Abstract

Cell migration requires the generation of branched actin networks and recruitment of vesicular membrane that power the protrusion of the plasma membrane in lamellipodia. However, the molecular mechanisms underlying dynamic recruitment of vesicular membrane during cell migration remain elusive. Here, we report a critical mechanism underlying EGF-elicited Akt signaling-steered cell migration. Using functional proteomics screen, we identified a novel ARF6–ACAP4 signaling regulator, Acapin, which inhibits the GAP activity of ACAP4 to activate ARF6 GTPase in vitro. In cells, EGF stimulation elicits Akt signaling, which recruits Acapin to the lamellipodium membrane via phosphorylation of Acapin at its Ser247 residue and enhances the binding of Acapin to ACAP4 to elevate the ARF6-GTP level. Therefore, Acapin is required for efficiently stimulating cell migration by EGF–Akt signaling. Together, our results demonstrate the role of Acapin in relaying the Akt signaling cascade during cell migration processes.

Information Accepted manuscripts
Accepted manuscripts are PDF versions of the author’s final manuscript, as accepted for publication by the journal but prior to copyediting or typesetting. They can be cited using the author(s), article title, journal title, year of online publication, and DOI. They will be replaced by the final typeset articles, which may therefore contain changes. The DOI will remain the same throughout.
This content is only available as a PDF.

Author notes

These authors contributed equally to this work.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Supplementary data