Abstract

A paucity of useful characters, morphological convergence, and potential rapid radiation has hindered systematists in elucidating evolutionary relationships within Vespertilioninae. In this study >8,500 base pairs of digenomic DNA for 111 taxa were sequenced and analyzed using maximum-parsimony and Bayesian phylogenetic methods to construct trees and reexamine hypotheses of supergeneric evolutionary relationships in Vespertilioninae. Results of these analyses validate monophyly of Vespertilioninae with the exclusion of Myotis and support recognition of 6 tribes: Antrozoini, Lasiurini, Scotophilini, Vespertilionini, and 2 new unnamed tribal clades, the perimyotine group and the hypsugine group. Tree topologies indicate a Nycticeiini–Eptesicini group, but this clade is not supported. The heuristically pleasing tribe Plecotini also is unresolved in these analyses. These results provided further support and greater resolution for previously proposed hypotheses of Vespertilioninae evolution based on mitochondrial DNA, and although deep branching patterns are not fully resolved, these data increase our understanding of the evolution of this ecologically important and diverse group of bats.

Understanding the evolutionary relationships within the subfamily Vespertilioninae (Mammalia: Chiroptera: Vespertilionidae) has been difficult for systematists because of the evolutionary and ecological success (in terms of species richness and biogeography) and constrained circumscription (in terms of morphological diversification) of this subfamily. Approximately 240 species have been described and placed in this subfamily (Simmons 2005). However, few useful synapomorphic morphologic character states exist that unambiguously define taxa belonging to Vespertilioninae (Hill and Harrison 1987; Koopman 1994; Miller 1907; Simmons 1998; Tate 1942; Wallin 1969). The significance any 1 of these characters receives in relation to the divergence of these taxa is in debate (lumper or splitter—Ellerman and Morrison-Scott 1951; Hill and Harrison 1987; Simpson 1945; Zima and Horáček 1985). Furthermore, it seems likely that parallel or convergent evolution of some of these characters (e.g., number of incisors, cusp pattern, and I2 size; number of anterior upper premolars; and pelage color) has led to classifications incongruent with evolutionary history within Vespertilioninae (Ärnbäck-Christie-Linde 1909; Ellerman and Morrison-Scott 1951; Heller and Volleth 1984; Hill 1966; Hill and Harrison 1987; Hill and Top73x00E1;l 1973; Horáček and Zima 1978; Koopman 1975; Rosevear 1962; Tate 1942; Volleth and Heller 1994b; Zima and Horáček 1985). These limitations have led to ambiguity in our understanding of evolutionary relationships within this diverse subfamily, which has hindered development of a generally agreed-upon classification.

Of particular interest in this study are supergeneric relationships of bats within Vespertilioninae. Although Miller (1907) set the foundation for our modern classification of these bats (without downplaying work of his predecessors— Dobson 1875, 1878; Gill 1885; Gray 1821, 1866) and drew attention to similarities between genera (e.g., “Eptesicus-like” or “Pipistrellus-like”), he did not formally elucidate evolutionary relationships or provide taxonomic names to any rank above genus within Vespertilioninae. It was not until the work of Tate (1942) that a testable hypothesis for classification of bats within Vespertilioninae was described (Table 1). This is in stark contrast to Simpson (1945), who rejected a tribal classification rank for Vespertilioninae. and synonomized many genera. Most authors since these classic works have followed the classification of Tate (1942), using a tribal rank, but followed Simpson (1945) in identifying fewer genera for their classifications (Koopman 1984, 1994; Koopman and Jones 1970; McKenna and Bell 1997). Although more recent studies based on bacular morphology and cytogenetics have provided insight into evolutionary relationships of Vespertilioninae, many relationships remain unresolved, many taxa remain unstudied, and some of these findings contradict previous hypotheses about evolution of Vespertilioninae (Ao et al. 2006; Hill and Harrison 1987; Volleth and Heller 1994a, 1994b; Volleth et al. 2001, 2006). Excluding Myotini, which has been elevated to its own subfamily (Hoofer and Van Den Bussche 2003; Lack et al. 2010; Stadelmann et al. 2004), historically 9 tribes have been proposed in various classifications to organize the systematics of Vespertilioninae, including Antrozoini (Miller 1897), Eptesicini (Volleth and Heller 1994b), Lasiurini (Tate 1942), Nycticeiini (Gervais 1855), Nyctophilini (Peters 1865), Pipistrellini (Tate 1942), Plecotini (Gray 1866), Scotophilini (Hill and Harrison 1987), and Vespertilionini (Gray 1821). The validity of these tribes has been accepted or discredited to various degrees, and their exact rank, position, circumscription, and composition are subjects of continuing debate (Hill and Harrison 1987; Hoofer and Van Den Bussche 2003; Table 1).

Table 1

Historic classifications of Vespertilioninae. Taxa marked with an asterisk (*) are currently recognized taxa that would have been synonyms in authors’ taxonomic system. A dagger (†) denotes these taxa as incertae sedis.

Tate (1942) Simpson (1945) Hill and Harrison (1987) Koopmana Vollethb McKenna and Bell (1997) Hoofer and Van Den Bussche (2003) Simmons (2005) 
Vespertilioninae Vespertilioninae Vespertilioninae Vespertilioninae    Vespertilioninae       
Myotini                   
Myotini†   Myotini Myotini Myotinae Myotini Myotinae Myotinae 
 Lasionycteris  Lasionycteris  Lasionycteris  Lasionycteris   Myotis   Lasionycteris   Myotis   Lasionycteris 
 Cistugo  Cistugo  Myotis  Myotis      Myotis Vespertilioninae   Cistugo 
 Myotis  Myotis  *Cistugo  * Cistugo      *Cistugo   Otonycteris†   Myotis 
 Pizonyx  *Pizonyx  Pizonyx  *Pizonyx      *Pizonyx   Parastrellus†    
        Vespertilioninae      Perimyotis† Vespertilioninae 
Plecotini   Plecotini Plecotini Plecotini Plecotini Plecotini Plecotini 
 Corynorhinus  Barbastella  Barbastella  Barbastella   Barbastella   Barbastella   Barbastella   Barbastella 
 Euderma  Euderma  Euderma  Euderma   Euderma   Euderma   Corynorhinus   Corynorhinus 
 Idionycteris  Idionycteris  Idionycteris  Plecotus   Idionycteris   Idionycteris   Euderma   Euderma 
 Plecotus  Plecotus  Plecotus  *Corynorhinus   Plecotus   Plecotus   Idionycteris   Idionycteris 
   *Corynorhinus  *Corynorhinus  *Idionycteris   *Corynorhinus   *Corynorhinus   Plecotus   Otonycteris 
     Otonycteris     Otonycteris         Plecotus 
     Baeodon     Rhogeessa          
     Rhogeessa     *Baeodon          
     Nycticeius               
Lasiurini   Lasiurini Lasiurini    Lasiurini Lasiurini Lasiurini 
 Dasypterus  Lasiurus  Lasiurus  Lasiurus      Lasiurus   Lasiurus   Lasiurus 
 Lasiurus  *Dasypterus  Dasypterus  *Dasypterus      *Dasypterus       
Nycticeiini   Scotophilini Nycticeiini Scotophilini Nycticeiini Scotophilini Nycticeiini 
 Otonycteris  Otonycteris  Scotomanes  Otonycteris   Scotophilus   Otonycteris   Scotophilus   Rhogeessa 
 Baeodon  Rhogeessa  *Scoteinus  Rhogeessa      Rhogeessa      *Baeodon 
 Rhogeessa  *Baeodon  Scotophilus  *Baeodon      *Baeodon      Nycticeinops 
 Nycticeius  Nycticeius    Nycticeius      Nycticeius      Nycticeius 
 Scoteinus  *Scoteinus    *Nycticeinops      *Nycticeinops      Scoteanax 
 *Scoteanax  *Scoteanax    *Scoteanax      *Scoteanax      Scotoecus 
 *Scotorepens  *Scotorepens    *Scotorepens      *Scotorepens      Scotomanes 
 Scotoecus  *Scotoecus    Scotoecus      Scotoecus      *Scoteinus 
 Scotomanes  *Scotomanes    Scotomanes      Scotomanes      Scotophilus 
 Scotophilus  Scotophilus    Scotophilus      *Scoteinus      Scotorepens 
             Scotophilus       
Pipistrellini   Vespertilionini Vespertilionini    Vespertilionini       
 Eudiscopus  Eudiscopus    Chalinolobus      Chalinolobus       
Eptesicoid      *Glauconycteris Eptesicini   *Glauconycteris Nycticeiini Eptesicini 
 Eptesicus  Eptesicus  Eptesicus  Eptesicus   Eptesicus   Eptesicus   Eptesicus   Arielulus 
 *Hypsugo  *Hesperoptenus  Glauconycteris  Eudiscopus   *Arielulus   Eudiscopus   *Histiotus   Eptesicus 
 *Vespadelus  *Histiotus  Histiotus  Glischropus   Hesperoptenus   Glischropus   Glauconycteris   Hesperoptenus 
 Histiotus  *Laephotis  la  Hesperoptenus   Histiotus   Hesperoptenus   Lasionycteris    
 Laephotis  *Mimetillus  Mimetillus  Histiotus      Histiotus   Nycticeius    
 Rhinopterus  *Philetor  Tylonycteris  la      la   Scotomanes    
 Vespertilio  *Rhinopterus  Vespertilio  Laephotis      Laephotis       
   *Tylonycteris    Mimetillus      Mimetillus       
Pipistrelloid   Pipistrellini  Nyctalus Pipistrellini  Nyctalus Pipistrellini Pipistrellini 
 Barbastella  Chalinolobus  Chalinolobus  Philetor  Glischropus  Nycticeinops  Pipistrellus  Glischropus 
 Chalinolobus  * Glauconycteris  Eudiscopus  Pipistrellus  Nyctalus  Philetor  *Nyctalus  Nyctalus 
 Glauconycteris  Pipistrellus  Glischropus  *Arielulus  Pipistrellus  Pipistrellus  Scotoecus  Pipistrellus 
 Glischropus  *Glischropus  Hesperoptenus  *Falsistrellus  *Parastrellus  *Arielulus    *Perimyotis 
 Hesperoptenus  *Ia  Laephotis  *Hypsugo  *Perimyotis  * Falsistrellus    *Parastrellus 
 Ia  *Nyctalus  Nyctalus  *Neoromicia  Scotozous  *Hypsugo    Scotozous 
 Mimetillus  *Scotozous  Nycticeinops  *Perimyotis Vespertilionini  *Neoromicia Vespertilionini Vespertilionini 
 Nyctalus  Vespertilio  Philetor  *Parastrellus  Chalinolobus  *Perimyotis  Chalinolobus  Chalinolobus 
 Philetor    Pipistrellus  *Scotozous  Falsistrellus  *Parastrellus  Hypsugo  Eudiscopus 
 Pipistrellus    *Arielulus  *Vespadelus  Hypsugo  *Scotozous  Laephotis  Falsistrellus 
 *Arielulus    *Falsistrellus  Tylonycteris  Laephotis  *Vespadelus  Neoromicia  Glauconycteris 
 *Falsistrellus    *Hypsugo  Vespertilio  Neoromicia  Tylonycteris  Nycticeinops  Histiotus 
 *Hypsugo    *Neoromicia    Nyctophilus  Vespertilio  Nyctophilus  Hypsugo 
 *Parastrellus    *Perimyotis    Philetor    Tylonycteris  Ia 
 *Perimyotis    *Parastrellus    Scotorepens   Unnamed genus  Laephotis 
 *Vespadelus    * Vespadelus    Tylonycteris    Vespadelus  Mimetillus 
 Scotozous    Scoteanax    Vespadelus    Vespertilio  Neoromicia 
 Tylonycteris    Scotoecus    Vespertilio      Philetor 
     Scotorepens          Tylonycteris 
     Scotozous          Vespadelus 
               Vespertilio 
Nyctophilinae Nyctophilinae Nyctophilinae Nyctophilini   Nyctophilini   Nyctophilini 
 Antrozous  Antrozous  Nyctophilus  Nyctophilus    Nyctophilus   Nyctophilus 
 Nyctophilus  Nyctophilus  Pharotis  Pharotis    Pharotis    Pharotis 
 Pharotis   Antrozoini Antrozoini   Antrozoini Antrozoini† Antrozoinae 
     Antrozous  Antrozous    Antrozous  Antrozous  Antrozous 
     Bauerus  Bauerus    Bauerus  Bauerus  Bauerus 
             Baeodon   
             Rhogeessa   
Tate (1942) Simpson (1945) Hill and Harrison (1987) Koopmana Vollethb McKenna and Bell (1997) Hoofer and Van Den Bussche (2003) Simmons (2005) 
Vespertilioninae Vespertilioninae Vespertilioninae Vespertilioninae    Vespertilioninae       
Myotini                   
Myotini†   Myotini Myotini Myotinae Myotini Myotinae Myotinae 
 Lasionycteris  Lasionycteris  Lasionycteris  Lasionycteris   Myotis   Lasionycteris   Myotis   Lasionycteris 
 Cistugo  Cistugo  Myotis  Myotis      Myotis Vespertilioninae   Cistugo 
 Myotis  Myotis  *Cistugo  * Cistugo      *Cistugo   Otonycteris†   Myotis 
 Pizonyx  *Pizonyx  Pizonyx  *Pizonyx      *Pizonyx   Parastrellus†    
        Vespertilioninae      Perimyotis† Vespertilioninae 
Plecotini   Plecotini Plecotini Plecotini Plecotini Plecotini Plecotini 
 Corynorhinus  Barbastella  Barbastella  Barbastella   Barbastella   Barbastella   Barbastella   Barbastella 
 Euderma  Euderma  Euderma  Euderma   Euderma   Euderma   Corynorhinus   Corynorhinus 
 Idionycteris  Idionycteris  Idionycteris  Plecotus   Idionycteris   Idionycteris   Euderma   Euderma 
 Plecotus  Plecotus  Plecotus  *Corynorhinus   Plecotus   Plecotus   Idionycteris   Idionycteris 
   *Corynorhinus  *Corynorhinus  *Idionycteris   *Corynorhinus   *Corynorhinus   Plecotus   Otonycteris 
     Otonycteris     Otonycteris         Plecotus 
     Baeodon     Rhogeessa          
     Rhogeessa     *Baeodon          
     Nycticeius               
Lasiurini   Lasiurini Lasiurini    Lasiurini Lasiurini Lasiurini 
 Dasypterus  Lasiurus  Lasiurus  Lasiurus      Lasiurus   Lasiurus   Lasiurus 
 Lasiurus  *Dasypterus  Dasypterus  *Dasypterus      *Dasypterus       
Nycticeiini   Scotophilini Nycticeiini Scotophilini Nycticeiini Scotophilini Nycticeiini 
 Otonycteris  Otonycteris  Scotomanes  Otonycteris   Scotophilus   Otonycteris   Scotophilus   Rhogeessa 
 Baeodon  Rhogeessa  *Scoteinus  Rhogeessa      Rhogeessa      *Baeodon 
 Rhogeessa  *Baeodon  Scotophilus  *Baeodon      *Baeodon      Nycticeinops 
 Nycticeius  Nycticeius    Nycticeius      Nycticeius      Nycticeius 
 Scoteinus  *Scoteinus    *Nycticeinops      *Nycticeinops      Scoteanax 
 *Scoteanax  *Scoteanax    *Scoteanax      *Scoteanax      Scotoecus 
 *Scotorepens  *Scotorepens    *Scotorepens      *Scotorepens      Scotomanes 
 Scotoecus  *Scotoecus    Scotoecus      Scotoecus      *Scoteinus 
 Scotomanes  *Scotomanes    Scotomanes      Scotomanes      Scotophilus 
 Scotophilus  Scotophilus    Scotophilus      *Scoteinus      Scotorepens 
             Scotophilus       
Pipistrellini   Vespertilionini Vespertilionini    Vespertilionini       
 Eudiscopus  Eudiscopus    Chalinolobus      Chalinolobus       
Eptesicoid      *Glauconycteris Eptesicini   *Glauconycteris Nycticeiini Eptesicini 
 Eptesicus  Eptesicus  Eptesicus  Eptesicus   Eptesicus   Eptesicus   Eptesicus   Arielulus 
 *Hypsugo  *Hesperoptenus  Glauconycteris  Eudiscopus   *Arielulus   Eudiscopus   *Histiotus   Eptesicus 
 *Vespadelus  *Histiotus  Histiotus  Glischropus   Hesperoptenus   Glischropus   Glauconycteris   Hesperoptenus 
 Histiotus  *Laephotis  la  Hesperoptenus   Histiotus   Hesperoptenus   Lasionycteris    
 Laephotis  *Mimetillus  Mimetillus  Histiotus      Histiotus   Nycticeius    
 Rhinopterus  *Philetor  Tylonycteris  la      la   Scotomanes    
 Vespertilio  *Rhinopterus  Vespertilio  Laephotis      Laephotis       
   *Tylonycteris    Mimetillus      Mimetillus       
Pipistrelloid   Pipistrellini  Nyctalus Pipistrellini  Nyctalus Pipistrellini Pipistrellini 
 Barbastella  Chalinolobus  Chalinolobus  Philetor  Glischropus  Nycticeinops  Pipistrellus  Glischropus 
 Chalinolobus  * Glauconycteris  Eudiscopus  Pipistrellus  Nyctalus  Philetor  *Nyctalus  Nyctalus 
 Glauconycteris  Pipistrellus  Glischropus  *Arielulus  Pipistrellus  Pipistrellus  Scotoecus  Pipistrellus 
 Glischropus  *Glischropus  Hesperoptenus  *Falsistrellus  *Parastrellus  *Arielulus    *Perimyotis 
 Hesperoptenus  *Ia  Laephotis  *Hypsugo  *Perimyotis  * Falsistrellus    *Parastrellus 
 Ia  *Nyctalus  Nyctalus  *Neoromicia  Scotozous  *Hypsugo    Scotozous 
 Mimetillus  *Scotozous  Nycticeinops  *Perimyotis Vespertilionini  *Neoromicia Vespertilionini Vespertilionini 
 Nyctalus  Vespertilio  Philetor  *Parastrellus  Chalinolobus  *Perimyotis  Chalinolobus  Chalinolobus 
 Philetor    Pipistrellus  *Scotozous  Falsistrellus  *Parastrellus  Hypsugo  Eudiscopus 
 Pipistrellus    *Arielulus  *Vespadelus  Hypsugo  *Scotozous  Laephotis  Falsistrellus 
 *Arielulus    *Falsistrellus  Tylonycteris  Laephotis  *Vespadelus  Neoromicia  Glauconycteris 
 *Falsistrellus    *Hypsugo  Vespertilio  Neoromicia  Tylonycteris  Nycticeinops  Histiotus 
 *Hypsugo    *Neoromicia    Nyctophilus  Vespertilio  Nyctophilus  Hypsugo 
 *Parastrellus    *Perimyotis    Philetor    Tylonycteris  Ia 
 *Perimyotis    *Parastrellus    Scotorepens   Unnamed genus  Laephotis 
 *Vespadelus    * Vespadelus    Tylonycteris    Vespadelus  Mimetillus 
 Scotozous    Scoteanax    Vespadelus    Vespertilio  Neoromicia 
 Tylonycteris    Scotoecus    Vespertilio      Philetor 
     Scotorepens          Tylonycteris 
     Scotozous          Vespadelus 
               Vespertilio 
Nyctophilinae Nyctophilinae Nyctophilinae Nyctophilini   Nyctophilini   Nyctophilini 
 Antrozous  Antrozous  Nyctophilus  Nyctophilus    Nyctophilus   Nyctophilus 
 Nyctophilus  Nyctophilus  Pharotis  Pharotis    Pharotis    Pharotis 
 Pharotis   Antrozoini Antrozoini   Antrozoini Antrozoini† Antrozoinae 
     Antrozous  Antrozous    Antrozous  Antrozous  Antrozous 
     Bauerus  Bauerus    Bauerus  Bauerus  Bauerus 
             Baeodon   
             Rhogeessa   
a

This arrangement can be found in Koopman and Jones (1970), Koopman (1984), and Koopman (1994), but the latter provides the most information and is the basis for depicted classification.

b

This is a combination of results taken from Heller and Volleth (1984), Kearney et al. (2002), Volleth and Tidemann (1991), Volleth and Heller (1994b), and Volleth et al. (2001), with most-recent papers taking precedence.

With the development of modern techniques in polymerase chain reaction, DNA sequencing, and molecular data analysis, researchers are reevaluating evolutionary relationships of bats in this family, bringing to bear the advantages of the enormous number of characters provided by molecular data (Bickham et al. 2004; Gu et al. 2008; Hoofer and Van Den Bussche 2001; Hoofer et al. 2003, 2006; Lack et al. 2010; Miller-Butterworth et al. 2007; Ruedi and Mayer 2001; Stadelmann et al. 2004, 2007). Mayer and von Helversen (2001) and Mayer et al. (2007) sequenced the ND1 mitochondrial coding gene of western Palearctic vespertilionids, Kawai et al. (2002) examined ND1, the nuclear exon vWF, and short interspersed elements (SINEs) of mainly eastern Palearctic bats, and Hoofer and Van Den Bussche (2003) used 2.6 kilobases of the ribosomal mitochondrial genome from 120 globally sampled vespertilionids to evaluate evolutionary relationships within Vespertilionidae. However, as in previous studies, results of these studies provided insufficient resolution to explicate the deep branching patterns within Vespertilioninae.

Potentially convergent or uninformative characters, rapid diversification of vespertilionids leading to deep branching patterns, and subsequent lack of genetic resolution have left our understanding of evolutionary relationships relatively ambiguous for the last 100 years. The purpose of this study was to elucidate polygenetic relationships within Vespertilioninae using both coding and noncoding regions of nuclear and mitochondrial genomes with the focus on resolving tribal composition and intertribal systematic relationships. Furthermore, these digenomic data were used to assess the validity of previously proposed tribes (Antrozoini, Eptesicini, Lasiurini, Nycticeiini, Nyctophilini, Pipistrellini, Plecotini, Scotophilini, and Vespertilionini) within Vespertilioninae. Production of a resolved and supported phylogeny for Vespertilioninae would enhance our understanding of the evolution of one of the most taxonomically diverse, geographically widespread, and ecologically successful groups of mammals and would increase our abilities to answer important ecological, evolutionary, and biogeographical questions.

Materials and Methods

Taxonomic sampling.—Included in this study are samples from 31 (70%) of the 44 currently recognized genera, 77 (32%) of the 241 species within Vespertilioninae, and 21 species of Myotinae (Simmons 2005; see Appendix I for list of taxa, general collecting locality, and voucher information). Taxa were included based on availability with the intent of representing distributional and ecological diversities of its members. Representatives of the subfamilies Kerivoulinae and Murininae were included as out-groups to polarize character-state transformations. Tissue samples were provided by several natural history collections, and most tissues are represented by voucher specimens (Ruedas et al. 2000) in the following institutions: Abilene Christian University, American Museum of Natural History, Carnegie Museum of Natural History, Colecci0ón Mamíferos Lilto, Universidad Nacional de Tucuman, Durban Natural Science Museum, Field Museum of Natural History, Indiana State University Vertebrate Collection, Muséum d'Histoire Naturelle de Genéve, Museum of Southwestern Biology at the University of New Mexico, Museum of Texas Tech University, Natural History Museum of Bern, Oklahoma State University Collection of Vertebrates, Royal Ontario Museum, Sam Noble Oklahoma Museum of Natural History, Texas Cooperative Wildlife Collection at Texas A&M University, Universidad Autónoma Metropolitana–Iztapalapa, Universidad Nacional Autónoma de México, and University of Lausanne, Institut de Zoologie et d'Ecdlogie Animale (Appendix I). The acquisition of tissues samples and voucher specimens by the authors were conducted following the guidelines of the American Society of Mammalogists (Gannon et al. 2007). However, the majority of tissue samples came from preexisting collections housed in previously mentioned collections. Identifications of many specimens were verified by Steven R. Hoofer (Hoofer and Van Den Bussche 2003) and Manuel Ruedi (Muséum d'Histoire Naturelle de Genève, pers. comm.); otherwise, we relied on the identifications of the above collections.

Extraction, amplification, and sequencing.—Whole genomic DNA was isolated from skeletal muscle or organ tissue samples from 111 individuals following procedures of Longmire et al. (1997) or the DNeasy Tissue Kit (Qiagen, Austen, Texas). Previously designed primers were used to target 3 exons, apolipoprotein B (APOB), dentin matrix acidic phosphoprotein I (DMP1), and recombination activating gene II (RAG2), and intron regions of 3 other genes, protein kinase C, iota (PRKCI), signal transducer and activator of transcription 5A (STAT5A), and thyrotropin (THY—Lack et al. 2010). These nuclear markers were chosen because they have resolved deep branching patterns in Chiroptera and other mammalian taxa (Amrine-Madsen et al. 2003; Baker et al. 2000; Eick et al. 2005; Matthee and Davis 2001; Matthee et al. 2001, 2004, 2007; Van Den Bussche et al. 2003). Polymerase chain reaction amplifications were conducted using 200–500 ng of DNA, 1 unit of Taq polymerase, 0.14 mM of each deoxynucleoside triphosphate, 5 µl of 10× buffer, 3.5 mM of MgCl2, 0.8 mg/ml of bovine serum albumin, and 0.15 µl of each primer in a 30-µl total volume reaction. The general polymerase chain reaction thermal profile used for these reactions began with an initial 3-min denaturing of 94–95°C, followed by 35–40 cycles of 94–95°C for 30 s, 40–62°C for 1.5 min, and 72°C for 1 min (Lack et al. 2010). Amplification ended with a final elongation at 72° C for 10 min to ensure all reactions were completed. Polymerase chain reaction products were filtered to remove excess reactants using Wizard SV Gel and PCR Clean-Up System (Promega, Madison, Wisconsin). Sequencing reactions were conducted in both directions using Big Dye chain terminator and a 3130 Genetic Analyzer (Applied Biosystems, Inc., Foster City, California).

In addition to the sequence data generated for this study, we included previously published mitochondrial ribosomal DNA (mtDNA; comprising 12S rRNA, tRNAVal, and 16S rRNA) for 100 individuals, DMP1 for 3 individuals, and RAG2 for 6 individuals (Hoofer et al. 2003; Hoofer and Van Den Bussche 2001, 2003; Lack et al. 2010; Van Den Bussche and Hoofer 2000, 2001; Van Den Bussche et al. 2003). Amplifications and sequencing of the mtDNA gene regions were conducted for 11 additional individuals using primers and methods outlined in Van Den Bussche and Hoofer (2000). Sequence data for the nuclear DNA (nDNA) also were supplemented for 4 individuals with sequences of PRKCI, STAT5A, and THY published by Eick et al. (2005) and deposited in GenBank (http://www.ncbi.nlm.nih.gov/).

Phylogenetic analysis.73x2014;Forward and reverse sequences for each gene region were assembled using the program Geneious 4.5.4 (Biomatters Ltd., Auckland, New Zealand). Alignment of sequence contigs was performed using ClustalW 1.83.XP (Thompson et al. 1994) through Geneious 4.5.4 and then assessed and manually optimized using MacClade 4.05 (Maddison and Maddison 2002). Regions appearing to violate the assumption of positional homology were recognized and excluded from phylogenetic analyses based on the procedures of Lutzoni et al. (2000). The mtDNA and each of the nDNA gene regions were analyzed independently using maximum parsimony in PAUP* version 4.0b10 (Swofford 2002) and Bayesian phylogenetic methods in MRBAYES version 3.1.2 (Huelsenbeck and Ronquist 2001). An unweighted nucleotide substitution model, a heuristic search with 25 random additions of taxa, a tree-bisection-reconnection branch exchanging algorithm, and 1,000 bootstrap replicates were parameters used in maximum-parsimony analysis. Bayesian analysis employed a 4-chain (3 hot and 1 cold) parallel Metropolis-coupled Markov chain Monte Carlo, which was run for 1 × 107 generations, with sampling every 1,000 generations, and a temperature parameter of T = 0.02. Data were partitioned by codon for exons (APOB, DMP1, and RAG2), by marker for introns (PRKCI, STAT5A, and THY), and as a separate partition for mtDNA data. ModelTest version 3.06 (Posada and Crandall 1998) was used to identify the most appropriate nucleotide substitution model for Bayesian analysis resulting in the implementation of a General Time Reversible model with gamma-distributed rate variation among sites and inclusion of a proportion of invariable sites (GTR + Γ + I—Rodríguez et al. 1990). Model parameters were not defined a priori in Bayesian analysis but were treated as unknown variables with uniform priors. A random unconstrained starting tree with uniform priors was used for Bayesian analysis, and the burn-in values were determined by plotting likelihood scores per 1,000 generations and locating the region at which model parameters and tree scores reach stationarity. Nodes in the resulting trees were considered supported if they had ≥70% maximum-parsimony bootstrap support and ≥0.95 Bayesian posterior probabilities.

To examine incongruencies between gene regions and evaluate appropriateness of combining gene regions, each was analyzed independently, and resulting gene trees were compared. We used a 90% concordance criterion to evaluate appropriateness of concatenation where resulting gene trees must be in concordance at a minimum of 90% of nodes before concatenation of these data for further analysis (De Queiroz 1993). Based on results of these concordance tests (described in “Results”), data were concatenated into 3 data sets: mtDNA, nDNA, and combined (mtDNA + nDNA) data sets for maximum-parsimony and Bayesian phylogenetic analysis. The program TREEPUZZLE 5.2 (Schmidt et al. 2002) was used to conduct likelihood-mapping (Strimmer and von Haeseler 1997) with a GTR + Г + I model of nucleotide substitution to examine the phylogenetic potential of each independent gene region and combined data partitions.

Results

Independent gene regions and concordance.—All sequences generated in this study have been submitted to GenBank (see Appendix I for GenBank accession numbers). The nuclear gene regions analyzed were relatively short, 280–1,240 base pairs (bp; Table 2), and independently contained few phylo-genetically informative positions (129–415 bp). Likelihood-mapping demonstrated that for these independent nDNA gene regions the number of positions analyzed is correlated positively to quartet resolution (Strimmer and von Haeseler 1997; Fig. 1). The mtDNA, nDNA, and combined data sets showed the same trend, but the slope was less positive. However, while accounting for this general size-resolvability relationship, the exons (especially DMP1 and RAG2) outperformed introns in their ability to resolve quartets, possibly indicating greater systematic error caused by signal saturation due to a potentially higher substitution rate in these introns. Analysis of each of nDNA gene regions independently and comparison of these gene trees (not shown) provided a high level of topology concordance (>90% concordance in supported topology). The only repeatedly supported incongruencies were in the variable position of Baeodon and in a few Vespertilioninae taxa embedded in the Myotis clades for APOB and PRKCI. The combined data set was analyzed twice, once excluding APOB and once excluding PRKCI, resulting in no effect to topology and relatively few clades becoming unsupported (posterior probabilities ≥ 0.95; e.g., support for inclusion of Baeodon in Antrozoini). Therefore, the independent nDNA gene regions were concatenated for further analysis.

Fig. 1

Scatter plot of the percentage of resolved quartets from likelihood-mapping by number of analyzed positions for each individual nuclear DNA (nDNA) gene region and the mitochondrial DNA, nDNA, and combined data sets. See Table 2 for data and Strimmer and von Haeseler (1997) for discussion of likelihood-mapping.

Fig. 1

Scatter plot of the percentage of resolved quartets from likelihood-mapping by number of analyzed positions for each individual nuclear DNA (nDNA) gene region and the mitochondrial DNA, nDNA, and combined data sets. See Table 2 for data and Strimmer and von Haeseler (1997) for discussion of likelihood-mapping.

Table 2

Characteristics of individual gene regions and combined data partitions. Aligned positions constitute the full aligned length including indel regions. Excluded positions are those that potentially violate positional homogeneity. Analyzed positions are aligned minus excluded positions. Percent resolved and percent unresolved refers to the percent of quartets resolved and unresolved in likelihood-mapping analysis (Strimmer and von Haeseler 1997). APOB = apolipoprotein B; DMP1 = dentin matrix acidic phosphoprotein I; RAG2 = recombination activating gene II; PRKCI = protein kinase C, iota; STAT5A = signal transducer and activator of transcription 5 A; THY = thyrotropin; mtDNA = mitochondrial DNA; and nDNA = nuclear DNA.

 No. Aligned Excluded Analyzed Variable Phylogenetically Percent Percent 
Marker taxa positions positions positions positions informative positions resolveda unresolvedb 
APOB 110 282 282 173 129 72 28 
DMP1 109 1,023 33 990 520 339 89 11 
RAG2 111 1,239 1,239 570 415 87 13 
PRKCI 111 792 55 737 285 191 64 34 
STAT5A 95 1,154 667 487 327 283 78 22 
THY 111 1,080 11 1,069 383 308 77 23 
mtDNA 111 2,940 968 1,972 861 671 92 
nDNA 111 5,570 766 4,804 2,232 1,654 94 
Combined 111 8,510 1,734 6,776 3,093 2,344 96 
 No. Aligned Excluded Analyzed Variable Phylogenetically Percent Percent 
Marker taxa positions positions positions positions informative positions resolveda unresolvedb 
APOB 110 282 282 173 129 72 28 
DMP1 109 1,023 33 990 520 339 89 11 
RAG2 111 1,239 1,239 570 415 87 13 
PRKCI 111 792 55 737 285 191 64 34 
STAT5A 95 1,154 667 487 327 283 78 22 
THY 111 1,080 11 1,069 383 308 77 23 
mtDNA 111 2,940 968 1,972 861 671 92 
nDNA 111 5,570 766 4,804 2,232 1,654 94 
Combined 111 8,510 1,734 6,776 3,093 2,344 96 
a

Percent resolved = percent occupancy of P vectors in attraction basins for fully resolved topologies [A1 + A2 + A3].

b

Percent unresolved = percent occupancy of P vectors in attraction basins for unresolved topologies [A 13 + A12 + A23 + A*].

Mitochondrial DNA sequences.—New ribosomal mtDNA sequence data were generated for 11 individuals of 9 taxa: 3 individuals of Eptesicus macrotus, and 1 individual each of Arielulus aureocollaris, E. magellanicus, E. serotinus, Lasiurus intermedius, Pipistrellus hesperidus, P. paterculus, P. pipistrellus, and Tylonycteris robustula, which supplemented 100 mtDNA sequences previously generated (Hoofer and Van Den Bussche 2003; Lack et al. 2010). These 111 sequences were aligned to provide 2,940 aligned positions, of which 968 were excluded prior to analysis for potential violation of positional homology (Table 2). Of the remaining 1,972 positions, 861 were variable and 671 were phylogenetically informative. Maximum-parsimony analysis resulted in 718 parsimonious trees of 5,713 steps, with 43 supported clades (Fig. 2), a consistency index excluding uninformative characters (CI) of 0.1978, and a retention index (RI) of 0.5727. Bayesian analysis had a burn-in value of 882 generations and resulted in 58 supported clades (Fig. 2).

Fig. 2

Phylogram from Bayesian analysis of the 12S rRNA, tRNAVal, and 16S rRNA mitochondrial DNA genes, with supported phylogenetic relationships from both maximum-parsimony and Bayesian analysis depicted. Circles indicate clades supported by maximum parsimony (≥70% bootstrap values), whereas asterisks indicate clades supported by Bayesian analysis (≥0.95 posterior probability). Taxonomic abbreviations include: A. = Antrozous, Ch. = Chalinolobus, C. = Corynorhinus, E. = Eptesicus, G. = Glauconycteris, H. = Hypsugo, L. = Lasiurus, N. = Neoromicia, Ny. = Nyctalus, P. = Pipistrellus, PI. = Plecotus, R. = Rhogeessa, S. = Scotophilus, T. = Tylonycteris, and V. =Vespadelus. For species with more than 1 representative, general locality information is provided in parentheses following the species name. Locality abbreviations follow United States postal codes or include: Arg. = Argentina; Ca. = Catamarca Province, Argentina; Eu. = Europe; Ne. = Neuquén Province, Argentina; Sa. = Salta Province, Argentina; and Tu. = Tunisia. Scale is in number of substitutions per site.

Fig. 2

Phylogram from Bayesian analysis of the 12S rRNA, tRNAVal, and 16S rRNA mitochondrial DNA genes, with supported phylogenetic relationships from both maximum-parsimony and Bayesian analysis depicted. Circles indicate clades supported by maximum parsimony (≥70% bootstrap values), whereas asterisks indicate clades supported by Bayesian analysis (≥0.95 posterior probability). Taxonomic abbreviations include: A. = Antrozous, Ch. = Chalinolobus, C. = Corynorhinus, E. = Eptesicus, G. = Glauconycteris, H. = Hypsugo, L. = Lasiurus, N. = Neoromicia, Ny. = Nyctalus, P. = Pipistrellus, PI. = Plecotus, R. = Rhogeessa, S. = Scotophilus, T. = Tylonycteris, and V. =Vespadelus. For species with more than 1 representative, general locality information is provided in parentheses following the species name. Locality abbreviations follow United States postal codes or include: Arg. = Argentina; Ca. = Catamarca Province, Argentina; Eu. = Europe; Ne. = Neuquén Province, Argentina; Sa. = Salta Province, Argentina; and Tu. = Tunisia. Scale is in number of substitutions per site.

Nuclear DNA sequences.—Sequence data for the concatenated nDNA partition were generated for 111 taxa, of which 18 are missing ≥1 gene region (13–23% of nDNA data set). Vespadelus vulturnus was missing the most sequence data because we were unable to amplify or sequence the APOB or DMP1 gene regions successfully for this taxon, and Baeodon alleni was missing the least with the last 470 bp of RAG2 missing. In most cases missing data were from the STAT5A gene region, which proved to be the most difficult to amplify and was not generated for the following 16 taxa: Eptesicus magellanicus, Glauconycteris beatrix, G. egeria, Hypsugo cadornae, H. savii, Nyctalus leisleri, N. noctula, Pipistrellus coromandra, P. hesperidus, P. javanicus, P. nathusii, P. tenuis, Scotoecus hirundo, Tylonycteris pachypus, T. robustula, and Vespertilio murinus. No changes in clade support or topological resolution were observed when the data set was analyzed excluding STAT5A (data not shown).

Concatenated alignment of the nDNA gene regions provided 5,570 aligned positions (Table 2). With the exclusion of 766 positions for possible violations of positional homology prior to analysis, the remaining 4,804 positions included 2,232 variable positions and 1,654 phylogenetically informative positions. The maximum-parsimony analysis resulted in 24 most-parsimonious trees of 7,941 steps, 52 supported clades, and a CI of 0,4574 and an RI of 0.7152, excluding uninformative characters (Fig. 3). The majority of differences between the 24 most-parsimonious trees involved the relationship between the clades comprising the Antrozoini, Plecotini, Lasiurini, Scotophilini, New World pipistrelles, and a clade including the remaining Pipistrellus-like bats. Also variable was the position of Arielulus and Lasionycteris within Nycticeiini (sensu Hoofer and Van Den Bussche 2003, excluding Nycticeius) and the intrarelationships of some member of the Pipistrellus. Finally, some variation in topologies was attributed to variability within the genus Scotophilus. A burn-in value of 1,001 generations was used for the Bayesian analysis, which resulted in a tree with 57 supported clades (Fig. 3).

Fig. 3

Phylogram from Bayesian analysis of the concatenated nuclear DNA gene regions apolipoprotein B (APOB), dentin matrix acidic phosphoprotein I (DMP1), recombination activating gene II (RAG2), protein kinase C, iota (PRKCI), signal transducer and activator of transcription 5A (STAT5A), and thyrotropin (THY), with supported phylogenetic relationships from both maximum-parsimony (≥70% bootstrap values) and Bayesian analysis (≥0.95 posterior probability) depicted. Scale is in number of substitutions per site. Symbols and abbreviations as in Fig. 2.

Fig. 3

Phylogram from Bayesian analysis of the concatenated nuclear DNA gene regions apolipoprotein B (APOB), dentin matrix acidic phosphoprotein I (DMP1), recombination activating gene II (RAG2), protein kinase C, iota (PRKCI), signal transducer and activator of transcription 5A (STAT5A), and thyrotropin (THY), with supported phylogenetic relationships from both maximum-parsimony (≥70% bootstrap values) and Bayesian analysis (≥0.95 posterior probability) depicted. Scale is in number of substitutions per site. Symbols and abbreviations as in Fig. 2.

Combined sequences.—More than 90% of clades were in concordance between mtDNA and nDNA trees, and those data sets were concatenated for the combined analysis. Despite this high level of concordance, 2 areas with supported discrepancies between the mtDNA and nDNA trees were found. These supported discrepancies were found toward clade tips and fell outside the focus of this study. The 1st discrepancy related to the sister taxon of P. coromandra, which was P. tenuis in the mtDNA tree (Fig. 2) and P. javanicus in the nDNA tree (Fig. 3). The 2nd difference involved relationships within Lasiurus, which formed a well-supported clade in both analyses. Concatenation of the mtDNA and nDNA data sets resulted in 8,510 aligned positions. Because of possible violation of positional homology, 1,734 positions were excluded prior to analysis leaving 6,776 positions for phylogenetic analysis (Table 2). Of those remaining positions, 3,093 were variable and 2,344 were phylogenetically informative. The maximum-parsimony analysis resulted in 4 most-parsimonious trees, with 13,885 steps and 57 supported clades (Fig. 4). Excluding uninformative characters, the CI was 0.3380 and the RI was 0.6439. Differences among the 4 most-parsimonious trees related to relationships among taxa in the New World Myotis and the position of Otonycteris73x2013;Barbastella basal to either the genus Plecotus or Corynorhinus. For the Bayesian analysis a burn-in of 1,000 generations was used and resulted in a tree with 69 supported clades (Fig. 4).

Fig. 4

Phylogram from Bayesian analysis of the combined ribosomal mitochondrial DNA (12S rRNA, tRNAVal, and 16S rRNA) and nuclear DNA (apolipoprotein B [APOB], dentin matrix acidic phosphoprotein I [DMP1], recombination activating gene II [RAG2], protein kinase C, iota [PRKCI], signal transducer and activator of transcription 5A [STAT5A], and thyrotropin [THY]) gene regions, with supported phylogenetic relationships from both maximum-parsimony (≥70% bootstrap values) and Bayesian analysis (≥0.95 posterior probability) depicted. Scale is in number of substitutions per site. Symbols and abbreviations as in Fig. 2.

Fig. 4

Phylogram from Bayesian analysis of the combined ribosomal mitochondrial DNA (12S rRNA, tRNAVal, and 16S rRNA) and nuclear DNA (apolipoprotein B [APOB], dentin matrix acidic phosphoprotein I [DMP1], recombination activating gene II [RAG2], protein kinase C, iota [PRKCI], signal transducer and activator of transcription 5A [STAT5A], and thyrotropin [THY]) gene regions, with supported phylogenetic relationships from both maximum-parsimony (≥70% bootstrap values) and Bayesian analysis (≥0.95 posterior probability) depicted. Scale is in number of substitutions per site. Symbols and abbreviations as in Fig. 2.

Discussion

Elucidating evolutionary relationships within Vespertilioninae historically has been problematic. A paucity of useful characters, possible convergence among these character states, and a rapid radiation of major lineages within this subfamily have hindered efforts to understand evolutionary relationships of these taxa for >100 years (Ellerman and Morrison-Scott 1951; Heller and Volleth 1984; Hill 1966; Hill and Harrison 1987; Hill and Topál 1973; Horáček and Zima 1978; Koopman 1975,1994; Lack et al. 2010; Miller 1907; Rosevear 1962; Simmons 1998; Tate 1942; Volleth and Heller 1994b; Zima and Horáček 1985). Efforts over the last 20 years provided some refined hypotheses but were incomplete, were incongruent with historic hypotheses, or did not clarify all relationships within Vespertilioninae (Hill and Harrison 1987; Volleth and Heller 1994b; Volleth et al. 2001, 2006). Recent molecular analyses (Hoofer et al. 2003; Hoofer and Van Den Bussche 2001, 2003; Kawai et al. 2002; Mayer et al. 2007; Mayer and von Helversen 2001) have tested previous hypotheses with new informative characters using phylogenetic methods. Using ribosomal mtDNA sequence data, Hoofer and Van Den Bussche (2003) completed the most comprehensive phylogenetic study of Vespertilionidae and provided a sound hypothesis for the evolutionary relationships for many of these bats. However, they were still unable to resolve many of the supergeneric relationships within Vespertilioninae and presented new evolutionary hypotheses that require further testing. To resolve these relationships >5,500 bp of coding and noncoding sequence data from the nDNA genome were analyzed in combination with the previously sequenced mtDNA data to reevaluate hypotheses of the evolutionary relationships within Vespertilioninae. Because of the stochastic nature of lineage sorting the inclusion of data from the nuclear and mitochondrial genomes is important in fully understanding evolutionary relationships (Avise 1994).

Tribes of Vespertilioninae.—This study provides phylogenetic information for 8 of the 10 tribes previously proposed in various classifications of Vespertilioninae (Antrozoini, Eptesicini, Lasiurini, Myotini, Nycticeiini, Nyctophilini, Pipistrellini, Plecotini, Scotophilini, and Vespertilionini). We were unable to obtain tissue samples from either Nyctophilus or Pharotis Nyctophilini sensu (Koopman 1994; Simmons 2005) and therefore were unable to address phylogenetic affinities of these taxa. Accumulating evidence of the affinities of Myotis to Kerivoulinae and Murininae has required removal of Myotini (excluding Lasionycteris) from Vespertilioninae and elevation of Myotis to subfamily rank (Myotinae—Hoofer and Van Den Bussche 2003; Kawai et al. 2002; Lack et al. 2010; Stadelmann et al. 2004; Volleth and Heller 1994b). Although Myotis taxa were included in this study and are supported as a monophyletic group, this study was not designed to examine the affinities of the Myotis.

With regard to the remaining 8 traditionally recognized tribes, the combined tree provided support for 6 tribes, Antrozoini, Lasiurini, Scotophilini, Vespertilionini, and 2 unnamed tribes hereafter referred to as the hypsugine group and the perimyotine group (Fig. 4). Lasiurus has been recognized as a unique group within Vespertilioninae since the genus was 1st described (Gray 1831), and classification of Lasiurus into its own tribe by Tate (1942) has not been challenged (Bickham 1979, 1987; Hall and Jones 1961; Handley 1960; Hill and Harrison 1987; Hoofer and Van Den Bussche 2003; Koopman 1994; Miller 1907). Results from the combined analysis also support monophyly of Lasiurini (Fig. 4). The combined tree is not fully resolved with respect to interspecific relationships within Lasiurus, but a supported red bat clade (L. atratus, L. seminolus, L. blossevillii, and L. borealis) is present. However, without full resolution within Lasiurus, previous hypotheses about relationships of red bats to proposed lineages of yellow bat (Dasypterus) and hoary bat (Lasiurus cinereus) cannot be tested.

Scotophilini was the 2nd tribe supported by the combined analysis (Fig. 4). The genus Scotophilus historically has been included in the tribe Nycticeiini (Koopman 1994; McKenna and Bell 1997; Simmons 2005; Tate 1942). This position has been contradicted by bacular morphology (Hill and Harrison 1987), cytogenetics (Volleth et al. 2006), and ribosomal mtDNA (Hoofer and Van Den Bussche 2003) and was rejected in this study by the combined mtDNA and nDNA analysis and by each independently (Fig. 4). These results are congruent with phylogenetic analysis of a combined mtDNA and nDNA supermatrix targeted at assessing Nycticeiini and Scotophilini monophyly (Roehrs 2009).

Antrozoini is the 3rd supported clade in the combined analysis (Fig. 4). The group consisting of Antrozous and Bauerus (often a synonym of Antrozous—cf. Engstrom and Wilson 1981) was 1st described as subfamily Antrozoinae (Miller 1897; Simmons 2005) and has since been unstable in position and rank. Miller (1907) grouped Antrozous and Bauerus in subfamily Nyctophilinae with Nyctophilus and Pharotis, a classification supported by Tate (1941) and Simpson (1945). Koopman and Jones (1970) were 1st to place Antrozous and Bauerus into tribe Antrozoini, but its position remained within Nyctophilinae. This position of Antrozoini within Nyctophilinae was questioned by Koopman (1970) based on zoogeography and Pine et al. (1971) based on bacular morphology. Antrozoini has since been placed within Vespertilioninae by most authors, with various affinities (Hill and Harrison 1987; Koopman 1994; McKenna and Bell 1997). The most divergent exception to this hypothesis is the elevation of Antrozoini to its own family, Antrozoidae, aligned closely to Molossidae (Simmons 1998; Simmons and Geisler 1998). However, this hypothesis has not been supported by phylogenetic analysis of mtDNA (Hoofer and Van Den Bussche 2003) or nDNA (Miller-Butterworth et al. 2007). Hoofer and Van Den Bussche (2003) redefined Antrozoini by including Rhogeessa and Baeodon into the tribe. Their arrangement is supported largely by the combined tree with a monophyletic Rhogeessa sister to an Antrozous-Bauerus clade; however, the position of Baeodon was unresolved (Fig. 4). As in Hoofer and Van Den Bussche (2003), our mtDNA gene tree supports the inclusion of Baeodon in Antrozoini (Fig. 2), but results of the nDNA analysis place Baeodon basal to the Lasiurini (Fig. 3). This relationship is not supported, and it is possible that the incomplete nDNA data set for Baeodon may cause instability at this node resulting in a lack of resolution.

The 4th supported group consisted of New World pipistrelles, Parastrellus hesperus and Perimyotis subflavus (Fig. 4), and would constitute a new, yet-to-be-named, tribe referred to here as the perimyotine group. These results support Hoofer and Van Den Bussche (2003) placing each species in its own genus, but their phylogeny was unresolved relative to the position of these taxa within Vespertilioninae and their relationship to each other. Although affinities for this perimyotine group are not clear, these 2 taxa are supported in a deeply diverging clade. Furthermore, the combined analysis demonstrates that these taxa are distinct from Pipistrellus and fall outside of the other Pipistrellus-like bats. The inclusion of Parastrellus and Perimyotis into their own tribe initially seems counterintuitive based on previous research (Baker and Patton 1967; Hamilton 1949; Hill and Harrison 1987; Tate 1942). However, these taxa were problematic to place within Pipistrellus (sensu Koopman 1994), and many other taxa (Arielulus, Falsistrellus, Hypsugo, Neoromicia, and Vespadelus) previously included in Pipistrellus are today considered valid genera with different affinities than to Pipistrellus. Furthermore, a single colonization of the Nearctic by the most recent common ancestor of these taxa is more parsimonious than multiple colonization events, and their deep divergence allows for the morphological and chromosomal divergence separating them. Considering New World pipistrelles as a separate tribe preserves their generic and deeply divergent differences (Hamilton 1949) while maintaining their apparent common ancestry (Fig. 4). However, this tribal-level peri-myotine group should be considered tentative until further research corroborates this relationship and resolves their position within Vespertilioninae.

The last 2 supported tribes form a sister relationship in the combined tree and include most taxa historically considered Pipistrellus-like (Fig. 4). The 1st of these tribes is composed of Nyctalus, Pipistrellus, Scotoecus, and Vespertilio. Because of inclusion of Vespertilio in this tribe and Vespertilio having priority, the most appropriate name for this tribe is Vespertilionini. The other tribe consisted of Chalinolobus, Hypsugo, Laephotis, Neoromicia, Nycticeinops, Tylonycteris, and Vespadelus. This tribe is currently unnamed, but because Hypsugo has priority, this group will be referred to as the hypsugine group. These results are congruent with the results of Roehrs (2009), who addressed intergeneric relationships of Pipistrellus-like bats using a digenomic data set with reduced taxon sampling.

Two other previously documented tribes, Nycticeiini and Plecotini, deserve mention. The combined phylogram presented here (Fig. 4) corroborates recent research (Hill and Harrison 1987; Hoofer and Van Den Bussche 2003; Roehrs 2009; Volleth et al. 2006) in rejecting Nycticeiini (sensu Tate 1942). However, with regard to Nycticeiini (sensu Hoofer and Van Den Bussche 2003), the combined analysis was in congruence topologically, but the clade lacked statistical support (Fig. 4). This lack of support likely stems from a difference between the mtDNA and nDNA tree topologies. The mtDNA gene tree from this study is in agreement with Hoofer and Van Den Bussche (2003) with only the Bayesian analysis supporting Nycticeiini. The nDNA tree includes an unsupported Nycticeiini clade excluding Nycticeius making this clade more appropriately named Eptesicini. As discussed by Roehrs (2009), it is apparent that Arielulus, Eptesicus (including Histiotus), Glauconycteris, Lasionycteris, and Scotomanes form a tribal-level clade, but more effort will be required to resolve the position of Nycticeius and will have an impact on the nomenclature of this clade.

Although taxa included in Plecotini have not been completely stable, this tribe has been consistently included in Vespertilioninae classification since it was described by Gray (1866) as Plecotina (Table 1). Handley (1959) is responsible for establishing the core Plecotini genera currently recognized: Barbastella, Corynorhinus, Euderma, Idionycteris, and Plecotus. Other taxa also have been included in Plecotini: Baeodon, Nycticeius, Otonycteris, Rhogeessa, Nyctophilus, and Histiotus (Bogdanowicz et al. 1998; Dobson 1878; Hill and Harrison 1987; Kawai et al. 2002; Pine et al. 1971; Qumsiyeh and Bickham 1993). Although morphologic and cytogenetic data support monophyly of the core Plecotini (Bogdanowicz et al. 1998; Frost and Timm 1992; Handley 1959; Leniec et al. 1987; Tate 1942; Tumlison and Douglas 1992; Volleth and Heller 1994a, 1994b), monophyly of this tribe only recently has been tested explicitly (Hoofer and Van Den Bussche 2001,2003). Hoofer and Van Den Bussche (2003) were unable to unambiguously support monophyly of the core Plecotini or their relationship to other previously proposed closely related genera. The combined analysis of this study, and the mtDNA and nDNA trees independently, also were unable to resolve Plecotini, leaving this tribe neither supported nor rejected (Fig. 4). These taxa could be extant members of one of the earliest radiations from Vespertilioninae ancestral stock and appear to have rapidly diverged, not allowing time for these gene regions to accumulate sufficient synapomorphic characters to clarify their evolutionary histories. Finally, despite a general lack of resolution of deep phylogenetic relationships within Vespertilioninae, the subfamily is supported as a monophyletic group to the exclusion of Myotis, which is congruent with current hypotheses.

Usefulness of nDNA and combined data.—The nuclear gene regions included in this study were individually relatively short (averaging ∼800 bp), had few variable positions (173– 570 bp), and included even few potential phylogenetically informative positions (129–415 bp; Table 2). For any 1 nDNA gene region relatively few potentially informative positions per taxon were found, resulting in topologies that were not fully resolved and less informative of true evolutionary relationships. Results of likelihood-mapping tended to support this supposition, with most independent nDNA gene regions resolving <80% of quartets and all independent nDNA gene regions resolving <90% of quartets (Fig. 1). Furthermore, because it is difficult to predict whether a particular gene tree reflects true evolutionary relationships, most studies currently use a suite of gene regions from multiple genomes to overcome potential problems with nonphylogenetic signal within any 1 particular gene region (Philippe and Telford 2006; Rodríguez-Ezpeleta et al. 2007). Gene regions included in this study have been used successfully in various combinations in previous studies of bats and other mammals (Amrine-Madsen et al. 2003; Baker et al. 2003; Eick et al. 2005; Matthee and Davis 2001; Matthee et al. 2001, 2004, 2007; Murphy et al. 2001; Van Den Bussche et al. 2003), and all of these markers have been included in a recent study of the phylogenetic relationships of Miniopteridae, Cistugo, Myotinae, Kerivoulinae, Murininae, and Vespertilioninae (Lack et al. 2010).

Although results presented here provide a more resolved hypothesis of evolutionary relationships of Vespertilioninae than previous phylogenetic studies, it appears that more sequence data and more taxa will be necessary to overcome stochastic error and fully resolve deep evolutionary patterns within this subfamily. However, these studies will need to overcome potential systematic errors that tend to increase with increasing amounts of sequence data by excluding taxa, genes, and possibly even codon positions that exhibit relatively rapid rates of evolution (Baurain et al. 2007; Brinkmann and Philippe 2008; Philippe and Telford 2006; Rodríguez-Ezpeleta et al. 2007).

Acknowledgments

This project would not have been possible without the support and loan of tissues from individuals and institutions including: R. J. Baker, Museum of Texas Tech University; N. B. Simmons, American Museum of Natural History; B. D. Patterson, L. R. Heaney, and W. T. Stanley, Field Museum of Natural History; S. B. McLaren, Carnegie Museum of Natural History; M. D. Engstrom and B. Lim, Royal Ontario Museum; M. Ruedi, Musé;um d'Histoire Naturelle de Genève and the University of Lausanne, Institut de Zoologie et d'Ecologie Animale; P. J. Taylor, Durban Natural Science Museum; J. K. Braun and M. A. Mares, Sam Noble Oklahoma Museum of Natural History; T. L. Yates, Museum of Southwestern Biology at the University of New Mexico; R. L. Honeycutt and D. Schlitter, Texas Cooperative Wildlife Collection at Texas A&M University; J. O. Whitaker, Jr., and D. S. Sparks, Indiana State University Vertebrate Collection; and T. E. Lee, Jr., Abilene Christian University. We thank C. E. Stanley, Jr., for generating a portion of the sequence data included in this project. G. Eick was helpful in providing primers and advice on polymerase chain reaction profiles for the nuclear introns used in this study. Thanks go to the Oklahoma State University Recombinant DNA/Protein Core Facility for use of its equipment and assistance in troubleshooting. J. K. Braun, M. J. Hamilton, D. M. Leslie, M. A. Magnuson, R. J. Tyrl, and 2 anonymous reviewers reviewed drafts of this document. National Science Foundation grants DEB-9873657 and DEB-0610844 to RAVDB funded this research. Any opinions, findings, and conclusions or recommendations expressed in this paper are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Literature Cited

Amrine-Madsen
H.
Koepfli
K.-P.
Wayne
R. K.
Springer
M. S.
.
2003
.
A new phylogenetic marker, apolipoprotein B, provides compelling evidence for eutherian relationships
.
Molecular Phylogenetics and Evolution
 
28
:
225
240
.
Ao
L.
et al
.
2006
.
Karyotype relationships of six bat species (Chiroptera, Vespertilionidae) from China revealed by chromosome painting and G-banding comparison
.
Cytogenetic and Genome Research
 
115
:
145
153
.
ÄrnbÄck-Christie-Linde
A.
1909
.
On intermediate forms among Chiroptera
.
Zoologischer Anzeiger
 
34
:
572
582
.
Avise
J. C.
1994
.
Molecular markers, natural history and evolution
 .
2
nd ed.
Sinauer Associates, Inc., Publishers
,
Sunderland, Massachusetts
.
Baker
R. J.
Hoofer
S. R.
Porter
C. A.
Van Den Bussche
R. A.
.
2003
.
Diversification among New World leaf-nosed bats: an evolutionary hypothesis and classification inferred from digenomic congruence of DNA sequence
 .
Occasional Papers
,
Museum of Texas Tech University
230
:
1
32
.
Baker
R. J.
Patton
J. L.
.
1967
.
Karyotypes and karyotypic variation of North American vespertilionid bats
.
Journal of Mammalogy
 
48
:
270
286
.
Baker
R. J.
Porter
C. A.
Patton
J. C.
Van Den Bussche
R. A.
.
2000
.
Systematics of bats of the family Phyllostomidae based on RAG2 DNA sequences
 .
Occasional Papers
,
Museum of Texas Tech University
202
:
1
16
.
Baurain
D.
Brinkmann
H.
Philippe
H.
.
2007
.
Lack of resolution in the animal phylogeny: closely spaced cladogeneses or undetected systematic errors?
Molecular Biology and Evolution
 
24
:
6
9
.
Bickham
J. W.
1979
.
Chromosomal variation and evolutionary relationships of vespertilionid bats
.
Journal of Mammalogy
 
60
:
350
363
.
Bickham
J. W.
1987
.
Chromosomal variation among seven species of lasiurine bats (Chiroptera: Vespertilionidae)
.
Journal of Mammalogy
 
68
:
837
842
.
Bickham
J. W.
Patton
J. C.
Schlitter
D. A.
Rautenbach
I. L.
Honeycutt
R. L.
.
2004
.
Molecular phylogenetics, karyotypic diversity, and partition of the genus Myotis (Chiroptera: Vespertilionidae)
.
Molecular Phylogenetics and Evolution
 
33
:
333
338
.
Bogdanowicz
W.
Kasper
S.
Owen
R. D.
.
1998
.
Phylogeny of plecotine bats: reevaluation of morphological and chromosomal data
.
Journal of Mammalogy
 
79
:
78
90
.
Brinkmann
H.
Philippe
H.
.
2008
.
Animal phylogeny and large-scale sequencing: progress and pitfalls
.
Journal of Systematics and Evolution
 
46
:
274
286
.
De Queiroz
A.
1993
.
For consensus (sometimes)
.
Systematic Biology
 
42
:
368
372
.
Dobson
G. E.
1875
.
Conspectus of the suborder, families and genera of Chiroptera arranged according to their natural affinities
.
Annals and Magazine of Natural History
 ,
Series 4
,
16
:
345
357
.
Dobson
G. E.
1878
.
Catalog of the Chiroptera in the collection of the British Museum
 .
British Museum (Natural History)
,
London,, United Kingdom
.
Eick
G. N.
Jacobs
D. S.
Matthee
C. A.
.
2005
.
A nuclear DNA phylogenetic perspective on the evolution of echolocation and historical biogeography of extant bats (Chiroptera)
.
Molecular Biology and Evolution
 
22
:
1869
1886
.
Ellerman
J. R.
Morrison-Scott
T. C. S.
.
1951
.
Checklist of Palaearctic and Indian mammals 1758 to 1946
 .
Trustees of the British Museum (Natural History)
,
London, United Kingdom
.
Engstrom
M. D.
Wilson
D. E.
.
1981
.
Systematics of Antrozous dubiaquercus (Chiroptera: Vespertilionidae), with comments on the status of Bauerus Van Gelder
.
Annals of Carnegie Museum
 
50
:
371
383
.
Frost
D. R.
Timm
R. M.
.
1992
.
Phylogeny of plecotine bats (Chiroptera: “Vespertilionidae”): proposal of a logically consistent taxonomy
.
American Museum Novitates
 
3034
:
1
16
.
Gannon
W. L.
Sikes
R. S.
the Animal Care, Use Committee of the American Society of Mammalogists
.
2007
.
Guidelines of the American Society of Mammalogists for the use of wild mammals in research
.
Journal of Mammalogy
 
88
:
809
823
.
Gervais
F. L. P.
1855
.
Mammifères. Animaux nouveaux, oil rares, recueillis pendant 1’ expédition dans les parties centrales de l'Amérique du Sud. P. Bertrand
 ,
Paris, France
.
Gill
T. N.
1885
.
Order IV. Chiroptera
. Pp.
159–177 in The standard natural history
  (
Kingsley
J. S.
, ed.). Vol.
5
.
S. E. Cassino and Company
,
Boston, Massachusetts
.
Gray
J. E.
1821
.
On the natural arrangement of vertebrose animals
.
London Medical Repository, Monthly Journal, and Review
 
15
:
296
310
.
Gray
J. E.
1831
.
Descriptions of some new genera and species of bats
.
Zoological Miscellany
 
1
:
37
38
.
Gray
J. E.
1866
.
Synopsis of the genera of Vespertilionidae and Noctilionidae
.
Annals and Magazine of Natural History
 ,
Series 3
,
17
:
89
93
.
Gu
X.-M.
He
S.-Y.
Ao
L.
.
2008
.
Molecular phylogenetics among three families of bats (Chiroptera: Rhinolophidae, Hipposideridae, and Vespertilionidae) based on partial sequences of the mitochondrial 12S and 16S rRNA genes
.
Zoological Studies
 
47
:
368
378
.
Hall
E. R.
Jones
J. K.
Jr.
1961
.
North American yellow bats, “Dasypterus,” and a list of the named kinds of the genus Lasiurus Gray
 .
University of Kansas Publications, Museum of Natural History
14
:
73
98
.
Hamilton
W. J.
Jr.
1949
.
The bacula of some North American vespertilionid bats
.
Journal of Mammalogy
 
30
:
97
102
.
Handley
C. O.
Jr.
1959
.
A revision of American bats of the genera Euderma and Plecotus
.
Proceedings of the United States National Museum
 
110
:
95
246
.
Handley
C. O.
Jr.
1960
.
Descriptions of new bats from Panama
.
Proceedings of the United States National Museum
 
112
:
459
477
.
Heller
K.-G.
Volleth
M.
.
1984
.
Taxonomic position of “Pipistrellus societatis” Hill, 1972 and the karyological characteristics of the genus Eptesicus (Chiroptera: Vespertilionidae)
.
Zeitschrift für Zoologische Systematik und Evolutionsforschung
 
22
:
65
77
.
Hill
J. E.
1966
.
The status of Pipistrellus regulus Thomas (Chiroptera, Vespertilionidae)
.
Mammalia
 
30
:
302
307
.
Hill
J. E.
Harrison
D. L.
.
1987
.
The baculum in the Vespertilioninae (Chiroptera: Vespertilionidae) with a systematic review, a synopsis of Pipistrellus and Eptesicus, and the descriptions of a new genus and subgenus
.
Bulletin of the British Museum of Natural History (Zoology)
 
52
:
225
305
.
Hill
J. E.
Topál
G.
1973
.
The affinities of Pipistrellus ridleyi Thomas, 1898 and Glischropus rosseti Oey, 1951 (Chiroptera: Vespertilionidae)
.
Bulletin of the British Museum of Natural History (Zoology)
 
24
:
447
454
.
Hoofer
S. R.
Reeder
S. A.
Hansen
E. W.
Van Den Bussche
R. A.
.
2003
.
Molecular phylogenetics and taxonomic review of noctilionoid and vespertilionoid bats (Chiroptera: Yangochiroptera)
.
Journal of Mammalogy
 
84
:
809
821
.
Hoofer
S. R.
Van Den Bussche
R. A.
.
2001
.
Phylogenetic relationships of plecotine bats and allies based on mitochondrial ribosomal sequences
.
Journal of Mammalogy
 
82
:
131
137
.
Hoofer
S. R.
Van Den Bussche
R. A.
.
2003
.
Molecular phylogenetics of the chiropteran family Vespertilionidae
.
Acta Chiropterologica
 
5
,
supplement
:
1
63
.
Hoofer
S. R.
Van Den Bussche
R. A.
HorÁČek
I.
.
2006
.
Generic status of the American pipistrelles (Vespertilionidae) with description of a new genus
.
Journal of Mammalogy
 
87
:
981
992
.
HorÁČek
I.
Zima
J.
.
1978
.
Specificity of selection pressure as the factor causing parallel evolution in bats
. Pp.
115
123
in
Natural selection: proceedings of the international symposium, Liblice, Czechoslovakia, June 5–9, 1978
  (
Novák
V. J. A.
Leonovich
V. V.
Pacltová
B.
, eds.).
Czechoslovak Academy of Sciences
,
Prague, Czechoslovakia
.
Huelsenbeck
J. P.
Ronquist
F.
.
2001
.
MRBAYES: Bayesian inference of phylogenetic trees
.
Bioinformatics
 
17
:
754
755
.
Kawai
K.
et al
.
2002
.
Intra- and interfamily relationships of Vespertilionidae inferred by various molecular markers including SINE insertion data
.
Journal of Molecular Evolution
 
55
:
284
301
.
Kearney
T. C.
Volleth
M.
Contrafatto
G.
Taylor
P. J.
.
2002
.
Systematic implications of chromosome GTG-band and bacula morphology for Southern African Eptesicus and Pipistrellus and several other species of Vespertilioninae (Chiroptera: Vespertilionidae)
.
Acta Chiropterologica
 
4
:
55
76
.
Koopman
K. F.
1970
.
Zoogeography of bats
. Pp.
29
50
in
About bats: a chiropteran biology symposium
  (
Slaughter
B. H.
Walton
D. W.
, eds.).
Southern Methodist University Press
,
Dallas, Texas
.
Koopman
K. F.
1975
.
Bats of Sudan
.
Bulletin of the American Museum of Natural History
 
154
:
353
444
.
Koopman
K. F.
1984
.
A synopsis of the families of bats—part VII
.
Bat Research News
 
25
:
25
27
.
Koopman
K. F.
1994
.
Chiroptera: systematics
.
Handbook of zoology: a natural history of the phyla of the animal kingdom
 .
Walter de Gruvter
,
Berlin, Germany
8
(
60
):
1
217
.
Koopman
K. F.
Jones
J. K.
Jr.
1970
.
Classification of bats
. Pp.
22
28
in
About bats: a chiropteran biology symposium
  (
Slaughter
B. H.
Walton
D. W.
, eds.).
Southern Methodist University Press
,
Dallas, Texas
.
Lack
J. B.
Roehrs
Z. P.
Stanley
C. E.
Jr.
Ruedi
M.
Van Den Bussche
R. A.
.
2010
.
Molecular phylogenetics of Myotis indicate familial-level divergence for the genus Cistugo (Chiroptera)
.
Journal of Mammalogy
 
91
:
976
992
.
Leniec
H.
Fedyk
S.
Ruprecht
A. L.
.
1987
.
Chromosomes of some species of vespertilionid bats. IV. New data on the plecotine bats
.
Acta Theriologica
 
32
:
307
314
.
Longmire
J. L.
Maltbie
M.
Baker
R. J.
.
1997
.
use of “lysis buffer” in DNA isolation and its implication for museum collections
 .
Occasional Papers
,
The Museum, Texas Tech University
163
:
1
3
.
Lutzoni
F.
Wagner
P.
Reeb
V.
Zoller
S.
.
2000
.
Integrating ambiguously aligned regions of DNA sequences in phylogenetic analyses without violating positional homology
.
Systematic Biology
 
49
:
628
651
.
Maddison
W. P.
Maddison
D. R.
.
2002
.
MacClade, version 4.05
 .
Sinauer Associates, Inc., Publishers
,
Sunderland, Massachusetts
.
Matthee
C. A.
Burzlaff
J. D.
Taylor
J. F.
Davis
S. K.
.
2001
.
Mining the mammalian genome for artiodactyl systematics
.
Systematic Biology
 
50
:
367
390
.
Matthee
C. A.
Davis
S. K.
.
2001
.
Molecular insight into the evolution of the family Bovidae: a nuclear DNA perspective
.
Molecular Biology and Evolution
 
18
:
1220
1230
.
Matthee
C. A.
Eick
G.
Willows-Munro
S.
Montgelard
C.
Pardini
A. T.
Robinson
T. J.
.
2007
.
Indel evolution of mammalian introns and the utility of non-coding nuclear markers in eutherian phylogenetics
.
Molecular Phylogenetics and Evolution
 
42
:
827
837
.
Matthee
C. A.
Van Vuuren
B. J.
Bell
D.
Robinson
T. J.
.
2004
.
A molecular supermatrix of the rabbits and hares (Leporidae) allows for the identification of five intercontinental exchanges during the Miocene
.
Systematic Biology
 
53
:
433
447
.
Mayer
F.
Dietz
C.
Kiefer
A.
.
2007
.
Molecular species identification boosts bat diversity
.
Frontiers in Zoology
 
4
:
4
.
Mayer
F.
Helversen
O. von
.
2001
.
Cryptic diversity in European bats
.
Proceedings of the Royal Society of London, B. Biological Sciences
 
268
:
1825
1832
.
McKenna
M. C.
Bell
S. K.
.
1997
.
Classification of mammals: above the species level
 .
Columbia University Press
,
New York
.
Miller
G. S.
Jr.
1897
.
Revision of the North American bats of the family Vespertilionidae
.
North American Fauna
 
13
:
1
136
.
Miller
G. S.
Jr.
1907
.
The families and genera of bats
.
Bulletin of the United States National Museum
 
57
:
1
282
.
Miller-Butterworth
C. M.
Murphy
W. J.
O'brien
S. J.
Jacobs
D. S.
Springer
M. S.
Teeling
E. C.
.
2007
.
A family matter: conclusive resolution of the taxonomic position of the long-fingered bats, Miniopterus
.
Molecular Biology and Evolution
 
24
:
1553
1561
.
Murphy
W. J.
Eizirik
E.
Johnson
W. E.
Zhang
Y. P.
Ryder
O. A.
O'Brien
S. J.
.
2001
.
Molecular phylogenetics and the origins of placental mammals
.
Nature
 
409
:
614
618
.
Peters
W. C. H.
1865
.
Über die zu den Vampyri gehörigen Flederthiere und über die natürliche Stellung der Gattung Antrozous
 .
Monatsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin
,
Germany
.
Philippe
H.
Telford
M. J.
.
2006
.
Large-scale sequencing and the new animal phylogeny
.
Trends in Ecology & Evolution
 
21
:
614
620
.
Pine
R. H.
Carter
D. C.
Laval
R. K.
.
1971
.
Status of Bauerus Van Gelder and its relationships to other nyctophiline bats
.
Journal of Mammalogy
 
52
:
663
669
.
Posada
D.
Crandall
K. A.
.
1998
.
MODELTEST: testing the model of DNA substitution
.
Bioinformatics
 
14
:
817
818
.
Qumsiyeh
M. B.
Bickham
J. W.
.
1993
.
Chromosomes and relationships of long-eared bats of the genera Plecotus and Otonycteris
.
Journal of Mammalogy
 
74
:
376
382
.
Rodríguez
F.
Oliver
J. L.
Marín
A.
Medina
J. R.
.
1990
.
The general stochastic model of nucleotide substitution
.
Journal of Theoretical Biology
 
142
:
485
501
.
Rodríguez-Ezpeleta
N.
Brinkmann
H.
Roure
B.
Lartillot
N.
Lang
B. F.
Philippe
H.
.
2007
.
Detecting and overcoming systematic errors in genome-scale phylogenies
.
Systematic Biology
 
56
:
389
399
.
Roehrs
Z. P.
2009
.
Vespertilioninae systematics: using mitochondrial and nuclear markers to elucidate phylogenetic relationships
.
Ph.D. dissertation
 ,
Oklahoma State University
,
Stillwater
.
Rosevear
D. R.
1962
.
A review of some African species of Eptesicus Rafinesque
.
Mammalia
 
26
:
457
477
.
Ruedas
L. A.
Salazar-Bravo
J.
Dragoo
J. W.
Yates
T. L.
.
2000
.
The importance of being earnest: what, if anything, constitutes a “specimen examined?”
Molecular Phylogenetics and Evolution
 
17
:
129
132
.
Ruedi
M.
Mayer
F.
.
2001
.
Molecular systematics of bats of the genus Myotis (Vespertilionidae) suggests deterministic ecomorphological convergences
.
Molecular Phylogenetics and Evolution
 
21
:
436
448
.
Schmidt
H. A.
Strimmer
K.
Vingron
M.
Haeseler
A. von
.
2002
.
TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing
.
Bioinformatics
 
18
:
502
504
.
Simmons
N. B.
1998
.
A reappraisal of interfamilial relationships of bats
. Pp.
3
26
in
Bat biology and conservation
  (
Kunz
T. H.
Racey
P. A.
, eds.).
Smithsonian Institution Press
,
Washington, D.C
.
Simmons
N. B.
2005
.
Order Chiroptera
. Pp.
312
529
in
Mammal species of the world: a taxonomic and geographic reference
  (
Wilson
D. E.
Reeder
D. M.
, eds.).
3
rd ed.
Johns Hopkins University Press
,
Baltimore, Maryland
.
Simmons
N. B.
Geisler
J. H.
.
1998
.
Phylogenetic relationships of Icaronycteris, Archaeonycteris, Hassianycteris and Palaeochir-opteryx to extant bat lineages, with comments on the evolution of echolocation and foraging strategies in Microchiroptera
.
Bulletin of the American Museum of Natural History
 
235
:
1
182
.
Simpson
G. G.
1945
.
The principles of classification and a classification of mammals
.
Bulletin of the American Museum of Natural History
 
85
:
i–xvi
,
1
350
.
Stadelmann
B.
Jacobs
D. S.
Schoeman
C.
Ruedi
M.
.
2004
.
Phylogeny of African Myotis bats (Chiroptera, Vespertilionidae) inferred from cytochrome b sequences
.
Acta Chiropterologica
 
6
:
177
192
.
Stadelmann
B.
Lin
L.-K.
Kunz
T. H.
Ruedi
M.
.
2007
.
Molecular phylogeny of New World Myotis (Chiroptera, Vespertilionidae) inferred from mitochondrial and nuclear DNA genes
.
Molecular Phylogenetics and Evolution
 
43
:
32
48
.
Strimmer
K.
Haeseler
A. von
.
1997
.
Likelihood-mapping: a simple method to visualize phylogenetic content of a sequence alignment
.
Proceedings of the National Academy of Sciences
 
94
:
6815
6819
.
Swofford
D. L.
2002
.
PAUP*: phylogenetic analysis using parsimony (*and other methods). Version 4.0 beta
 .
Sinauer Associates, Inc., Publishers
,
Sunderland, Massachusetts
.
Tate
G. H. H.
1941
.
Results of the Archbold expeditions. No. 40: notes on vespertilionid bats of the subfamilies Miniopterinae, Murininae, Kerivoulinae, and Nyctophilinae
.
Bulletin of the American Museum of Natural History
 
78
:
567
597
.
Tate
G. H. H.
1942
.
Results of the Archbold expeditions. No. 47: review of the Vespertilioninae bats, with special attention to genera and species of the Archbold collections
.
Bulletin of the American Museum of Natural History
 
80
:
221
296
.
Thompson
J. D.
Higgins
D. G.
Gibson
T. J.
.
1994
.
CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting position-specific gap penalties and weight matrix choice
.
Nucleic Acids Research
 
22
:
4673
4680
.
Tumlison
R.
Douglas
M. E.
.
1992
.
Parsimony analysis and the phylogeny of the plecotine bats (Chiroptera: Vespertilionidae)
.
Journal of Mammalogy
 
73
:
276
285
.
Van Den Bussche
R. A.
Hoofer
S. R.
.
2000
.
Further evidence for inclusion of the New Zealand short-tailed bat (Mystacina tuberculata) within Noctilionoidea
.
Journal of Mammalogy
 
81
:
865
874
.
Van Den Bussche
R. A.
Hoofer
S. R.
.
2001
.
Evaluating monophyly of Nataloidea (Chiroptera) with mitochondrial DNA sequences
.
Journal of Mammalogy
 
82
:
320
327
.
Van Den Bussche
R. A.
Reeder
S. A.
Hansen
E. W.
Hoofer
S. R.
.
2003
.
Utility of the dentin matrix protein 1 (DMP1) gene for resolving mammalian intraordinal phylogenetic relationships
.
Molecular Phylogenetics and Evolution
 
26
:
89
101
.
Volleth
M.
Bronner
G.
Gopfert
M. C.
Heller
K. G.
Helversen
O. von
Young
H. S.
.
2001
.
Karyotype comparison and phylogenetic relationships of Pipistrellus-\ike bats (Vespertilionidae; Chiroptera; Mammalia)
.
Chromosome Research
 
9
:
25
46
.
Volleth
M.
Heller
K. G.
.
1994a
.
Karyosystematics of plecotine bats: a reevaluation of chromosomal data
.
Journal of Mammalogy
 
75
:
416
419
.
Volleth
M.
Heller
K. G.
.
1994b
.
Phylogenetic relationships of vespertilionid genera (Mammalia: Chiroptera) as revealed by karyological analysis
.
Zeitschrift für Zoologische Systematik und Evolutionsforschung
 
32
:
11
34
.
Volleth
M.
Heller
K. G.
Fahr
J.
.
2006
.
Phylogenetic relationships of three “Nycticeiini” genera (Vespertilionidae, Chiroptera, Mammalia) as revealed by karyological analysis
.
Zeitschrift fiir Saugetierkunde
 
71
:
1
12
.
Volleth
M.
Tidemann
C. R.
.
1991
.
The origin of the Australian Vespertilioninae bats, as indicated by chromosomal studies
.
Zeitschrift fiir Saugetierkunde
 
56
:
321
330
.
Wallin
L.
1969
.
The Japanese bat fauna: a comparative study of chorology, species diversity and ecological differentiation
.
Zoologiska Bidrag
 
37
:
223
440
.
Zima
J.
Horacek
I.
.
1985
.
Synopsis of karyotypes of vespertilionid bats (Mammalia: Chiroptera)
.
Acta Universitatis Carolinae—Biologica
 
1981
:
311
329
.

Appendix I

Appendix I

Taxonomic samples included in this study with tissue collection number, voucher specimen catalog number, general locality, and GenBank accession numbers (http://www.ncbi.nlm.nih.gov/). Specimens and tissue samples are housed in the following institutions: Abilene Christian University (ACU), American Museum of Natural History (AMNH), Carnegie Museum of Natural History (CM, SP), Colecció;n Mamíferos Lillo, Universidad Nacional de Tucumán (CML), Durban Natural Science Museum (DM), Field Museum of Natural History (FMNH), Indiana State University Vertebrate Collection (ISUV), Muséum d'Histoire Naturelle de Genève (MHNG), Museum of Southwestern Biology at the University of New Mexico (MSB, NK), Museum of Texas Tech University (TTU, TK), Natural History Museum of Bern (NHMB), Oklahoma State University Collection of Vertebrates (OSU, OK), Royal Ontario Museum (ROM, F), Sam Noble Oklahoma Museum of Natural History (OMNH, OCGR), Texas Cooperative Wildlife Collection at Texas A&M University (TCWC), Universidad Autónoma Metropolitana–Iztapalapa (UAMI), Universidad Nacional Autónoma de México (UNAM), and University of Lausanne, Institut de Zoologie et d'Ecologie Animale (IZEA) Mitochondrial DNA (mtDNA) for a specific taxon with GenBank accession number starting in AF or AY may not have been amplified from the specific specimen indicated. A dash (—) denotes information unavailable and therefore missing. A few specimens came from the personal collections of Dale W. Sparks (DWS), Manuel Ruedi (M), and Rodney L. Honeycutt (RLH and 05M3). GenBank accession numbers for sequences generated in this study are indicated in boldface type; all others were published previously (Eick et al. 2005; Hoofer and Van Den Bussche 2003; Lack et al. 2010). APOB = apolipoprotein B; DMP1 = dentin matrix acidic phosphoprotein I; RAG2 = recombination activating gene II; PRKCI = protein kinase C, iota; STAT5A = signal transducer and activator of transcription 5A; and THY = thyrotropin.

      GenBank accession no.   
 Tissue collection no. Museum catalog no.      
Taxon Locality mtDNA APOB DMP1 RAG2 PRKC1 STAT5A THY 
Kerivoulinae          
Kerivoula hardwickii F44154 ROM110829 Đồ ng Nai Province, Vietnam AF345928 GU328143 AY141893 AY141034 GU328304 GU328378 GU328447 
Kerivoula lenis (analyzed previously as K. papillosa) F44175 ROM110850 Đồng Nai Province, Vietnam AF345927 GU328144 GU328229 AY141035 GU328305 GU328379 GU328448 
Kerivoula pellucida F35987 ROM102177 East Kalimantan Province, Indonesia AY495476 GU328145 GU328230 GU328064 GU328306 GU328380 GU328449 
Murininae           
Harpiocephalus harpia TK21258 CM88159 Uthai Thani Province, Thailand AF263235 GU328139 AY141892 AY141031 GU328300 GU328375 GU328443 
Murina cyclotis M1209 MHNG1826.033 Phôngsaly Province, Lao GU952767 GU328155 GU328238 GU328072 GU328313 GU328386 GU328456 
   People–s Democratic Republic        
Murina huttoni F42722 ROM107739 Đắk Lắk Province, Vietnam AY495490 GU328156 GU328239 GU328073 GU328314 GU328387 GU328457 
Murina tubinaris M1179 MHNG1926.034 Phôngsaly Province, Lao GU952768 GU328157 GU328240 GU328074 GU328315 GU328388 GU328458 
   People's Democratic Republic        
Myotinae           
Myotis albescens TK17932 CM77691 Marowijne District, Suriname AY495492 GU328159 GU328241 GU328076 GU328317 GU328390 GU328460 
Myotis bocagii FMNH150075 FMNH150075 Tanga Region, Tanzania AF326096 GU328160 GU328242 GU328077 GU328318 GU328391 GU328461 
Myotis cf. browni (analyzed previously as M. muricola) FMNH147067 FMNH147067 Mindanao Island, Philippine Islands AY495504 GU328169 GU328251 GU328086 GU328327 GU328400 GU328470 
Myotis californicus TK78797 TTU79325 Texas AY495495 GU328161 GU328243 GU328078 GU328319 GU328392 GU328462 
Myotis capaccinii TK25610 TTU40554 Northern Province, Jordan AY495494 GU328162 GU328244 GU328079 GU328320 GU328393 GU328463 
Myotis ciliolabrum TK83155 TTU78520 Texas AY495497 GU328163 GU328245 GU328080 GU328321 GU328394 GU328464 
Myotis dominicensis TK15613 TTU31503 St. Joseph Parish, Dominica AY495500 GU328164 GU328246 GU328081 GU328322 GU328395 GU328465 
Myotis fortidens TK43186 UAMI Michoacán, Mexico AY495502 GU328165 GU328247 GU328082 GU328323 GU328396 GU328466 
Myotis keaysi TK13532 — Yucatán, Mexico AY495503 GU328166 GU328248 GU328083 GU328324 GU328397 GU328467 
Myotis latirostris M606 MHNG Miao-Li County, Taiwan GU952769 GU328167 GU328249 GU328084 GU328325 GU328398 GU328468 
Myotis levis FMNH141600 FMNH141600 São Paulo, Brazil Australia AF326097 GU328168 GU328250 GU328085 GU328326 GU328399 GU328469 
Myotis moluccarum (analyzed previously as M. adversus) RLH62 TCWC AY495491 GU328158 (not sequenced) GU328075 GU328316 GU328389 GU328459 
Myotis myotis IZEA3790 MHNG1805.062 Canton of Bern, Switzerland AF326098 GU328170 GU328252 GU328087 GU328328 GU328401 GU328471 
Myotis nigricans FMNH129210 FMNH129210 Amazonas, Peru AF326099 GU328171 GU328253 GU328088 GU328329 GU328402 GU328472 
Myotis riparius AMNH268591 AMNH268591 Paracou, French Guiana AF263236 GU328172 GU328254 GU328089 GU328330 GU328403 GU328473 
Myotis septentrionalis DWS609 ISUV6454 Indiana AY495507 GU328173 GU328255 GU328090 GU328331 GU328404 GU328474 
Myotis thysanodes TTU79327 TK78796 Texas (not sequenced) (not sequenced) (not sequenced) GU328091 (not sequenced) (not sequenced) GU328475 
       
Myotis thysanodes TK78802 TTU79330 Texas AF326100 GU328174 GU328256 (not sequenced) GU328332 GU328405 (not sequenced) 
          
Myotis velifer TK79170 TTU78599 Texas AF263237 GU328175 GU328257 AY141033 GU328333 GU328406 GU328476 
Myotis volans TK78980 TTU79545 Texas AY495510 GU328176 GU328258 GU328092 GU328334 GU328407 GU328477 
Myotis welwitschii FMNH144313 FMNH144313 Kasese District, Uganda Oklahoma AY495511 GU328177 GU328259 GU328093 GU328335 GU328408 GU328478 
Myotis yumanensis TK28753 TTU43200 AY495512 GU328178 GU328260 GU328094 GU328336 GU328409 GU328479 
Vespertilioninae         
Antrozoini         
Antrozous pallidus NK506 MSB40576 California GU328037 GU328120 GU328209 GU328045 GU328285 GU328360 GU328428 
Antrozous pallidus NK39195 MSB Arizona GU328038 GU328121 GU328210 GU328046 GU328286 GU328361 GU328429 
Antrozous pallidus TK49646 TTU71101 Texas AF326088 GU328122 GU328211 GU328047 GU328287 GU328362 GU328430 
Baeodon alleni TK45023 UN AM Michoacán, Mexico AF326108 HM561577 HM561677 HM561632 HM568371 HM568338 HM593057 
Bauerus dubiaquercus F33200 ROM97719 Campeche, Mexico AY395863 GU328125 GU328214 GU328050 GU328289 GU328364 GU328432 
Rhogeessa aeneus TK20712 TTU40012 Belize District, Belize AY495530 HM561578 HM561678 HM561633 HM568372 HM568339 HM593058 
Rhogeessa mira TK45014 UN AM Michoacán, Mexico AY495531 HM561579 HM561679 HM561634 HM568373 HM568340 HM593059 
Rhogeessa parvula TK20653 TTU36633 Sonora, Mexico AF326109 GU328196 GU328274 GU328108 GU328350 GU328419 GU328492 
Rhogeessa tumida TK40186 TTU61231 Valle Department, Honduras AF326110 GU328197 GU328275 GU328109 GU328351 GU328420 GU328493 
Hypsugine group           
Chalinolobus gouldii RLH27 TCWC Australia AY495461 HM561610 HM561710 HM561665 HM568404 HM568363 HM593090 
Chalinolobus morio 05M3 TCWC Australia AY495462 GU328129 GU328218 GU328054 GU328292 GU328367 GU328435 
Hypsugo cadornae M1183 MHNG1926.050 Phôngsaly Province, Lao People's Democratic Republic GU328041 GU328140 GU328226 GU328061 GU328301 (not sequenced) GU328444 
Hypsugo eisentrauti F34348 ROM100532 Côte d'Ivoire AY495473 HM561611 HM561711 HM561666 HM568405 HM568364 HM593091 
Hypsugo savii IZEA3586 MHNG1804.100 Canton of Valais, Switzerland AY495475 HM561612 HM561712 HM561667 HM568406 (not sequenced) HM593092 
          
Laephotis namibensis SP4160 CM93187 Maltahöhe District, Namibia AY495477 HM561613 HM561713 HM561668 HM568407 HM568365 HM593093 
Neoromicia brunnea TK21501 CM90802 Estuaire Province, Gabon AY495514 HM561614 HM561714 HM561669 HM568408 HM568366 HM593094 
Neoromicia nana DM7542 DM7542 KwaZulu-Natal Province, South Africa AY495474 GU328141 GU328227 GU328062 GU328302 GU328376 GU328445 
Neoromicia rendalli TK33238 CM97977 Coastal Province, Kenya AY495515 HM561615 HM561715 HM561670 HM568409 HM568367 HM593095 
Neoromicia somalica TK33214 CM97978 Coastal Province, Kenya AY495516 HM561616 HM561716 HM561671 HM568410 HM568368 HM593096 
Nycticeinops schliejfeni TK33373 CM97998 Eastern Province, Kenya AF326101 GU328183 GU328261 GU328095 AJ866330 AJ865440 AJ865685 
Tylonycteris pachypus F38442 ROM106164 Tuyen Quang Province, Vietnam AY495538 HM561617 HM561717 HM561672 HM568411 (not sequenced) HM593097 
Tylonycteris robustula M1203 MHNG1926.059 Phôngsaly Province, Lao People's Democratic Republic HM561631 HM561618 HM561718 HM561673 HM568412 (not sequenced) HM593098 
Vespadelus regulus RLH30 TCWC Australia AY495539 HM561619 HM561719 HM561674 HM568413 HM568369 HM593099 
Vespadelus vulturnus RLH16 TCWC Australia AY495499 (not sequenced) (not sequenced) HM561675 HM568414 HM568370 HM593100 
         
Lasiurini           
Lasiurus atratus F39221 ROM107228 Potaro-Siparuni, Guyana AY495478 HM561580 HM561680 HM561635 HM568374 HM568341 HM593060 
Lasiurus blossevillii F38133 ROM104285 Chiriquí Province, Panama AY495479 HM561581 HM561681 HM561636 HM568375 HM568342 HM593061 
Lasiurus borealis TK49732 TTU71170 Texas AY495480 HM561582 HM561682 HM561637 HM568376 HM568343 HM593062 
Lasiurus cinereus TK78926 TTU Texas AY495482 HM561583 HM561683 HM561638 HM568377 HM568344 HM593063 
Lasiurus ega TK43132 UNAM Michoacán, Mexico AY495483 HM561584 HM561684 HM561639 HM568378 HM568345 HM593064 
Lasiurus intermedius TK20513 TTU36631 Oaxaca, Mexico (not sequenced) HM561585 (not sequenced) HM561640 HM568379 HM568346 HM593065 
        
Lasiurus intermedius TK84510 TTU80739 Texas HM561627 (not sequenced) HM561685 (not sequenced) (not sequenced) (not sequenced) (not sequenced) 
     
Lasiurus seminolus TK90686 TTU80699 Texas AY495484 HM561586 HM561686 HM561641 HM568380 HM568347 HM593066 
Lasiurus xanthinus TK78704 TTU78296 Texas AY495485 HM561587 HM561687 HM561642 HM568381 HM568348 HM593067 
Nycticeiini           
Arielulus aureocollaris F38447 ROM106169 Tuyen Quang Province, Vietnam HM561621 HM561588 HM561688 HM561643 HM568382 HM568349 HM593068 
Eptesicus brasiliensis TK17809 CM76812 Nickerie District, Suriname AY495464 HM561589 HM561689 HM561644 HM568383 HM568350 HM593069 
Eptesicus diminutus TK15033 TTU48154 Guarico, Venezuela AY495465 GU328133 GU328220 GU328056 GU328295 GU328370 GU328438 
Eptesicus furinalis AMNH268583 AMNH268583 Paracou, French Guiana AF263234 GU328135 GU328222 AY141030 GU328297 GU328372 GU328440 
Eptesicus fuscus SP844 CM102826 West Virginia AF326092 GU328136 GU328223 GU328058 GU328298 GU328373 GU328441 
Eptesicus hottentotus TK33013 CM89000 Rift Valley Province, Kenya AY495466 GU328137 GU328224 GU328059 AJ866329 AJ865438 AJ865683 
Eptesicus macrotus OCGR2301 CML3230 Neuquán Province, Argentina HM561622 HM561590 HM561690 HM561645 HM568384 HM568351 HM593070 
Eptesicus macrotus FMNH129207 FMNH129207 Ancash Region, Peru AY495472 HM561591 HM561691 HM561646 HM568385 HM568352 HM593071 
Eptesicus macrotus OCGR4227 OMNH27925 Salta Province, Argentina HM561623 HM561592 HM561692 HM561647 HM568386 HM568353 HM593072 
Eptesicus macrotus OCGR3806 OMNH32879 Catamarca Province, Argentina HM561624 HM561593 HM561693 HM561648 HM568387 HM568354 HM593073 
Eptesicus magellanicus OCGR2303 OMNH23500 Neuquán Province, Argentina HM561625 HM561594 HM561694 HM561649 HM568388 (not se quenced) HM593074 
         
Eptesicus serotinus M816 MHNG1807.065 Greece HM561626 HM561595 HM561695 HM561650 HM568389 HM568355 HM593075 
Eptesicus serotinus TK40897 TTU70947 Sidi Bou Zid Governorate, Tunisia AY495467 HM561596 HM561696 HM561651 HM568390 HM568356 HM593076 
         
Glauconycteris argentata FMNH15119 FMNH15119 Kilimanjaro Region, Tanzania AY495468 HM561597 HM561697 HM561652 HM568391 HM568357 HM593077 
Glauconycteris beatrix FMNH149417 FMNH149417 Haute Zaire, Zaire AY495469 HM561598 HM561698 HM561653 HM568392 (not sequenced) HM593078 
         
Glauconycteris egeria AMNH268381 AMNH268381 Central African Republic AY495470 HM561599 HM561699 HM561654 HM568393 (not sequenced) HM593079 
         
Glauconycteris variegata TK33545 CM97983 Western Province, Kenya AY495471 HM561600 HM561700 HM561655 HM568394 HM568358 HM593080 
Lasionycteris noctivagans TK24216 TTU56255 Texas AF326095 GU328146 (not sequenced) GU328065 (not GU328381 (not sequenced) 
      sequenced)  
Lasionycteris noctivagans — TK24889 Oklahoma (not sequenced) (not sequenced) GU328231 (not sequenced) GU328307 (not sequenced) GU328450 
      
Nycticeius humeralis TK26380 TTU49536 Texas AF326102 (not sequenced) (not sequenced) GU328096 (not sequenced) (not sequenced) (not sequenced) 
     
Nycticeius humeralis TK90649 TTU80664 Texas (not sequenced) GU328184 GU328262 (not sequenced) GU328338 GU328411 GU328481 
        
Scotomanes ornatus F42568 ROM107594 Tuyen Quang Province, Vietnam AY495537 HM561601 HM561701 HM561656 HM568395 HM568359 HM593081 
         
Scotophilini           
Scotophilus borbonicus TK33267 CM98041 Coastal Province, Kenya AY495532 GU328199 GU328276 GU328110 GU328352 GU328421 GU328494 
Scotophilus dinganii FMNH147235 FMNH147235 Tanga Region, Tanzania AY495533 GU328200 GU328277 GU328111 AJ866332 AJ865441 AJ865686 
Scotophilus heathii F42769 ROM107786 Đắk Lắic Province, Vietnam AY495534 GU328201 GU328278 GU328112 GU328353 GU328422 GU328495 
Scotophilus kuhlii FMNH145684 FMNH145684 Sibuyan Island, Philippine Islands AF326111 GU328202 GU328279 GU328113 GU328354 GU328423 GU328496 
         
Scotophilus leucogaster TK33359 CM90854 Eastern Province, Kenya AY395867 GU328203 GU328280 GU328114 GU328355 GU328424 GU328497 
Scotophilus nux TK33484 — Western Province, Kenya AY495535 GU328204 GU328281 GU328115 GU328356 GU328425 GU328498 
Scotophilus viridis FMNH150084 FMNH150084 Tanga Region, Tanzania AF326112 GU328206 GU328283 GU328117 GU328357 GU328426 GU328499 
Perimyotine group           
Parastrellus hesperus TK78703 TTU79269 Texas AY495522 GU328187 GU328265 GU328099 GU328341 GU328413 GU328483 
Perimyotis subflavus TK90671 TTU80684 Texas AY495523 GU328191 GU328269 GU328103 GU328345 GU328416 GU328487 
Plecotini           
Barbastella barbastellus IZEA3590 MHNG1804.094 Canton of Valais, Switzerland AF326089 GU328124 GU328213 GU328049 GU328288 GU328363 GU328431 
Corynorhinus mexicanus TK45849 UAMI Michoacán, Mexico AF326090 GU328128 GU328217 GU328053 GU328291 GU328366 GU328434 
Corynorhinus rafinesquii TK5959 TTU45380 Arkansas AF326091 GU328130 GU328219 GU328055 GU328293 GU328368 GU328436 
Corynorhinus townsendii OKI 1530 OSU13099 Oklahoma (not sequenced) GU328131 (not sequenced) (not sequenced) GU328294 GU328369 GU328437 
       
Corynorhinus townsendii TK83182 TTU78531 Texas AF263238 (not sequenced) AY141891 AY141029 (not sequenced) (not sequenced) (not sequenced) 
      
Euderma maculatum NK36260 MSB 121373 Utah AF326093 GU328138 GU328225 GU328060 GU328299 GU328374 GU328442 
Idionycteris phyllotis ACU736 ACU736 — (not sequenced) GU328142 GU328228 (not sequenced) GU328303 GU328377 (not sequenced) 
       
Idionycteris phyllotis NK36122 MSB120921 Utah AF326094 (not sequenced) (not sequenced) GU328063 (not sequenced) (not sequenced) GU328446 
      
Otonycteris hemprichii SP7882 — Maan Government, Jordan AF326103 GU328186 GU328264 GU328098 GU328340 GU328412 GU328482 
Plecotus auritus IZEA2693 — — (not sequenced) (not sequenced) GU328266 (not sequenced) GU328342 GU328414 (not sequenced) 
      
Plecotus auritus IZEA2694 MHNG1806.047 Canton of Valais, Switzerland AF326106 GU328188 (not sequenced) GU328100 (not sequenced) (not sequenced) GU328484 
       
Plecotus austriacus IZEA3722 MHNG1806.042 Canton of Valais, Switzerland AF326107 GU328189 GU328267 GU328101 GU328343 GU328415 GU328485 
Plecotus gaisleri IZEA4780 MHNG1806.051 Meknés-tafilalet, Morocco GU328043 GU328192 GU328270 GU328104 GU328346 GU328417 GU328488 
Vespertilionini           
Nyctalus leisleri FMNH140374 FMNH140374 Malakand Division, Pakistan AY495517 HM561602 HM561702 HM561657 HM568396 (not sequenced) HM593082 
         
Nyctalus noctula NHMB 209/87 NHMB 209/87 Canton of Berne, Switzerland AY495518 HM561603 HM561703 HM561658 HM568397 (not sequenced) HM593083 
         
Pipistrellus coromandra FMNH140377 FMNH140377 Malakand Division, Pakistan AY495524 GU328190 GU328268 GU328102 GU328344 (not sequenced) GU328486 
         
Pipistrellus hesperidus DM8013 DM8013 KwaZulu-Natal, South Africa HM561628 HM561604 HM561704 HM561659 HM568398 (not sequenced) HM593084 
         
Pipistrellus javanicus FMMNH147069 FMMNH147069 Mindanao Island, Philippines AY495525 GU328193 GU328271 GU328105 GU328347 (not sequenced) GU328489 
         
Pipistrellus nathusii IZEA2830 MHNG1806.003 Canton of Vaud, Switzerland AF326104 HM561605 (not sequenced) HM561660 (not sequenced) (not sequenced) (not sequenced) 
      
Pipistrellus nathusii IZEA3406 MHNG1806.001 Canton of Vaud, Switzerland (not sequenced) (not sequenced) HM561705 (not sequenced) HM568399 (not sequenced) HM593085 
     
Pipistrellus paterculus M1181 MHNG1926.045 Phôngsaly Province, Lao People's Democratic Republic HM561629 HM561606 HM561706 HM561661 HM568400 HM568360 HM593086 
        
Pipistrellus pipistrellus M1439 MHNG1956.031 Canton of Genève, Switzerland HM561630 HM561607 HM561707 HM561662 HM568401 HM568361 HM593087 
Pipistrellus pygmaeus IZEA3403 MHNG1806.032 Barcelona Province, Spain AF326105 GU328195 GU328273 GU328107 GU328349 HM568362 GU328491 
(analyzed previously as P. pipistrellus)           
        
Pipistrellus tenuis FMNH137021 FMNH137021 Sibuyan Island, Philippine AY495529 HM561608 HM561708 HM561663 HM568402 (not sequenced) HM593088 
 Islands       
Scotoecus hirundo FMNH151204 FMNH151204 Kilimanjaro Region, Tanzania AY495536 HM561609 HM561709 HM561664 HM568403 (not sequenced) HM593089 
        
Vespertilio murinus IZEA3599 MHNG1808.017 Canton of Valais, Switzerland AY395866 HM561620 HM561720 HM561676 HM568415 (not sequenced) HM593101 
        
      GenBank accession no.   
 Tissue collection no. Museum catalog no.      
Taxon Locality mtDNA APOB DMP1 RAG2 PRKC1 STAT5A THY 
Kerivoulinae          
Kerivoula hardwickii F44154 ROM110829 Đồ ng Nai Province, Vietnam AF345928 GU328143 AY141893 AY141034 GU328304 GU328378 GU328447 
Kerivoula lenis (analyzed previously as K. papillosa) F44175 ROM110850 Đồng Nai Province, Vietnam AF345927 GU328144 GU328229 AY141035 GU328305 GU328379 GU328448 
Kerivoula pellucida F35987 ROM102177 East Kalimantan Province, Indonesia AY495476 GU328145 GU328230 GU328064 GU328306 GU328380 GU328449 
Murininae           
Harpiocephalus harpia TK21258 CM88159 Uthai Thani Province, Thailand AF263235 GU328139 AY141892 AY141031 GU328300 GU328375 GU328443 
Murina cyclotis M1209 MHNG1826.033 Phôngsaly Province, Lao GU952767 GU328155 GU328238 GU328072 GU328313 GU328386 GU328456 
   People–s Democratic Republic        
Murina huttoni F42722 ROM107739 Đắk Lắk Province, Vietnam AY495490 GU328156 GU328239 GU328073 GU328314 GU328387 GU328457 
Murina tubinaris M1179 MHNG1926.034 Phôngsaly Province, Lao GU952768 GU328157 GU328240 GU328074 GU328315 GU328388 GU328458 
   People's Democratic Republic        
Myotinae           
Myotis albescens TK17932 CM77691 Marowijne District, Suriname AY495492 GU328159 GU328241 GU328076 GU328317 GU328390 GU328460 
Myotis bocagii FMNH150075 FMNH150075 Tanga Region, Tanzania AF326096 GU328160 GU328242 GU328077 GU328318 GU328391 GU328461 
Myotis cf. browni (analyzed previously as M. muricola) FMNH147067 FMNH147067 Mindanao Island, Philippine Islands AY495504 GU328169 GU328251 GU328086 GU328327 GU328400 GU328470 
Myotis californicus TK78797 TTU79325 Texas AY495495 GU328161 GU328243 GU328078 GU328319 GU328392 GU328462 
Myotis capaccinii TK25610 TTU40554 Northern Province, Jordan AY495494 GU328162 GU328244 GU328079 GU328320 GU328393 GU328463 
Myotis ciliolabrum TK83155 TTU78520 Texas AY495497 GU328163 GU328245 GU328080 GU328321 GU328394 GU328464 
Myotis dominicensis TK15613 TTU31503 St. Joseph Parish, Dominica AY495500 GU328164 GU328246 GU328081 GU328322 GU328395 GU328465 
Myotis fortidens TK43186 UAMI Michoacán, Mexico AY495502 GU328165 GU328247 GU328082 GU328323 GU328396 GU328466 
Myotis keaysi TK13532 — Yucatán, Mexico AY495503 GU328166 GU328248 GU328083 GU328324 GU328397 GU328467 
Myotis latirostris M606 MHNG Miao-Li County, Taiwan GU952769 GU328167 GU328249 GU328084 GU328325 GU328398 GU328468 
Myotis levis FMNH141600 FMNH141600 São Paulo, Brazil Australia AF326097 GU328168 GU328250 GU328085 GU328326 GU328399 GU328469 
Myotis moluccarum (analyzed previously as M. adversus) RLH62 TCWC AY495491 GU328158 (not sequenced) GU328075 GU328316 GU328389 GU328459 
Myotis myotis IZEA3790 MHNG1805.062 Canton of Bern, Switzerland AF326098 GU328170 GU328252 GU328087 GU328328 GU328401 GU328471 
Myotis nigricans FMNH129210 FMNH129210 Amazonas, Peru AF326099 GU328171 GU328253 GU328088 GU328329 GU328402 GU328472 
Myotis riparius AMNH268591 AMNH268591 Paracou, French Guiana AF263236 GU328172 GU328254 GU328089 GU328330 GU328403 GU328473 
Myotis septentrionalis DWS609 ISUV6454 Indiana AY495507 GU328173 GU328255 GU328090 GU328331 GU328404 GU328474 
Myotis thysanodes TTU79327 TK78796 Texas (not sequenced) (not sequenced) (not sequenced) GU328091 (not sequenced) (not sequenced) GU328475 
       
Myotis thysanodes TK78802 TTU79330 Texas AF326100 GU328174 GU328256 (not sequenced) GU328332 GU328405 (not sequenced) 
          
Myotis velifer TK79170 TTU78599 Texas AF263237 GU328175 GU328257 AY141033 GU328333 GU328406 GU328476 
Myotis volans TK78980 TTU79545 Texas AY495510 GU328176 GU328258 GU328092 GU328334 GU328407 GU328477 
Myotis welwitschii FMNH144313 FMNH144313 Kasese District, Uganda Oklahoma AY495511 GU328177 GU328259 GU328093 GU328335 GU328408 GU328478 
Myotis yumanensis TK28753 TTU43200 AY495512 GU328178 GU328260 GU328094 GU328336 GU328409 GU328479 
Vespertilioninae         
Antrozoini         
Antrozous pallidus NK506 MSB40576 California GU328037 GU328120 GU328209 GU328045 GU328285 GU328360 GU328428 
Antrozous pallidus NK39195 MSB Arizona GU328038 GU328121 GU328210 GU328046 GU328286 GU328361 GU328429 
Antrozous pallidus TK49646 TTU71101 Texas AF326088 GU328122 GU328211 GU328047 GU328287 GU328362 GU328430 
Baeodon alleni TK45023 UN AM Michoacán, Mexico AF326108 HM561577 HM561677 HM561632 HM568371 HM568338 HM593057 
Bauerus dubiaquercus F33200 ROM97719 Campeche, Mexico AY395863 GU328125 GU328214 GU328050 GU328289 GU328364 GU328432 
Rhogeessa aeneus TK20712 TTU40012 Belize District, Belize AY495530 HM561578 HM561678 HM561633 HM568372 HM568339 HM593058 
Rhogeessa mira TK45014 UN AM Michoacán, Mexico AY495531 HM561579 HM561679 HM561634 HM568373 HM568340 HM593059 
Rhogeessa parvula TK20653 TTU36633 Sonora, Mexico AF326109 GU328196 GU328274 GU328108 GU328350 GU328419 GU328492 
Rhogeessa tumida TK40186 TTU61231 Valle Department, Honduras AF326110 GU328197 GU328275 GU328109 GU328351 GU328420 GU328493 
Hypsugine group           
Chalinolobus gouldii RLH27 TCWC Australia AY495461 HM561610 HM561710 HM561665 HM568404 HM568363 HM593090 
Chalinolobus morio 05M3 TCWC Australia AY495462 GU328129 GU328218 GU328054 GU328292 GU328367 GU328435 
Hypsugo cadornae M1183 MHNG1926.050 Phôngsaly Province, Lao People's Democratic Republic GU328041 GU328140 GU328226 GU328061 GU328301 (not sequenced) GU328444 
Hypsugo eisentrauti F34348 ROM100532 Côte d'Ivoire AY495473 HM561611 HM561711 HM561666 HM568405 HM568364 HM593091 
Hypsugo savii IZEA3586 MHNG1804.100 Canton of Valais, Switzerland AY495475 HM561612 HM561712 HM561667 HM568406 (not sequenced) HM593092 
          
Laephotis namibensis SP4160 CM93187 Maltahöhe District, Namibia AY495477 HM561613 HM561713 HM561668 HM568407 HM568365 HM593093 
Neoromicia brunnea TK21501 CM90802 Estuaire Province, Gabon AY495514 HM561614 HM561714 HM561669 HM568408 HM568366 HM593094 
Neoromicia nana DM7542 DM7542 KwaZulu-Natal Province, South Africa AY495474 GU328141 GU328227 GU328062 GU328302 GU328376 GU328445 
Neoromicia rendalli TK33238 CM97977 Coastal Province, Kenya AY495515 HM561615 HM561715 HM561670 HM568409 HM568367 HM593095 
Neoromicia somalica TK33214 CM97978 Coastal Province, Kenya AY495516 HM561616 HM561716 HM561671 HM568410 HM568368 HM593096 
Nycticeinops schliejfeni TK33373 CM97998 Eastern Province, Kenya AF326101 GU328183 GU328261 GU328095 AJ866330 AJ865440 AJ865685 
Tylonycteris pachypus F38442 ROM106164 Tuyen Quang Province, Vietnam AY495538 HM561617 HM561717 HM561672 HM568411 (not sequenced) HM593097 
Tylonycteris robustula M1203 MHNG1926.059 Phôngsaly Province, Lao People's Democratic Republic HM561631 HM561618 HM561718 HM561673 HM568412 (not sequenced) HM593098 
Vespadelus regulus RLH30 TCWC Australia AY495539 HM561619 HM561719 HM561674 HM568413 HM568369 HM593099 
Vespadelus vulturnus RLH16 TCWC Australia AY495499 (not sequenced) (not sequenced) HM561675 HM568414 HM568370 HM593100 
         
Lasiurini           
Lasiurus atratus F39221 ROM107228 Potaro-Siparuni, Guyana AY495478 HM561580 HM561680 HM561635 HM568374 HM568341 HM593060 
Lasiurus blossevillii F38133 ROM104285 Chiriquí Province, Panama AY495479 HM561581 HM561681 HM561636 HM568375 HM568342 HM593061 
Lasiurus borealis TK49732 TTU71170 Texas AY495480 HM561582 HM561682 HM561637 HM568376 HM568343 HM593062 
Lasiurus cinereus TK78926 TTU Texas AY495482 HM561583 HM561683 HM561638 HM568377 HM568344 HM593063 
Lasiurus ega TK43132 UNAM Michoacán, Mexico AY495483 HM561584 HM561684 HM561639 HM568378 HM568345 HM593064 
Lasiurus intermedius TK20513 TTU36631 Oaxaca, Mexico (not sequenced) HM561585 (not sequenced) HM561640 HM568379 HM568346 HM593065 
        
Lasiurus intermedius TK84510 TTU80739 Texas HM561627 (not sequenced) HM561685 (not sequenced) (not sequenced) (not sequenced) (not sequenced) 
     
Lasiurus seminolus TK90686 TTU80699 Texas AY495484 HM561586 HM561686 HM561641 HM568380 HM568347 HM593066 
Lasiurus xanthinus TK78704 TTU78296 Texas AY495485 HM561587 HM561687 HM561642 HM568381 HM568348 HM593067 
Nycticeiini           
Arielulus aureocollaris F38447 ROM106169 Tuyen Quang Province, Vietnam HM561621 HM561588 HM561688 HM561643 HM568382 HM568349 HM593068 
Eptesicus brasiliensis TK17809 CM76812 Nickerie District, Suriname AY495464 HM561589 HM561689 HM561644 HM568383 HM568350 HM593069 
Eptesicus diminutus TK15033 TTU48154 Guarico, Venezuela AY495465 GU328133 GU328220 GU328056 GU328295 GU328370 GU328438 
Eptesicus furinalis AMNH268583 AMNH268583 Paracou, French Guiana AF263234 GU328135 GU328222 AY141030 GU328297 GU328372 GU328440 
Eptesicus fuscus SP844 CM102826 West Virginia AF326092 GU328136 GU328223 GU328058 GU328298 GU328373 GU328441 
Eptesicus hottentotus TK33013 CM89000 Rift Valley Province, Kenya AY495466 GU328137 GU328224 GU328059 AJ866329 AJ865438 AJ865683 
Eptesicus macrotus OCGR2301 CML3230 Neuquán Province, Argentina HM561622 HM561590 HM561690 HM561645 HM568384 HM568351 HM593070 
Eptesicus macrotus FMNH129207 FMNH129207 Ancash Region, Peru AY495472 HM561591 HM561691 HM561646 HM568385 HM568352 HM593071 
Eptesicus macrotus OCGR4227 OMNH27925 Salta Province, Argentina HM561623 HM561592 HM561692 HM561647 HM568386 HM568353 HM593072 
Eptesicus macrotus OCGR3806 OMNH32879 Catamarca Province, Argentina HM561624 HM561593 HM561693 HM561648 HM568387 HM568354 HM593073 
Eptesicus magellanicus OCGR2303 OMNH23500 Neuquán Province, Argentina HM561625 HM561594 HM561694 HM561649 HM568388 (not se quenced) HM593074 
         
Eptesicus serotinus M816 MHNG1807.065 Greece HM561626 HM561595 HM561695 HM561650 HM568389 HM568355 HM593075 
Eptesicus serotinus TK40897 TTU70947 Sidi Bou Zid Governorate, Tunisia AY495467 HM561596 HM561696 HM561651 HM568390 HM568356 HM593076 
         
Glauconycteris argentata FMNH15119 FMNH15119 Kilimanjaro Region, Tanzania AY495468 HM561597 HM561697 HM561652 HM568391 HM568357 HM593077 
Glauconycteris beatrix FMNH149417 FMNH149417 Haute Zaire, Zaire AY495469 HM561598 HM561698 HM561653 HM568392 (not sequenced) HM593078 
         
Glauconycteris egeria AMNH268381 AMNH268381 Central African Republic AY495470 HM561599 HM561699 HM561654 HM568393 (not sequenced) HM593079 
         
Glauconycteris variegata TK33545 CM97983 Western Province, Kenya AY495471 HM561600 HM561700 HM561655 HM568394 HM568358 HM593080 
Lasionycteris noctivagans TK24216 TTU56255 Texas AF326095 GU328146 (not sequenced) GU328065 (not GU328381 (not sequenced) 
      sequenced)  
Lasionycteris noctivagans — TK24889 Oklahoma (not sequenced) (not sequenced) GU328231 (not sequenced) GU328307 (not sequenced) GU328450 
      
Nycticeius humeralis TK26380 TTU49536 Texas AF326102 (not sequenced) (not sequenced) GU328096 (not sequenced) (not sequenced) (not sequenced) 
     
Nycticeius humeralis TK90649 TTU80664 Texas (not sequenced) GU328184 GU328262 (not sequenced) GU328338 GU328411 GU328481 
        
Scotomanes ornatus F42568 ROM107594 Tuyen Quang Province, Vietnam AY495537 HM561601 HM561701 HM561656 HM568395 HM568359 HM593081 
         
Scotophilini           
Scotophilus borbonicus TK33267 CM98041 Coastal Province, Kenya AY495532 GU328199 GU328276 GU328110 GU328352 GU328421 GU328494 
Scotophilus dinganii FMNH147235 FMNH147235 Tanga Region, Tanzania AY495533 GU328200 GU328277 GU328111 AJ866332 AJ865441 AJ865686 
Scotophilus heathii F42769 ROM107786 Đắk Lắic Province, Vietnam AY495534 GU328201 GU328278 GU328112 GU328353 GU328422 GU328495 
Scotophilus kuhlii FMNH145684 FMNH145684 Sibuyan Island, Philippine Islands AF326111 GU328202 GU328279 GU328113 GU328354 GU328423 GU328496 
         
Scotophilus leucogaster TK33359 CM90854 Eastern Province, Kenya AY395867 GU328203 GU328280 GU328114 GU328355 GU328424 GU328497 
Scotophilus nux TK33484 — Western Province, Kenya AY495535 GU328204 GU328281 GU328115 GU328356 GU328425 GU328498 
Scotophilus viridis FMNH150084 FMNH150084 Tanga Region, Tanzania AF326112 GU328206 GU328283 GU328117 GU328357 GU328426 GU328499 
Perimyotine group           
Parastrellus hesperus TK78703 TTU79269 Texas AY495522 GU328187 GU328265 GU328099 GU328341 GU328413 GU328483 
Perimyotis subflavus TK90671 TTU80684 Texas AY495523 GU328191 GU328269 GU328103 GU328345 GU328416 GU328487 
Plecotini           
Barbastella barbastellus IZEA3590 MHNG1804.094 Canton of Valais, Switzerland AF326089 GU328124 GU328213 GU328049 GU328288 GU328363 GU328431 
Corynorhinus mexicanus TK45849 UAMI Michoacán, Mexico AF326090 GU328128 GU328217 GU328053 GU328291 GU328366 GU328434 
Corynorhinus rafinesquii TK5959 TTU45380 Arkansas AF326091 GU328130 GU328219 GU328055 GU328293 GU328368 GU328436 
Corynorhinus townsendii OKI 1530 OSU13099 Oklahoma (not sequenced) GU328131 (not sequenced) (not sequenced) GU328294 GU328369 GU328437 
       
Corynorhinus townsendii TK83182 TTU78531 Texas AF263238 (not sequenced) AY141891 AY141029 (not sequenced) (not sequenced) (not sequenced) 
      
Euderma maculatum NK36260 MSB 121373 Utah AF326093 GU328138 GU328225 GU328060 GU328299 GU328374 GU328442 
Idionycteris phyllotis ACU736 ACU736 — (not sequenced) GU328142 GU328228 (not sequenced) GU328303 GU328377 (not sequenced) 
       
Idionycteris phyllotis NK36122 MSB120921 Utah AF326094 (not sequenced) (not sequenced) GU328063 (not sequenced) (not sequenced) GU328446 
      
Otonycteris hemprichii SP7882 — Maan Government, Jordan AF326103 GU328186 GU328264 GU328098 GU328340 GU328412 GU328482 
Plecotus auritus IZEA2693 — — (not sequenced) (not sequenced) GU328266 (not sequenced) GU328342 GU328414 (not sequenced) 
      
Plecotus auritus IZEA2694 MHNG1806.047 Canton of Valais, Switzerland AF326106 GU328188 (not sequenced) GU328100 (not sequenced) (not sequenced) GU328484 
       
Plecotus austriacus IZEA3722 MHNG1806.042 Canton of Valais, Switzerland AF326107 GU328189 GU328267 GU328101 GU328343 GU328415 GU328485 
Plecotus gaisleri IZEA4780 MHNG1806.051 Meknés-tafilalet, Morocco GU328043 GU328192 GU328270 GU328104 GU328346 GU328417 GU328488 
Vespertilionini           
Nyctalus leisleri FMNH140374 FMNH140374 Malakand Division, Pakistan AY495517 HM561602 HM561702 HM561657 HM568396 (not sequenced) HM593082 
         
Nyctalus noctula NHMB 209/87 NHMB 209/87 Canton of Berne, Switzerland AY495518 HM561603 HM561703 HM561658 HM568397 (not sequenced) HM593083 
         
Pipistrellus coromandra FMNH140377 FMNH140377 Malakand Division, Pakistan AY495524 GU328190 GU328268 GU328102 GU328344 (not sequenced) GU328486 
         
Pipistrellus hesperidus DM8013 DM8013 KwaZulu-Natal, South Africa HM561628 HM561604 HM561704 HM561659 HM568398 (not sequenced) HM593084 
         
Pipistrellus javanicus FMMNH147069 FMMNH147069 Mindanao Island, Philippines AY495525 GU328193 GU328271 GU328105 GU328347 (not sequenced) GU328489 
         
Pipistrellus nathusii IZEA2830 MHNG1806.003 Canton of Vaud, Switzerland AF326104 HM561605 (not sequenced) HM561660 (not sequenced) (not sequenced) (not sequenced) 
      
Pipistrellus nathusii IZEA3406 MHNG1806.001 Canton of Vaud, Switzerland (not sequenced) (not sequenced) HM561705 (not sequenced) HM568399 (not sequenced) HM593085 
     
Pipistrellus paterculus M1181 MHNG1926.045 Phôngsaly Province, Lao People's Democratic Republic HM561629 HM561606 HM561706 HM561661 HM568400 HM568360 HM593086 
        
Pipistrellus pipistrellus M1439 MHNG1956.031 Canton of Genève, Switzerland HM561630 HM561607 HM561707 HM561662 HM568401 HM568361 HM593087 
Pipistrellus pygmaeus IZEA3403 MHNG1806.032 Barcelona Province, Spain AF326105 GU328195 GU328273 GU328107 GU328349 HM568362 GU328491 
(analyzed previously as P. pipistrellus)           
        
Pipistrellus tenuis FMNH137021 FMNH137021 Sibuyan Island, Philippine AY495529 HM561608 HM561708 HM561663 HM568402 (not sequenced) HM593088 
 Islands       
Scotoecus hirundo FMNH151204 FMNH151204 Kilimanjaro Region, Tanzania AY495536 HM561609 HM561709 HM561664 HM568403 (not sequenced) HM593089 
        
Vespertilio murinus IZEA3599 MHNG1808.017 Canton of Valais, Switzerland AY395866 HM561620 HM561720 HM561676 HM568415 (not sequenced) HM593101 
        

Author notes

Associate Editor was David L. Reed.