AY292747 AY292774 AY292842 AY292671 AY292816 Matthee et al. (2004)  
 Sob AY292725 AY292699 AY292749 AY292776 AY292844 AY292673 AY292818 Matthee et al. (2004)  
 Spl AY292727 AY292701 AY292751 AY292778 AY292846 AY292675 AY292820 Matthee et al. (2004)  
GK227 Lce AB687531  LC131921  LC132018 LC132115 LC132212 Kinoshita et al. (2012)  
s1 Lsn HM233081  HM233721  HM233484   Liu et al. (2011)  
ME Lmn HM233010  HM233344  HM233393   Liu and Zhang, Liu et al.  
C1 Lcm HM233066  HM233619  HM233377   Liu et al. (2011)  
Lar3 Lar JN037365   JN037012   JN037040 Melo-Ferreira et al. (2011)  
Lcr1 Lci JN037356   JN037003   JN037031 Melo-Ferreira et al. (2011)  
Lot1 Lot JN037366   JN037013   JN037041 Melo-Ferreira et al. (2011)  
LbAKT243 Lbr AB514237       Nunome et al. (2010)  
DT Lha KF723323       Kong et al. (2016)  
Lpg KF723324       Kong et al. (2016)  
O1 Loi HM233064       Liu et al. (2011)  
ASK 3518 Srb HQ143448       Nalls et al. (2012)  
 Lcs AY942569       Melo-Ferreira et al. (2005)  
NK 4504 Lal AF010157       Halanych et al. (1999)  
NK 3800 Lcl AF010158       Halanych et al. (1999)  
P151 Lgr KJ943805       Lopes et al. (2014)  
ECOSUR:2048 Lfl KT308125       Álvarez-Castañeda and Lorenzo (2017)  
RF-8 Lin HM222713       Naidu et al. (2012)  
 Ltb LC073697       Shan and Liu (2016)  
 Str AF034256       Snyder and Husband  
 Ltl AY649617       Xiang, Yang and Xia  
QCAZ10893 San  KU057258      Ruedas et al. (2017)  
AK11178 Sau  KU057237      Ruedas et al. (2017)  
MVZ206386 Sbc  KU057239      Ruedas et al. (2017)  
MSB40683 Sbc  KU057238      Ruedas et al. (2017)  
ROM105515 Sbr  KU057236      Ruedas et al. (2017) 13 
MVZ153492 Sbr  KU057243      Ruedas et al. (2017) 14 
MN24041 Sbr  KU057254      Ruedas et al. (2017) 15 
MSB55948 Sbr  KU057240      Ruedas et al. (2017) 16 
TK61307 Sbr  KU057242      Ruedas et al. (2017) 17 
TTU79706 Sbr  KU057241      Ruedas et al. (2017) 18 
EPN954419 Sbr  KU057228      Ruedas et al. (2017) 19 
CR1hsr Sbr  KU057219      Ruedas et al. (2017) 20 
CRIV1 Sbr  KU057222      Ruedas et al. (2017) 21 
CRIV2 Sbr  KU057223      Ruedas et al. (2017) 21 
CRIV4 Sbr  KU057224      Ruedas et al. (2017) 21 
CRIV5 Sbr  KU057225      Ruedas et al. (2017) 21 
CRIV6 Sbr  KU057226      Ruedas et al. (2017) 21 
EM1556 Sbr  KU057227      Ruedas et al. (2017) 22 
TTU114374 Sdc  KU057256      Ruedas et al. (2017)  
TK147518 Sdc  KU057251      Ruedas et al. (2017)  
AK11511 Sfl  KU057246      Ruedas et al. (2017)  
MVZ154373 Sfl  KU057231      Ruedas et al. (2017)  
ASNHC_2330 Sfl  KU057218      Ruedas et al. (2017)  
CR26gpv Sfl  KU057220      Ruedas et al. (2017)  
MSB89673 Sfl  KU057244      Ruedas et al. (2017)  
hidra008 Sfl  KU057229      Ruedas et al. (2017)  
IIBT349 Sfl  KU057253      Ruedas et al. (2017)  
NP310 Sfl  KU057235      Ruedas et al. (2017)  
MSB158806 Sgb  KU057232      Ruedas et al. (2017)  
MSB158807 Sgb  KU057233      Ruedas et al. (2017)  
PSU4944 Snt  KU057255      Ruedas et al. (2017)  
AK11516 Sob  KU057248      Ruedas et al. (2017)  
AK11529 Sob  KU057247      Ruedas et al. (2017)  
PSU4960 Spl  KU057249      Ruedas et al. (2017)  
AK11525 Str  KU057250      Ruedas et al. (2017)  
 Opr AY292716 AY292690 AY292740 AY292766 AY292834 AY292664 AY292809 Matthee et al. (2004)  
 Tst AY292715 AY292689 AY292739 AY292765 AY292833 AY292663 AY292808 Matthee et al. (2004)  
Voucher/isolateSpeciesaCYTB12SMGFPRKCITGTHYSPTBNReferencesLocality Fig. 1
UFPE1740 Sbr MH115201 KU057257 MH115213 MH115222 MH115239 MH115251 MH115230 Ruedas et al. (2017); this study 
M1380 Smn MH115202 MH115190 MH115214  MH115240 MH115252  This study 
M1770 Smn MH115203 MH115191 MH115215 MH115223 MH115241 MH115253 MH115231 This study 
M1778 Smn MH115204 MH115192 MH115216 MH115224 MH115242 MH115254 MH115232 This study 
LG479 Smn MH115205 MH115193 MH115217 MH115225 MH115243 MH115255 MH115233 This study 
DPV53580 Smn MH115206 MH115194   MH115244  MH115234 This study 
SP01 Smn MH115207 MH115195   MH115245  MH115235 This study 
RS01 Smn MH115208 MH115196 MH115218 MH115226 MH115246 MH115256 MH115236 This study 
M1796 Ssp MH115209 MH115197 MH115219 MH115227 MH115247 MH115257 MH115237 This study 
TOC013 Ssp MH115210 MH115198   MH115248   This study 10 
MPEG45455 Ssp MH115211 MH115199 MH115220 MH115228 MH115249  MH115238 This study 11 
MPEG45456 Ssp MH115212 MH115200 MH115221 MH115229 MH115250 MH115258  This study 12 
MCNU1561 Leu MH115259 MH115260  MH115261 MH115262   This study 
 Bid AY292721 AY292695 AY292745 AY292772 AY292840 AY292669 AY292814 Matthee et al. (2004)  
 Bmn AY292718 AY292692 AY292742 AY292769 AY292837 AY292666 AY292811 Matthee et al. (2004)  
 Chs AY292719 AY292693 AY292743 AY292770 AY292838 AY292667 AY292812 Matthee et al. (2004)  
 Lam AY292733 AY292707 AY292757 AY292784 AY292852 AY292681 AY292826 Matthee et al. (2004)  
 Lcf AY292731 AY292705 AY292755 AY292782 AY292850 AY292679 AY292824 Matthee et al. (2004)  
 Lcp AY292732 AY292706 AY292756 AY292783 AY292851 AY292680 AY292825 Matthee et al. (2004)  
 Lsx AY292730 AY292704 AY292754 AY292781 AY292849 AY292678 AY292823 Matthee et al. (2004)  
 Ltm AY292728 AY292702 AY292752 AY292779 AY292847 AY292676 AY292821 Matthee et al. (2004)  
 Ltw AY292729 AY292703 AY292753 AY292780 AY292848 AY292677 AY292822 Matthee et al. (2004)  
 Nnt  AY292709 AY292759 AY292786 AY292854 AY292683  Matthee et al. (2004)  
 Ntm  AY292710 AY292760 AY292787 AY292855 AY292684 AY292828 Matthee et al. (2004)  
 Ocn AY292717 AY292691 AY292741 AY292768 AY292836 AY292665 AY292810 Matthee et al. (2004)  
 Pcr AY292738 AY292714 AY292764 AY292791 AY292859 AY292688 AY292832 Matthee et al. (2004)  
 Pfr AY292720 AY292694 AY292744 AY292771 AY292839 AY292668 AY292813 Matthee et al. (2004)  
 Pmr    AY292767 AY292835   Matthee et al. (2004)  
 Prn AY292737 AY292713 AY292763 AY292790 AY292858 AY292687 AY292831 Matthee et al. (2004)  
 Prp AY292735 AY292711 AY292761 AY292788 AY292856 AY292685 AY292829 Matthee et al. (2004)  
 Psa AY292736 AY292712 AY292762 AY292789 AY292857 AY292686 AY292830 Matthee et al. (2004)  
 Rdi AY292734 AY292708 AY292758 AY292785 AY292853 AY292682 AY292827 Matthee et al. (2004)  
 Saq AY292726 AY292700 AY292750 AY292777 AY292845 AY292674 AY292819 Matthee et al. (2004)  
 Sau AY292722 AY292696 AY292746 AY292773 AY292841 AY292670 AY292815 Matthee et al. (2004)  
 Sfl AY292724 AY292698 AY292748 AY292775 AY292843 AY292672 AY292817 Matthee et al. (2004)  
 Snt AY292723 AY292697 AY292747 AY292774 AY292842 AY292671 AY292816 Matthee et al. (2004)  
 Sob AY292725 AY292699 AY292749 AY292776 AY292844 AY292673 AY292818 Matthee et al. (2004)  
 Spl AY292727 AY292701 AY292751 AY292778 AY292846 AY292675 AY292820 Matthee et al. (2004)  
GK227 Lce AB687531  LC131921  LC132018 LC132115 LC132212 Kinoshita et al. (2012)  
s1 Lsn HM233081  HM233721  HM233484   Liu et al. (2011)  
ME Lmn HM233010  HM233344  HM233393   Liu and Zhang, Liu et al.  
C1 Lcm HM233066  HM233619  HM233377   Liu et al. (2011)  
Lar3 Lar JN037365   JN037012   JN037040 Melo-Ferreira et al. (2011)  
Lcr1 Lci JN037356   JN037003   JN037031 Melo-Ferreira et al. (2011)  
Lot1 Lot JN037366   JN037013   JN037041 Melo-Ferreira et al. (2011)  
LbAKT243 Lbr AB514237       Nunome et al. (2010)  
DT Lha KF723323       Kong et al. (2016)  
Lpg KF723324       Kong et al. (2016)  
O1 Loi HM233064       Liu et al. (2011)  
ASK 3518 Srb HQ143448       Nalls et al. (2012)  
 Lcs AY942569       Melo-Ferreira et al. (2005)  
NK 4504 Lal AF010157       Halanych et al. (1999)  
NK 3800 Lcl AF010158       Halanych et al. (1999)  
P151 Lgr KJ943805       Lopes et al. (2014)  
ECOSUR:2048 Lfl KT308125       Álvarez-Castañeda and Lorenzo (2017)  
RF-8 Lin HM222713       Naidu et al. (2012)  
 Ltb LC073697       Shan and Liu (2016)  
 Str AF034256       Snyder and Husband  
 Ltl AY649617       Xiang, Yang and Xia  
QCAZ10893 San  KU057258      Ruedas et al. (2017)  
AK11178 Sau  KU057237      Ruedas et al. (2017)  
MVZ206386 Sbc  KU057239      Ruedas et al. (2017)  
MSB40683 Sbc  KU057238      Ruedas et al. (2017)  
ROM105515 Sbr  KU057236      Ruedas et al. (2017) 13 
MVZ153492 Sbr  KU057243      Ruedas et al. (2017) 14 
MN24041 Sbr  KU057254      Ruedas et al. (2017) 15 
MSB55948 Sbr  KU057240      Ruedas et al. (2017) 16 
TK61307 Sbr  KU057242      Ruedas et al. (2017) 17 
TTU79706 Sbr  KU057241      Ruedas et al. (2017) 18 
EPN954419 Sbr  KU057228      Ruedas et al. (2017) 19 
CR1hsr Sbr  KU057219      Ruedas et al. (2017) 20 
CRIV1 Sbr  KU057222      Ruedas et al. (2017) 21 
CRIV2 Sbr  KU057223      Ruedas et al. (2017) 21 
CRIV4 Sbr  KU057224      Ruedas et al. (2017) 21 
CRIV5 Sbr  KU057225      Ruedas et al. (2017) 21 
CRIV6 Sbr  KU057226      Ruedas et al. (2017) 21 
EM1556 Sbr  KU057227      Ruedas et al. (2017) 22 
TTU114374 Sdc  KU057256      Ruedas et al. (2017)  
TK147518 Sdc  KU057251      Ruedas et al. (2017)  
AK11511 Sfl  KU057246      Ruedas et al. (2017)  
MVZ154373 Sfl  KU057231      Ruedas et al. (2017)  
ASNHC_2330 Sfl  KU057218      Ruedas et al. (2017)  
CR26gpv Sfl  KU057220      Ruedas et al. (2017)  
MSB89673 Sfl  KU057244      Ruedas et al. (2017)  
hidra008 Sfl  KU057229      Ruedas et al. (2017)  
IIBT349 Sfl  KU057253      Ruedas et al. (2017)  
NP310 Sfl  KU057235      Ruedas et al. (2017)  
MSB158806 Sgb  KU057232      Ruedas et al. (2017)  
MSB158807 Sgb  KU057233      Ruedas et al. (2017)  
PSU4944 Snt  KU057255      Ruedas et al. (2017)  
AK11516 Sob  KU057248      Ruedas et al. (2017)  
AK11529 Sob  KU057247      Ruedas et al. (2017)  
PSU4960 Spl  KU057249      Ruedas et al. (2017)  
AK11525 Str  KU057250      Ruedas et al. (2017)  
 Opr AY292716 AY292690 AY292740 AY292766 AY292834 AY292664 AY292809 Matthee et al. (2004)  
 Tst AY292715 AY292689 AY292739 AY292765 AY292833 AY292663 AY292808 Matthee et al. (2004)  

aBid, Brachylagus idahoensis; Bmn, Bunolagus monticularis; Chs, Caprolagus hispidus; Lal, Lepus alleni; Lam, L. americanus; Lar, L. arcticus; Lbr, L. brachyurus; Leu, L. europaues; Lcf, L. californicus; Lcl, L. callotis; Lcm, L. comus; Lcp, L. capensis; Lce, L. coreanus; Lci, L. corsicanus; Lcs, L. castroviejoi; Lfl, L. flavigularis; Lgr, L. granatensis; Lha, L. hainanus; Lin, L. insularis; Lmn, L. mandschuricus; Loi, L. oiostolus; Lot, L. othus; Lpg, L. peguensis; Lsn, L. sinensis; Lsx, L. saxatilis; Ltb, L. tibetanus; Ltl, L. tolai; Ltm, L. timidus; Ltw, L. towsendi; Nnt, Nesolagus netscheri; Ntm, N. timminsi; Ocn, Oryctolagus cuniculus; Opr, Ochotona princeps; Pfr, Pentalagus furnessi; Pmr, Poelagus marjorita; Pcr, Pronolagus crassicaudatus; Prn, Pronolagus randensis; Prp, Pronolagus rupestris; Psa, Pronolagus saundersiae; Rdi, Romerolagus diazi; San, Sylvilagus andinus; Saq, S. aquaticus; Sau, S. audubonii; Sbc, S. bachmani; Sbr, S. brasiliensis; Sdc, S. dicei; Sfl, S. floridanus; Sgb, S. gabbi; Smn, S. minensis; Snt, S. nuttallii; Sob, S. obscurus; Spl, S. palustris; Srb, S. robustus; Ssp, Sylvilagus sp.; Str, S. transitionalis; Tst, Tamiasciurus hudsonicus.

Voucher/isolateSpeciesaCYTB12SMGFPRKCITGTHYSPTBNReferencesLocality Fig. 1
UFPE1740 Sbr MH115201 KU057257 MH115213 MH115222 MH115239 MH115251 MH115230 Ruedas et al. (2017); this study 
M1380 Smn MH115202 MH115190 MH115214  MH115240 MH115252  This study 
M1770 Smn MH115203 MH115191 MH115215 MH115223 MH115241 MH115253 MH115231 This study 
M1778 Smn MH115204 MH115192 MH115216 MH115224 MH115242 MH115254 MH115232 This study 
LG479 Smn MH115205 MH115193 MH115217 MH115225 MH115243 MH115255 MH115233 This study 
DPV53580 Smn MH115206 MH115194   MH115244  MH115234 This study 
SP01 Smn MH115207 MH115195   MH115245  MH115235 This study 
RS01 Smn MH115208 MH115196 MH115218 MH115226 MH115246 MH115256 MH115236 This study 
M1796 Ssp MH115209 MH115197 MH115219 MH115227 MH115247 MH115257 MH115237 This study 
TOC013 Ssp MH115210 MH115198   MH115248   This study 10 
MPEG45455 Ssp MH115211 MH115199 MH115220 MH115228 MH115249  MH115238 This study 11 
MPEG45456 Ssp MH115212 MH115200 MH115221 MH115229 MH115250 MH115258  This study 12 
MCNU1561 Leu MH115259 MH115260  MH115261 MH115262   This study 
 Bid AY292721 AY292695 AY292745 AY292772 AY292840 AY292669 AY292814 Matthee et al. (2004)  
 Bmn AY292718 AY292692 AY292742 AY292769 AY292837 AY292666 AY292811 Matthee et al. (2004)  
 Chs AY292719 AY292693 AY292743 AY292770 AY292838 AY292667 AY292812 Matthee et al. (2004)  
 Lam AY292733 AY292707 AY292757 AY292784 AY292852 AY292681 AY292826 Matthee et al. (2004)  
 Lcf AY292731 AY292705 AY292755 AY292782 AY292850 AY292679 AY292824 Matthee et al. (2004)  
 Lcp AY292732 AY292706 AY292756 AY292783 AY292851 AY292680 AY292825 Matthee et al. (2004)  
 Lsx AY292730 AY292704 AY292754 AY292781 AY292849 AY292678 AY292823 Matthee et al. (2004)  
 Ltm AY292728 AY292702 AY292752 AY292779 AY292847 AY292676 AY292821 Matthee et al. (2004)  
 Ltw AY292729 AY292703 AY292753 AY292780 AY292848 AY292677 AY292822 Matthee et al. (2004)  
 Nnt  AY292709 AY292759 AY292786 AY292854 AY292683  Matthee et al. (2004)  
 Ntm  AY292710 AY292760 AY292787 AY292855 AY292684 AY292828 Matthee et al. (2004)  
 Ocn AY292717 AY292691 AY292741 AY292768 AY292836 AY292665 AY292810 Matthee et al. (2004)  
 Pcr AY292738 AY292714 AY292764 AY292791 AY292859 AY292688 AY292832 Matthee et al. (2004)  
 Pfr AY292720 AY292694 AY292744 AY292771 AY292839 AY292668 AY292813 Matthee et al. (2004)  
 Pmr    AY292767 AY292835   Matthee et al. (2004)  
 Prn AY292737 AY292713 AY292763 AY292790 AY292858 AY292687 AY292831 Matthee et al. (2004)  
 Prp AY292735 AY292711 AY292761 AY292788 AY292856 AY292685 AY292829 Matthee et al. (2004)  
 Psa AY292736 AY292712 AY292762 AY292789 AY292857 AY292686 AY292830 Matthee et al. (2004)  
 Rdi AY292734 AY292708 AY292758 AY292785 AY292853 AY292682 AY292827 Matthee et al. (2004)  
 Saq AY292726 AY292700 AY292750 AY292777 AY292845 AY292674 AY292819 Matthee et al. (2004)  
 Sau AY292722 AY292696 AY292746 AY292773 AY292841 AY292670 AY292815 Matthee et al. (2004)  
 Sfl AY292724 AY292698 AY292748 AY292775 AY292843 AY292672 AY292817 Matthee et al. (2004)  
 Snt AY292723 AY292697 AY292747 AY292774 AY292842 AY292671 AY292816 Matthee et al. (2004)  
 Sob AY292725 AY292699 AY292749 AY292776 AY292844 AY292673 AY292818 Matthee et al. (2004)  
 Spl AY292727 AY292701 AY292751 AY292778 AY292846 AY292675 AY292820 Matthee et al. (2004)  
GK227 Lce AB687531  LC131921  LC132018 LC132115 LC132212 Kinoshita et al. (2012)  
s1 Lsn HM233081  HM233721  HM233484   Liu et al. (2011)  
ME Lmn HM233010  HM233344  HM233393   Liu and Zhang, Liu et al.  
C1 Lcm HM233066  HM233619  HM233377   Liu et al. (2011)  
Lar3 Lar JN037365   JN037012   JN037040 Melo-Ferreira et al. (2011)  
Lcr1 Lci JN037356   JN037003   JN037031 Melo-Ferreira et al. (2011)  
Lot1 Lot JN037366   JN037013   JN037041 Melo-Ferreira et al. (2011)  
LbAKT243 Lbr AB514237       Nunome et al. (2010)  
DT Lha KF723323       Kong et al. (2016)  
Lpg KF723324       Kong et al. (2016)  
O1 Loi HM233064       Liu et al. (2011)  
ASK 3518 Srb HQ143448       Nalls et al. (2012)  
 Lcs AY942569       Melo-Ferreira et al. (2005)  
NK 4504 Lal AF010157       Halanych et al. (1999)  
NK 3800 Lcl AF010158       Halanych et al. (1999)  
P151 Lgr KJ943805       Lopes et al. (2014)  
ECOSUR:2048 Lfl KT308125       Álvarez-Castañeda and Lorenzo (2017)  
RF-8 Lin HM222713       Naidu et al. (2012)  
 Ltb LC073697       Shan and Liu (2016)  
 Str AF034256       Snyder and Husband  
 Ltl AY649617       Xiang, Yang and Xia  
QCAZ10893 San  KU057258      Ruedas et al. (2017)  
AK11178 Sau  KU057237      Ruedas et al. (2017)  
MVZ206386 Sbc  KU057239      Ruedas et al. (2017)  
MSB40683 Sbc  KU057238      Ruedas et al. (2017)  
ROM105515 Sbr  KU057236      Ruedas et al. (2017) 13 
MVZ153492 Sbr  KU057243      Ruedas et al. (2017) 14 
MN24041 Sbr  KU057254      Ruedas et al. (2017) 15 
MSB55948 Sbr  KU057240      Ruedas et al. (2017) 16 
TK61307 Sbr  KU057242      Ruedas et al. (2017) 17 
TTU79706 Sbr  KU057241      Ruedas et al. (2017) 18 
EPN954419 Sbr  KU057228      Ruedas et al. (2017) 19 
CR1hsr Sbr  KU057219      Ruedas et al. (2017) 20 
CRIV1 Sbr  KU057222      Ruedas et al. (2017) 21 
CRIV2 Sbr  KU057223      Ruedas et al. (2017) 21 
CRIV4 Sbr  KU057224      Ruedas et al. (2017) 21 
CRIV5 Sbr  KU057225      Ruedas et al. (2017) 21 
CRIV6 Sbr  KU057226      Ruedas et al. (2017) 21 
EM1556 Sbr  KU057227      Ruedas et al. (2017) 22 
TTU114374 Sdc  KU057256      Ruedas et al. (2017)  
TK147518 Sdc  KU057251      Ruedas et al. (2017)  
AK11511 Sfl  KU057246      Ruedas et al. (2017)  
MVZ154373 Sfl  KU057231      Ruedas et al. (2017)  
ASNHC_2330 Sfl  KU057218      Ruedas et al. (2017)  
CR26gpv Sfl  KU057220      Ruedas et al. (2017)  
MSB89673 Sfl  KU057244      Ruedas et al. (2017)  
hidra008 Sfl  KU057229      Ruedas et al. (2017)  
IIBT349 Sfl  KU057253      Ruedas et al. (2017)  
NP310 Sfl  KU057235      Ruedas et al. (2017)  
MSB158806 Sgb  KU057232      Ruedas et al. (2017)  
MSB158807 Sgb  KU057233      Ruedas et al. (2017)  
PSU4944 Snt  KU057255      Ruedas et al. (2017)  
AK11516 Sob  KU057248      Ruedas et al. (2017)  
AK11529 Sob  KU057247      Ruedas et al. (2017)  
PSU4960 Spl  KU057249      Ruedas et al. (2017)  
AK11525 Str  KU057250      Ruedas et al. (2017)  
 Opr AY292716 AY292690 AY292740 AY292766 AY292834 AY292664 AY292809 Matthee et al. (2004)  
 Tst AY292715 AY292689 AY292739 AY292765 AY292833 AY292663 AY292808 Matthee et al. (2004)  
Voucher/isolateSpeciesaCYTB12SMGFPRKCITGTHYSPTBNReferencesLocality Fig. 1
UFPE1740 Sbr MH115201 KU057257 MH115213 MH115222 MH115239 MH115251 MH115230 Ruedas et al. (2017); this study 
M1380 Smn MH115202 MH115190 MH115214  MH115240 MH115252  This study 
M1770 Smn MH115203 MH115191 MH115215 MH115223 MH115241 MH115253 MH115231 This study 
M1778 Smn MH115204 MH115192 MH115216 MH115224 MH115242 MH115254 MH115232 This study 
LG479 Smn MH115205 MH115193 MH115217 MH115225 MH115243 MH115255 MH115233 This study 
DPV53580 Smn MH115206 MH115194   MH115244  MH115234 This study 
SP01 Smn MH115207 MH115195   MH115245  MH115235 This study 
RS01 Smn MH115208 MH115196 MH115218 MH115226 MH115246 MH115256 MH115236 This study 
M1796 Ssp MH115209 MH115197 MH115219 MH115227 MH115247 MH115257 MH115237 This study 
TOC013 Ssp MH115210 MH115198   MH115248   This study 10 
MPEG45455 Ssp MH115211 MH115199 MH115220 MH115228 MH115249  MH115238 This study 11 
MPEG45456 Ssp MH115212 MH115200 MH115221 MH115229 MH115250 MH115258  This study 12 
MCNU1561 Leu MH115259 MH115260  MH115261 MH115262   This study 
 Bid AY292721 AY292695 AY292745 AY292772 AY292840 AY292669 AY292814 Matthee et al. (2004)  
 Bmn AY292718 AY292692 AY292742 AY292769 AY292837 AY292666 AY292811 Matthee et al. (2004)  
 Chs AY292719 AY292693 AY292743 AY292770 AY292838 AY292667 AY292812 Matthee et al. (2004)  
 Lam AY292733 AY292707 AY292757 AY292784 AY292852 AY292681 AY292826 Matthee et al. (2004)  
 Lcf AY292731 AY292705 AY292755 AY292782 AY292850 AY292679 AY292824 Matthee et al. (2004)  
 Lcp AY292732 AY292706 AY292756 AY292783 AY292851 AY292680 AY292825 Matthee et al. (2004)  
 Lsx AY292730 AY292704 AY292754 AY292781 AY292849 AY292678 AY292823 Matthee et al. (2004)  
 Ltm AY292728 AY292702 AY292752 AY292779 AY292847 AY292676 AY292821 Matthee et al. (2004)  
 Ltw AY292729 AY292703 AY292753 AY292780 AY292848 AY292677 AY292822 Matthee et al. (2004)  
 Nnt  AY292709 AY292759 AY292786 AY292854 AY292683  Matthee et al. (2004)  
 Ntm  AY292710 AY292760 AY292787 AY292855 AY292684 AY292828 Matthee et al. (2004)  
 Ocn AY292717 AY292691 AY292741 AY292768 AY292836 AY292665 AY292810 Matthee et al. (2004)  
 Pcr AY292738 AY292714 AY292764 AY292791 AY292859 AY292688 AY292832 Matthee et al. (2004)  
 Pfr AY292720 AY292694 AY292744 AY292771 AY292839 AY292668 AY292813 Matthee et al. (2004)  
 Pmr    AY292767 AY292835   Matthee et al. (2004)  
 Prn AY292737 AY292713 AY292763 AY292790 AY292858 AY292687 AY292831 Matthee et al. (2004)  
 Prp AY292735 AY292711 AY292761 AY292788 AY292856 AY292685 AY292829 Matthee et al. (2004)  
 Psa AY292736 AY292712 AY292762 AY292789 AY292857 AY292686 AY292830 Matthee et al. (2004)  
 Rdi AY292734 AY292708 AY292758 AY292785 AY292853 AY292682 AY292827 Matthee et al. (2004)  
 Saq AY292726 AY292700 AY292750 AY292777 AY292845 AY292674 AY292819 Matthee et al. (2004)  
 Sau AY292722 AY292696 AY292746 AY292773 AY292841 AY292670 AY292815 Matthee et al. (2004)  
 Sfl AY292724 AY292698 AY292748 AY292775 AY292843 AY292672 AY292817 Matthee et al. (2004)  
 Snt AY292723 AY292697 AY292747 AY292774 AY292842 AY292671 AY292816 Matthee et al. (2004)  
 Sob AY292725 AY292699 AY292749 AY292776 AY292844 AY292673 AY292818 Matthee et al. (2004)  
 Spl AY292727 AY292701 AY292751 AY292778 AY292846 AY292675 AY292820 Matthee et al. (2004)  
GK227 Lce AB687531  LC131921  LC132018 LC132115 LC132212 Kinoshita et al. (2012)  
s1 Lsn HM233081  HM233721  HM233484   Liu et al. (2011)  
ME Lmn HM233010  HM233344  HM233393   Liu and Zhang, Liu et al.  
C1 Lcm HM233066  HM233619  HM233377   Liu et al. (2011)  
Lar3 Lar JN037365   JN037012   JN037040 Melo-Ferreira et al. (2011)  
Lcr1 Lci JN037356   JN037003   JN037031 Melo-Ferreira et al. (2011)  
Lot1 Lot JN037366   JN037013   JN037041 Melo-Ferreira et al. (2011)  
LbAKT243 Lbr AB514237       Nunome et al. (2010)  
DT Lha KF723323       Kong et al. (2016)  
Lpg KF723324       Kong et al. (2016)  
O1 Loi HM233064       Liu et al. (2011)  
ASK 3518 Srb HQ143448       Nalls et al. (2012)  
 Lcs AY942569       Melo-Ferreira et al. (2005)  
NK 4504 Lal AF010157       Halanych et al. (1999)  
NK 3800 Lcl AF010158       Halanych et al. (1999)  
P151 Lgr KJ943805       Lopes et al. (2014)  
ECOSUR:2048 Lfl KT308125       Álvarez-Castañeda and Lorenzo (2017)  
RF-8 Lin HM222713       Naidu et al. (2012)  
 Ltb LC073697       Shan and Liu (2016)  
 Str AF034256       Snyder and Husband  
 Ltl AY649617       Xiang, Yang and Xia  
QCAZ10893 San  KU057258      Ruedas et al. (2017)  
AK11178 Sau  KU057237      Ruedas et al. (2017)  
MVZ206386 Sbc  KU057239      Ruedas et al. (2017)  
MSB40683 Sbc  KU057238      Ruedas et al. (2017)  
ROM105515 Sbr  KU057236      Ruedas et al. (2017) 13 
MVZ153492 Sbr  KU057243      Ruedas et al. (2017) 14 
MN24041 Sbr  KU057254      Ruedas et al. (2017) 15 
MSB55948 Sbr  KU057240      Ruedas et al. (2017) 16 
TK61307 Sbr  KU057242      Ruedas et al. (2017) 17 
TTU79706 Sbr  KU057241      Ruedas et al. (2017) 18 
EPN954419 Sbr  KU057228      Ruedas et al. (2017) 19 
CR1hsr Sbr  KU057219      Ruedas et al. (2017) 20 
CRIV1 Sbr  KU057222      Ruedas et al. (2017) 21 
CRIV2 Sbr  KU057223      Ruedas et al. (2017) 21 
CRIV4 Sbr  KU057224      Ruedas et al. (2017) 21 
CRIV5 Sbr  KU057225      Ruedas et al. (2017) 21 
CRIV6 Sbr  KU057226      Ruedas et al. (2017) 21 
EM1556 Sbr  KU057227      Ruedas et al. (2017) 22 
TTU114374 Sdc  KU057256      Ruedas et al. (2017)  
TK147518 Sdc  KU057251      Ruedas et al. (2017)  
AK11511 Sfl  KU057246      Ruedas et al. (2017)  
MVZ154373 Sfl  KU057231      Ruedas et al. (2017)  
ASNHC_2330 Sfl  KU057218      Ruedas et al. (2017)  
CR26gpv Sfl  KU057220      Ruedas et al. (2017)  
MSB89673 Sfl  KU057244      Ruedas et al. (2017)  
hidra008 Sfl  KU057229      Ruedas et al. (2017)  
IIBT349 Sfl  KU057253      Ruedas et al. (2017)  
NP310 Sfl  KU057235      Ruedas et al. (2017)  
MSB158806 Sgb  KU057232      Ruedas et al. (2017)  
MSB158807 Sgb  KU057233      Ruedas et al. (2017)  
PSU4944 Snt  KU057255      Ruedas et al. (2017)  
AK11516 Sob  KU057248      Ruedas et al. (2017)  
AK11529 Sob  KU057247      Ruedas et al. (2017)  
PSU4960 Spl  KU057249      Ruedas et al. (2017)  
AK11525 Str  KU057250      Ruedas et al. (2017)  
 Opr AY292716 AY292690 AY292740 AY292766 AY292834 AY292664 AY292809 Matthee et al. (2004)  
 Tst AY292715 AY292689 AY292739 AY292765 AY292833 AY292663 AY292808 Matthee et al. (2004)  

aBid, Brachylagus idahoensis; Bmn, Bunolagus monticularis; Chs, Caprolagus hispidus; Lal, Lepus alleni; Lam, L. americanus; Lar, L. arcticus; Lbr, L. brachyurus; Leu, L. europaues; Lcf, L. californicus; Lcl, L. callotis; Lcm, L. comus; Lcp, L. capensis; Lce, L. coreanus; Lci, L. corsicanus; Lcs, L. castroviejoi; Lfl, L. flavigularis; Lgr, L. granatensis; Lha, L. hainanus; Lin, L. insularis; Lmn, L. mandschuricus; Loi, L. oiostolus; Lot, L. othus; Lpg, L. peguensis; Lsn, L. sinensis; Lsx, L. saxatilis; Ltb, L. tibetanus; Ltl, L. tolai; Ltm, L. timidus; Ltw, L. towsendi; Nnt, Nesolagus netscheri; Ntm, N. timminsi; Ocn, Oryctolagus cuniculus; Opr, Ochotona princeps; Pfr, Pentalagus furnessi; Pmr, Poelagus marjorita; Pcr, Pronolagus crassicaudatus; Prn, Pronolagus randensis; Prp, Pronolagus rupestris; Psa, Pronolagus saundersiae; Rdi, Romerolagus diazi; San, Sylvilagus andinus; Saq, S. aquaticus; Sau, S. audubonii; Sbc, S. bachmani; Sbr, S. brasiliensis; Sdc, S. dicei; Sfl, S. floridanus; Sgb, S. gabbi; Smn, S. minensis; Snt, S. nuttallii; Sob, S. obscurus; Spl, S. palustris; Srb, S. robustus; Ssp, Sylvilagus sp.; Str, S. transitionalis; Tst, Tamiasciurus hudsonicus.

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)

Supplementary data