Abstract

While gestational diabetes mellitus (GDM) poses great threat to the health of mothers and children, there is no standard early prediction model for this disease yet. This study developed and evaluated a nomogram for predicting GDM in early pregnancy. Overall, 1824 pregnant women were randomly divided into the training and internal validation sets in the ratio of 7:3, with additional 1604 pregnant women for external validation. Multivariate logistic regression analysis was used to develop a prediction model for GDM, and a nomogram was utilized for model visualization. Risk factors in the prediction model involved age, pre-pregnancy body mass index, reproductive history, family history of diabetes, creatinine level, triglyceride level, low-density lipoprotein level, neutrophil count, and monocyte count. Model performance was evaluated using receiver operating characteristic (ROC) curves, calibration curves, and decision clinical analysis (DCA). The area under ROC curve (AUC) value of the model was 0.804 for the training set, and similar AUC values were obtained for the internal (0.800) and external (0.829) validation sets, verifying the stability of the model. The calibration curves showed that the probabilities of GDM predicted by the nomogram highly correlated with the observed frequency values. The DCA curves indicated that the prediction model is clinically useful, thus potentially aiding early pregnancy management in women.

Information Accepted manuscripts
Accepted manuscripts are PDF versions of the author’s final manuscript, as accepted for publication by the journal but prior to copyediting or typesetting. They can be cited using the author(s), article title, journal title, year of online publication, and DOI. They will be replaced by the final typeset articles, which may therefore contain changes. The DOI will remain the same throughout.
This content is only available as a PDF.

Author notes

These authors contributed equally to this work.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.