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Network or edge biomarkers are a reliable form to characterize phenotypes or diseases. However, obtaining edges orcorrelations between

molecules for an individual requires measurement of multiple samples of that individual, which are generally unavailable in clinical prac-

tice. Thus, it is strongly demanded to diagnose a disease by edge or network biomarkers in one-sample-for-one-individual context. Here,

we developed a new computational framework, EdgeBiomarker, to integrate edge and node biomarkers to diagnose phenotype of each

single test sample. By applying the method to datasets of lung and breast cancer, it reveals new marker genes/gene-pairs and related

sub-networks for distinguishing earlier and advanced cancer stages. Our method shows advantages over traditional methods: (i) edge

biomarkers extracted from non-differentially expressed genes achieve better cross-validation accuracy of diagnosis than molecule or

node biomarkers from differentially expressed genes, suggesting that certain pathogenic information is only present at the level of

network and under-estimated by traditional methods; (ii) edge biomarkers categorize patients into low/high survival rate in a more re-

liable manner; (iii) edge biomarkers are significantly enriched in relevant biological functions or pathways, implying that the association

changes in a network, rather than expression changes in individual molecules, tend to be causally related to cancer development. The new

framework of edge biomarkers paves the way for diagnosing diseases and analyzing their molecular mechanisms by edges or networks in

one-sample-for-one-individual basis. This also provides a powerful tool for precision medicine or big-data medicine.

Keywords: edge biomarker, edge feature, progressive stages, disease diagnosis, big biological data

Introduction

A complex disease is generally a problem resulted from the

failure of the relevant system, which should be investigated in a

dynamic and network manner (Auffray et al., 2010; Hood and

Friend, 2011; Hood and Flores, 2012). Therefore, compared with

single molecules, networks or edges among molecules are consid-

ered to be a more stable and reliable form for characterizing

complex diseases or phenotypes as biomarkers. From the systems

viewpoint, a group of individual molecules is only a set of irrelevant

nodes, but a group of edges represents a system or network. In a

biological system, it is the interactions (regulations) or edges

between molecules rather than individual molecules that facilitate

a biological function or signal transduction involved in diseases

(Zeng et al., 2014). Thus, the signatures of a network with inter-

active biological elements, e.g. network biomarkers or edge bio-

markers, are essential to achieve the predictive and personalized

medicine. Generally, an edge in a molecular network is represented

by its correlation coefficient, e.g. Pearson correlation coefficient

(PCC) between a pair of molecules, which can be numerically esti-

mated provided that there are multiple samples. Recently, due to

rapid advance on high throughput technologies, network-based

biomarker discovery by exploiting omics data has become a hot

topic in the study of complex diseases or personalized medicine

(Hood and Friend, 2011).

An important evidence of edge or interaction signatures is the

finding of ‘edgetics’ diseases. The notion of ‘edgotype’ has gener-

ally linked the genotype to phenotype (Sahni et al., 2013).

Meanwhile, the study of ‘edgetics’ also revealed the malfunctions

of interactions (Chen et al., 2009; Sahni et al., 2013) as the key mo-

lecular mechanisms relevant to complex diseases, in which the

genes work interactively in a network/system manner. One

example is that traditional biomarker discovery mainly focuses

on differentially expressed genes (DGs), leaving large amount of

non-differentially expressed genes (NDGs) unexamined (Mor

et al., 2005; Listgarten et al., 2007). However, a considerable

amount of evidence has shown that the ‘edgotype’ (or edgetics)

of NDGs can play key roles in altering the states of biological

systems, e.g. from normal to disease (Lai et al., 2004; Sun et al.,
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2013; Wang et al., 2013; Zeng et al., 2013; Yu et al., 2014). Different

from DGs, an interacting gene-pair from NDGs can exhibit positive

or negative correlation in different conditions, even though the

involved genes are not differentially expressed. Such changes of

genes’ correlations result in the different states of a biological

system (e.g. normal or diseased). Several methods have been

developed to identify the signatures of NDGs (Lai et al., 2004; He

et al., 2012; Liu et al., 2012b; Sun et al., 2013) and achieved

certain success in revealing potential mechanisms altering the bio-

logical states.

Although traditional network-based methods can identify differ-

ential edges (DEs) or networks by comparing multiple known

control and case samples, those edge biomarkers cannot be

applied to diagnose an unknown sample, because the respective

edges or PCCs cannot be obtained from a single sample, which,

however, represents the majority of clinic cases for each individual.

In other words, computing correlations or edges requires multiple

samples, but generally only one sample is available when diagnos-

ing an individual in clinic practice. Usually, a gene group or set with

certain criterion, e.g. dense connections of protein–protein inter-

actions, is derived from DEs in network-based methods, but DGs

of the gene group instead of DEs are used for diagnosis and prog-

nosis. Thus, network-based biomarkers are not network biomar-

kers but essentially molecular biomarkers (Zeng et al., 2014),

because the edge or network information is not exploited to diag-

nose an unknown sample. Figure 1 schematically shows the proce-

dures of discovery and application of traditional molecular or node

biomarkers (based on DGs) and traditional network-based biomar-

kers (based on DEs).

To overcome the difficulty in obtaining correlations or edges

from one sample, an EdgeMarker approach (Zhang et al., 2014)

was developed by decomposing each PCC into multiple elements

that form a new vector embedding correlation-like information for

one sample. Provided that average values and standard deviations

for gene expressions of DEs between control and case samples are

similar, the obtained edges can serve as biomarkers to distinguish

the states of the sample. Thus, it is efficient to identify edge bio-

markers mainly from NDGs. In this study, we further extend the

work for edge biomarker discovery by considering the whole

gene set including both DGs and NDGs. Our new method,

EdgeBiomarker, identifies both edge and node biomarkers from

omics data, which can directly diagnose the state of a disease

even for a single sample. To illustrate the effectiveness, we

employ the edge biomarkers to distinguish earlier and advanced

stages of complex diseases, e.g. progressive development of

cancer. Specifically, we briefly summarize various models of bio-

markers, describe the theoretical framework of EdgeBiomarker to

extract signatures of network information and to diagnose each in-

dividual test sample, and study the states of lung and breast

cancers as well as their metastasis risk by EdgeBiomarker. Both

theoretical results and computational experiments demonstrate

that edge biomarkers not only accurately distinguish phenotypes

of each single sample but also provide new insights into the patho-

genesis of complex diseases.

Various models of biomarkers

Biomarker discovery generally includes two steps: firstly in

the learning step, effective marker molecules are identified to

Figure 1 The procedures of discovery and application of traditional node biomarkers and traditional network-based biomarkers. (A) Traditional

molecular or node biomarkers are obtained from differential genes (DGs) or nodes by machine learning techniques so as to accurately classify

multiple case and control samples with known phenotypes. By the obtained node biomarkers, a new sample with an unknown phenotype can

be classified into either case or control group. (B) On the other hand, from multiple control and case samples, we can obtain their respective net-

works and further differential edges (DEs). But traditional network-based approaches only use genes corresponding to DEs to diagnose or classify

a new single sample (unknown phenotype) without considering network information in the new sample, because edges or correlations among

molecules in a single sample cannot be calculated by the traditional methods. Thus, traditional network-based biomarkers are essentially

node biomarkers.
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discriminate different phenotypes (e.g. normal and disease groups

of samples) by machine learning or optimization techniques; sec-

ondly in the predicting step, the phenotype of a test sample is eval-

uated by the marker molecules (Figure 1). According to the type of

network information in such steps, biomarkers can be mainly clas-

sified as (Zeng et al., 2014) traditional node biomarkers (or molecu-

lar biomarkers), traditional network-based biomarkers, newly

developed edge biomarkers (or network biomarkers), and dynam-

ical network biomarkers (DNBs). Their main features are summar-

ized as follows.

(A) Node biomarkers focus on differential expression levels of a

number of individual molecules rather than differential ex-

pression associations/correlations among multiple mole-

cules (Zeng et al., 2014) (Figure 1A).

(B) Although some network-based biomarkers and network-

weighted biomarkers use network or correlation information

to identify sub-networks or edges in the learning step, only

molecules (or molecule set) related to those edges or sub-

networks, without the edge or network information of the

test sample, are used to diagnose the phenotype of a test

sample in the predicting step (Zeng et al., 2014) (Figure 1B).

Thus, essentially they are still node biomarkers.

(C) Recently, an approach, EdgeMarker, was developed to identify

the differentially correlated gene pairs (DCPs) based on a new

vector representation of an edge (Zhang et al., 2014). With

the new edge representation, i.e. a correlation-like vector for

each edge, this single-sample-based approach can make full

use of edge information on an individual test sample. Both the-

oretical and computational experiments have shown that the

edge biomarkers can distinguish the phenotype of a test

sample in an accurate manner even though their genes may

not have differential expressions. These NDGs ignored by con-

ventional methods can be as informative as DGs for distinguish-

ing different biological conditions or phenotypes (Zhang et al.,

2014). However, EdgeMarker is not efficient for DGs due to its

vector form representing correlations of gene pairs.

(D) By exploring dynamical information of data, the model for DNB

was proposed to detect pre-disease state (or critical state)

rather than disease state (Chen et al., 2012b). The pre-disease

state is the limit of the normal state, or a normal state of an in-

dividual just before his/her critical transition to the disease

state. Traditional biomarkers try to distinguish whether a

sample is in a disease state or not, but they generally

cannot diagnose the pre-disease state lacking significant dif-

ference between the normal and disease states, e.g. no signifi-

cant differential expressions of molecules. DNB can be

identified by satisfying the following conditions (Chen et al.,

2012b; Liu et al., 2012a) when a biological system is

approaching the pre-disease state: (i) the variance of the

DNB molecules drastically increases; (ii) the correlation

(PCC) between any two DNB molecules increases; (iii) the cor-

relation (PCC) between any molecule in the DNB and another

in the non-DNB decreases. Actually, DNB is a model-free

approach for biomarker identification based on the observed

big data. Furthermore, Yu et al. (2014) proposed edge-

network to exploit higher-order statistics information among

molecules inspired from DNB. On the other hand, Liu et al.

(2014) further developed the DNB-S scoring method, as

a single-sample-based approach, to indicate the pre-disease

state on a single sample (given that there are a group

of normal/control samples). However, DNB approach is

designed to identify the pre-disease state rather than the

disease state.

In this work, we aim to develop a new framework of edge biomar-

kers for distinguishing disease samples by further extending

EdgeMarker to both DGs and NDGs.

EdgeBiomarker identifies both edge and node biomarkers

to predict the phenotype of each single-sample individual

Given a number of control samples (m samples) and case

samples (n samples), gene expression data with k genes can be

represented as the data matrix shown in Figure 2A, where there

are k genes, and the sample sizes of control and case groups

are m and n, respectively, i.e. the dimensions of the matrix for

node data are k × (m + n). Let xi[Rm and yi[Rn denote the ex-

pression vectors of the ith gene for control and case, respectively,

i.e. xij is the expression of the ith gene for the jth sample in control

group, while yij is the expression of the ith gene for the jth sample in

case group. x̄u, x̄v, ȳu, ȳv are the average expressions of genes u

and v from control and case groups; Sxu, Sxv, Syu, Syv are the stand-

ard expression deviations of genes u and v from control and case

groups; k1 =
������������
(m − 1)/m

√
and k2 =

�����������
(n − 1)/n

√
are two adjusting

factors. For each gene-pair ku, vl, two coupled edge features

ku, vlN and ku, vlD are constructed as in Figure 2B. Thus, the

matrix for edge data in Figure 2B is constructed with the dimensions

of 2k2 × (m + n). The average of each row vector in the gray box

in Figure 2B is the PCC between genes u and v from control or

case group, respectively. On the other hand, the average of the

row vector in the gray box in Figure 2A is the average expression

of gene u from control and case group, respectively.

Many traditional methods for detecting node biomarkers based

on the matrix of Figure 2A are to select genes whose differential

average expressions between control and case are significantly

high, whereas the remaining NDGs are deleted from the matrix.

Any test sample as a new column vector (Figure 2C) can be diag-

nosed based on the selected node biomarkers. To detect edge bio-

markers from the matrix of Figure 2B, a similar scheme is to select

edges whose differential correlations are significantly high, whereas

the remaining non-differential edges are removed. Then, any test

sample as a new column vector (Figure 2C) can be diagnosed by

the selected edge biomarkers. As a novel approach to identify

edge biomarkers for individual test samples, EdgeBiomarker com-

bines the above traditional biomarker discovery procedure with the

EdgeMarker approach (Zhang et al., 2014). The details are demon-

strated in Figure 3. Given gene expression profiles under binary con-

ditions (Figure 3A1), the DGs are selected (Figure 3A2), and the

biomarkers are extracted from these DGs by any optimization algo-

rithm, e.g. sequential forward floating selection (SFFS; Pudil et al.,
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1994) method(Figure 3A3). For those NDGs, we extracted theDCPsor

DEs (Figure 3B1), where each DCP is defined as interactive two genes

whose expression correlation has a significant change from one

condition to another. Such DCPs are selected in the criterion of

{ki, jl||rN
ij − rD

ij | . d}, where rN
ij and rD

ij are the PCCs of two genes

i and j in condition N (normal) and D (disease), and the threshold d

was empirically set. Based on the formula (2) as introduced below,

the node data (i.e. expression values) of the selected gene pairs

were then transformed into edge data, where gene–gene pairs

instead of individual genes are features (Figure 3B2). Note that the

matrix of edge data has m + n columns as same as the matrix of

node data, but has at most k2 rows in contrast to at most k rows in

the matrix of node data (Figure 2A and B). Subsequently, the edge

biomarkers are selected by applying any optimization algorithm,

e.g. SFFS algorithm (Pudil et al., 1994), to the edge data

(Figure 3B3). The data for node biomarkers and the data for edge bio-

markers were combined into one matrix and the SFFS algorithm was

used again to obtain the optimal combined biomarkers, i.e. node bio-

markers and edge biomarkers (Figure 3A4). To classify/predict a

single test sample with unknown class label (Figure 3A5), the data

of the combined biomarkers for this sample are used by formula

(2) (Figure 3A6) and based on the trained classification model for

phenotype prediction (e.g. disease or not). The detailed procedures

of EdgeBiomarker are listed as follows (Figure 3). Note that we mainly

state the procedure for detecting edges, and how to detect the nodes

can be conducted in a similar way or refer to Figures 1A and 3A1–A3.

(i) Pre-processing the datasets. Genes with low expression

level or with high coefficient of variance are likely to be

affected by noise, and thus it is necessary to remove these

genes. In practice, the genes are sorted by expression level

or coefficient of variance from large value to small value,

and removed when the average expression levels are in

bottom 10% or the coefficients of variances are in top 10%

among all genes.

(ii) Selectingdifferentially correlatedgenepairs. InEdgeBiomarker,

PCC is used to characterize the correlation between two genes

(Figure 3B1). The DCPs or DEs are defined as follows:

{ki, jl||rN
ij − rD

ij | . d}, (1)

where i and j denote genes that are under the study. rN
ij and rD

ij

are PCCs between gene i and gene j under normal (or control)

and disease (or case) conditions, respectively. The threshold

d is set as 0.6 empirically in lung cancer dataset (�420

samples) and 0.45 in breast cancer dataset (�750 samples),

although more sophisticated method can be applied to

Figure 2 Data matrices for node features and edge features. (A) The data matrix for finding node biomarkers, which aims to identify effective DGs,

whose differential expressions between control and case, in terms of average value, are large. Each column is one sample. Average value of each

row represents the average expression of a gene for either control or case. (B) The data matrix for finding edge biomarkers, which aims to identify

effective DEs or correlations mainly from NDGs. Each column is one sample. Average value of each row represents the PCC of a gene-pair or edge for

either control or case. The combined matrix of node biomarkers (A) and edge biomarkers (B) is the data matrix of EdgeBiomarkers, which aims to

identify effective DGs (node biomarkers) and DEs (edge biomarkers) from the information of both DGs and NDGs. (C) The column vector represents

the test sample for diagnosis by node biomarkers and edge biomarkers.
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determine the threshold. Note that the DCPs can be selected

from all genes including DGs or NDGs. But the number of DGs

is usually much smaller than that of NDGs, and the information

of DGs is also used in finding node biomarkers. Thus, in the nu-

merical computationof this study, weselectededge biomarkers

from NDGs.

(iii) Transforming node data into edge data. From the viewpoint of

network, gene expression profiles characterize the node

feature, while the expression correlations represent the

edge feature. Inspired bythe Pearson’s correlationcoefficient,

we designed the following matrix transformation from node

data (e.g. genes u and v) to edge data (e.g. gene-pair u and v),

Figure 3 The procedure of EdgeBiomarker. Given gene expression profiles under binary conditions (A1), DGs (A2) and differentially correlated gene

pairs (DCPs) (B1) are selected. Here, gene expressions are presented in green-red color map, where green/red represents low/high expression

level. The red/green edges represent up-regulated/down-regulated correlations. The node data (i.e. expression values) of the selected gene

pairs were then transformed into edge data where features are the gene–gene pairs (B2). The edge data are presented in light blue-purple

color map, where blue/purple represents low/high value. Subsequently, the node biomarkers (A3) and edge biomarkers (B3) were selected

from DGs and DCPs, respectively, by using sequential forward floating selection (SFFS) algorithm. The SFFS algorithm is used again to get the

optimal combined biomarkers from node + edge biomarkers (A4). To classify the single test sample with unknown class label (A5), the data of

the combined biomarkers for this sample are computed and input to the trained classification model for its phenotype prediction (A6).
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where x̄u, x̄v and ȳu, ȳv are the average expressions of genes

u and v from control group and case group, respectively; Sxu,

Sxv and Syu, Syv are the standard expression deviations of

genes u and v from control group and case group, respective-

ly; k1 =
������������
(m − 1)/m

√
and k2 =

�����������
(n − 1)/n

√
are two adjusting

factors. For each gene-pair ku, vl, two coupled edge features

ku, vlN and ku, vlD are constructed for control (normal)

group and case (disease) group. It can be seen that the

average values of each row vector of

xu1 − x̄u

k1 · Sxu

xv1 − x̄v

k1 · Sxv
, ...,

xum − x̄u

k1 · Sxu

xvm − x̄v

k1 · Sxv

( )
, (3)

and

yu1 − ȳu

k2 · Syu

yv1 − ȳv

k2 · Syv
, ...,

yun − ȳu

k2 · Syu

yvn − ȳv

k2 · Syv

( )
, (4)

are the Pearson’s correlation coefficients between genes u

and v under normal condition (formula (3)) and disease condi-

tion (formula (4)), respectively (see Figure 2).

(iv) Filtering discriminative edge features as candidates of

edge biomarkers. For edge data of DCPs, the number of

edge features is usually very large. Therefore it is necessary

to filter a subset of features as biomarker candidates that are

discriminative between two conditions. In this work, we

select the features of which the P-values or adjusted

P-values of Student’s t-test between two conditions are

,0.05. The representation of edge features is shown in

formula (2).

(v) Selecting discriminative node features as candidates of

node biomarkers. By standard t-test (P-value , 0.05) for

case and control samples, we select the DGs as the node

features or as the candidates of node biomarkers in

EdgeBiomarker. The representation of node features is

shown in formula (2).

(vi) Selecting union biomarkers from the combined node and

edge features. After selecting the candidates of node and

edge features from (v) and (iv), the corresponding matrices

were combined into the matrix defined as formula (5).

N
o

d
e

fe
a

tu
re

s
E

d
g

e
fe

a
tu

re
s

Normal samples Disease samples

N1 . . . Nm D1 . . . Dn

..

. ..
. ..

. ..
.

xi1 . . . xim yi1 . . . yin

..

. ..
. ..

. ..
.

..

. ..
. ..

. ..
.

xu1 − x̄u

k1 · Sxu
· xv1 − x̄v

k1 · Sxv
. . .

xum − x̄u

k1 · Sxu
· xvm − x̄v

k1 · Sxv

yu1 − x̄u

k1 · Sxu
· yv1 − x̄v

k1 · Sxv
. . .

yun − x̄u

k1 · Sxu
· yvn − x̄v

k1 · Sxv

..

. ..
. ..

. ..
.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(5)

Any feature selection method can be applied on this

matrix (5) to select the union biomarkers. In this work,

the sequential forward floating selection algorithm (Pudil

et al., 1994) is used. Here, we use the cross-validation ac-

curacy of linear-SVM to characterize the goodness of a

subset of features. This algorithm returns the optimal

feature subsets with different sizes and the corresponding

cross-validation accuracies. Based on the accuracy curve,

the tradeoff for maximizing the accuracy and minimizing

the feature number is made to select the final node, edge,

or combined biomarkers.

(vii) Predicting phenotypes by union biomarkers for an individual

test sample. After the combined biomarkers being selected,

the classifier is built. The diagnosis or classification of each

single sample can be conducted by transforming its expres-

sion values of genes of the biomarkers into the corresponding

data form (node data + edge data) (Figure 3A6). The edge

data as well as the node data are subsequently input to the

classifier for predicting the classification of the test sample.

With the procedure above, we can diagnose a new test sample by

the obtained node and edge biomarkers. Note that, for the trad-

itional method, it is efficient to identify node biomarkers by exploit-

ing DGs from the node matrix of Figure 2A, whereas for EdgeMarker,

it is effective to identify edge biomarkers by exploiting NDGs from

the edge matrix of Figure 2B. Thus, it is complementary to combine

the two matrices of Figure 2A and B for biomarker discovery (includ-

ing both node biomarkers and edge biomarkers) in EdgeBiomarker.

Note that we can also use all gene pairs (including DG–DG, DG–

NDG, and NDG–NDG pairs) as the candidates of edge biomarkers,

instead of the gene pairs of NDGs in Figure 2.

Case study on metastasis risk of lung adenocarcinoma

by EdgeBiomarker

For case studies, we investigated lung adenocarcinoma, which is

one of the major histological subtypes of non-small-cell lung cancer

(NSCLC) and is the most common type in patients of non-smokers

(Herbst et al., 2008). Although being widely studied, the diagnosis

and treatment of lung adenocarcinoma are still big challenges,
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since the cancer pathogenesis and progressive mechanism is not

completely clear. In this study, we divided the clinical stages of

lung adenocarcinoma into two periods: earlier stage (including

clinical stages IA, IB, IIA, IIB) and advanced stage (including clinical

stages IIIA, IIIB, IV), where the patients in advanced stage have

higher metastasis risks.

Lung adenocarcinoma datasets from TCGA and GEO databases

In this work, we collected the public RNA-seq data from the

Cancer Genome Atlas database (http://cancergenome.nih.gov/).

We also downloaded the microarray data from the Gene

Expression Omnibus database (GSE13213; Tomida et al., 2009),

which has many samples with matched clinical information, for in-

dependent validation. The clinical information for both datasets is

available as survival time, stage, grade, sex, etc. Table 1 gives a

brief summary of the two datasets. After data processing, there

are in total 421 + 3 samples in TCGA dataset, where the additional

three samples are known in stage I but without further information

for ‘IA’ or ‘IB’.

Edge biomarkers distinguish earlier and advanced lung

adenocarcinoma with a higher accuracy than node biomarkers

EdgeBiomarker was applied to NDGs of TCGA lung cancer

dataset (which are all ignored or deleted by traditional methods),

and obtained marker sets with optimal cross-validation accuracies.

By the traditional method, node biomarkers are selected from DGs.

Figure 4A shows the optimized accuracies achieved with different

numbers of edge features (i.e. gene pairs, labeled in red) or node

features (i.e. individual genes, labeled in blue). Obviously, the

edge features (gene pairs) discriminate between earlier and

advanced stages of lung cancer in a better performance than the

node features (individual genes). Based on the accuracy curves,

the tradeoff between maximizing accuracy and minimizing feature

number is further tuned, and a few features are finally selected

as final biomarkers. In Figure 4A, two arrows indicate the optimal

selected edge biomarkers and node biomarkers, with cross-

validation accuracies 96.98%+0.27% and 89.05%+0.39%, re-

spectively. The selected 23 edge biomarkers and 24 node biomar-

kers are listed in Table 2, where the order of the biomarkers

reflects the importance of these features by SFFS, such that import-

ant features tend to be at the top of the list. In Table 2, the arrows

of edge biomarkers indicate the expression correlation change,

while the arrows of node biomarkers indicate the expression level

change from earlier to advanced disease (The heat maps of these

two kinds of biomarkers are shown in Supplementary Figure S1).

Note that the expression changes of all node biomarkers are signifi-

cant; in contrast, edge biomarkers are identified from NDGs, thus the

expression changes of genes for edge biomarkers are not significant.

The independent validations of edge and node biomarkers have

been performed on the GEO dataset, and the prediction accuracies

are 72.24% and 70.62%, respectively.

To test whether the combination of edge and node biomarkers

can improve the classification performance, we apply SFFS again

on the union of edge biomarkers and node biomarkers, i.e.

EdgeBiomarker. The result is shown in Figure 4B. The maximum ac-

curacy of the combined biomarkers is slightly improved, and the

corresponding union-features are almost the same as edge biomar-

kers, which indicate that edge biomarkers can indeed well classify

earlier and advanced lung adenocarcinoma in this study.

Figure 4 Optimized accuracy curves achieved with different numbers of features by EdgeBiomarker. (A) SFFS algorithm was applied to candidates

of edge biomarkers (red curve) and node biomarkers (blue curve). (B) SFFS algorithm was applied to the union of edge biomarkers and node

biomarkers.

Table 1 Summary on samples of two datasets from TCGA and GEO

databases.

Lung cancer stages

IA IB IIA IIB IIIA IIIB IV Total

Dataset TCGA 106 124 39 59 62 10 21 421 + 3

GEO 42 37 4 9 20 5 0 117
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Edge biomarkers are enriched with transcriptional regulators and

cancer/metastasis-related gene pairs

To investigate the biological significance of edge biomarkers,

transcription factors (TFs) are mapped to marker gene-pairs. All

predicted human TFs are downloaded from DBD, a transcriptional

factor prediction database (Kummerfeld and Teichmann, 2006).

There are in total 2078 TFs in DBD, among which 1258 TFs are

detected in TCGA dataset. According to this TF list, 4 out of 46

genes of edge biomarkers are TFs (i.e. ATF6B, PRDM8, SP140,

ZKSCAN1), whereas only 1 out of 24 node biomarkers is TF (i.e.

ECD). This fact supports that edge biomarkers are more enriched

with TFs, and thus related to the disease development or progres-

sion, e.g. cancer metastasis, as main regulators. Notably, a recent

study has shown that the protein encoded by ZKSCAN1 can

promote tumor metastasis by increasing the abilities of migration

and invasion in gastric cancer cell (Li et al., 2014). The protein

encoded by ATF6B is known to be a TF that participates in the

unfolded protein response, which is known to protect tumor cells

under hypoxia (Rouschop et al., 2010), and thus ATF6B may be a

potential target in cancer therapy (Ma and Hendershot, 2004;

Backer et al., 2011).

Since the edge biomarkers are a network of biomarkers, the

network ontology analysis (NOA) was used to conduct enrichment

analysis on their genes and gene associations, i.e. network struc-

ture (Wang et al., 2011). Supplementary Table S1 lists the anno-

tated GO terms by using NOA tool. Remarkably, the association

between TFs ATF6B and RPL26 was significantly annotated, and

many works (Ofir-Rosenfeld et al., 2008; Chen et al., 2012a;

Gazda et al., 2012; Li et al., 2012) have reported that RPL26

mediates the regulation of TP53, known as an important tumor-

suppressor gene. In these functional annotations, actin binding

and calcium ion binding are significantly enriched in our edge bio-

marker list. In fact, actin binding and calcium signaling are known to

be involved in cancer progression and metastasis (Dos Remedios

and Chhabra, 2008; Jiang et al., 2008; Yang et al., 2010;

Prevarskaya et al., 2011), which suggests that the metastasis

ability of cancer cell may be one of the important differences

between earlier and advanced stages of diseases.

Edge biomarkers are significantly associated to KEGG pathways

To further systematically characterize the edge biomarkers at

the biological pathway level, we carried out pathway enrichment

analysis for edge biomarkers and node biomarkers, respectively.

The pathway knowledge was downloaded from KEGG pathway

database (http://www.genome.jp/kegg/pathway.html), which in-

cludes 284 human pathways. The hyper-geometric test was

employed to test whether a pathway is significantly enriched by

the edge or node biomarkers. Specifically, we mapped genes of

the biomarkers to a given pathway to get the number of matched

genes M. We denote the number of the background genes (i.e.

the genes of the dataset that are left after data processing) G, the

number of pathway genes detected by dataset N, and the

number of genes of all biomarkers K. Then the probability of

getting M match genes under null hypothesis that genes are ran-

domly drawn is as follows:

P(M;G,N,K) =

N
M

( )
G − N
K − M

( )

G
K

( ) .

The P-value can be defined as

P−value =
∑
m.M

P(m;G,N,K).

The significantly enriched pathways of edge biomarkers are listed

in Table 3. Among these pathways, some are cancer-related or

tumor metastasis-related according to other studies, e.g. sulfur

metabolism (Ryu et al., 2011), cGMP-PKG signaling pathway (Li

et al., 2013; Ren et al., 2014), inositol phosphate metabolism

(Lee and Yuspa, 1991; Vucenik and Shamsuddin, 2003), phospha-

tidylinositol signaling system (Vivanco and Sawyers, 2002; Bunney

and Katan, 2010), calcium signaling pathway (Parkash and Asotra,

2010; Yang et al., 2010), VEGF signaling pathway (Kowanetz and

Ferrara, 2006; Waldner and Neurath, 2012), cell adhesion

molecules (Paul et al., 1997; Weis and Cheresh, 2011), etc. The

result of enrichment analysis on node biomarkers is listed in

Supplementary Table S2 for comparison, which obviously contains

less meaningful pathways for cancer. In addition, several genes

from edge biomarkers are found to be located at the up-stream

of pathways, e.g. phosphatidylinositol signaling system and

cGMP-PKG signaling pathway as shown in Supplementary Figure

S2. This would be the evidence that edge biomarkers are related

to the causes or drivers of the disease development or progression.

Table 2 Selected edge features (gene pairs) and node features
(individual genes) for classifying earlier and advanced lung
adenocarcinoma.

Edge biomarkers Correlation

changing

Node

biomarkers

Expression

changing

ADORA1,ANKRD46 b ABCA6 d

ATF6B,RPL26 b C1orf172 d

DMGDH,SLC6A6 b FMNL2 d

CLIC2,SLC4A1AP b OR52E4 d

DDX50,ZCCHC6 b C9orf64 b

LOC283663,TMEM205 b GPSM3 d

FAM38B,MMRN1 d C20orf107 d

MACF1,TNNC1 b SIGLECP3 d

CTF1,PGAP3 b NAPSB d

NUDT8,ULK4 b PSD4 d

C18orf32,C8orf80 b ECD b

LOC100133612,PRDM8 b RNASE1 d

ATP2B4,LOC134466 b TAS2R39 d

MAMDC4,SPERT b CLCNKB d

NEK3,PDCD7 b FAM65B d

NDEL1,TPCN2 b BDNFOS d

IMPA2,NLGN3 b FLJ33360 d

DOHH,SLC27A3 b TRAFD1 d

ETHE1,TMEM135 b PLEKHB1 d

C14orf128,PIK3C3 d CRYGB d

PAPPA,SH2D2A b GFRA1 d

AGAP2,SP140 d ZNF167 d

TRAP1,ZKSCAN1 b LPIN1 d

TXNDC11 d

The symbolsb and d mean the increase and decrease, respectively.
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Edge biomarkers reveal significant differential metastasis risk of

the patients diagnosed in earlier and advanced stages

In TCGA datasets, patients’ survival information was accessible.

To examine the classification performance of edge biomarkers with

respect to survival days, we evenly separate the dataset into train-

ing and prediction parts; classification model is learnt from training

data and the prediction is performed on prediction data. Then

the survival analysis is carried out on the predicted samples. The

significance (P-value) of differences between survival curves

of predicted earlier and advanced patients is also estimated.

Figure 5 shows the survival curves for predicted earlier and

advanced patients by using edge biomarkers (A), node biomarkers

(B), and random assignment (C). The P-values of Cox proportional

hazards regression model are 0.0041, 0.0170, and 0.6725, respect-

ively. The results verify that edge biomarkers effectively identified

patients in earlier or advanced stage, where the diagnosed patients

in advanced stages exhibited worse prognosis.

Discussion

Essentially, EdgeBiomarker is a kernel-based method for detect-

ing both edge biomarkers and node biomarkers. It may also suffer

from ‘over-fitting’ problem and the ‘curse of dimensionality’, which

are still two big challenges in machine learning field. Nevertheless,

the proper pre-procession of data and careful selection of candi-

date features can overcome these problems to some degree. In

this work, we applied EdgeBiomarker to the RNAseq datasets

from TCGA database and tried to understand the pathogenic mech-

anism underlying earlier and advanced stages of cancer. For lung

adenocarcinoma, we have identified edge biomarkers distinguish-

ing patients in earlier stage from those in advanced stage. The clas-

sification performance of edge biomarkers is better than traditional

node biomarkers (in both within-dataset cross-validation and

independent-dataset validation). The functional analysis of edge

biomarkers also reveals several relevant mechanisms underlying

the metastasis risk of lung adenocarcinoma. Note that edge bio-

markers and node biomarkers have weak prediction accuracy in

the independent-dataset validations, which would be caused by

the inconsistent types of datasets, where the TCGA dataset is

from RNAseq data and the independent GEO dataset is from micro-

array data. Another case study on TCGA breast cancer dataset

further supports the advantages of edge biomarkers, as shown in

Supplementary material.

Particularly, focusing on the annotated gene-pair in NOA, i.e.

ATF6B and RPL26, we have a hypothesis for lung cancer develop-

ment and progression. L26, encoded by RPL26, is known to partici-

pate in the regulation of p53 by Mdm2. ATF6B encodes a TF that

takes part in the unfolded protein response pathway. This gene-

pair as one of the edge biomarkers indicates that there may be a

changed crosstalk between two corresponding pathways. Our hy-

pothesis is: p53 pathway and unfolded protein response pathway

have no significant association in earlier stage of lung cancer,

but they will have functional connection as pathway crosstalk

when lung cancer is developed to the advanced stage (Figure 6).

It means that the association between RPL26 and ATF6B would

be potential ‘drivers’ of the lung adenocarcinoma development,

whose appearance as biomarkers indicates the increasing risk of

lung cancer metastasis.

The edge biomarkers (e.g. network biomarkers or DNBs; Zeng

et al., 2014) explore network or edge information in both learning

and predicting steps, which are networks of marker molecules and

thus are essentially different from node biomarkers. With addition-

al information on expression differences (e.g. differential expres-

sion variance/covariance), edge biomarkers can promote the

prediction accuracy of phenotypes and reveal the markers-involved

biological or pathogen mechanisms. By further integrating

dynamic information of data, the dynamical edge biomarkers

(e.g. DNB; Chen et al., 2012b) even have the ability to diagnose

the ‘pre-disease’ or ‘un-occurred disease’ state before the

Table 3 Significantly enriched pathways by KEGG pathway enrichment analysis on edge biomarkers.

ID Pathway title P-value M K N G Genes included

hsa04261 Adrenergic signaling in cardiomyocytes 0.000374 3 46 103 13815 ATF6B, ATP2B4, TNNC1

hsa00920 Sulfur metabolism 0.00048 1 46 10 13815 ETHE1

hsa04972 Pancreatic secretion 0.000506 2 46 47 13815 ATP2B4, TPCN2

hsa04022 cGMP-PKG signaling pathway 0.000606 3 46 117 13815 ADORA1, ATF6B, ATP2B4

hsa00562 Inositol phosphate metabolism 0.000761 2 46 54 13815 IMPA2, PIK3C3

hsa04070 Phosphatidylinositol signaling system 0.001365 2 46 66 13815 IMPA2, PIK3C3

hsa04140 Regulation of autophagy 0.002625 1 46 23 13815 PIK3C3

hsa00260 Glycine, serine and threonine metabolism 0.00335 1 46 26 13815 DMGDH

hsa04020 Calcium signaling pathway 0.004458 2 46 100 13815 ATP2B4, TNNC1

hsa05030 Cocaine addiction 0.004743 1 46 31 13815 ATF6B

hsa04918 Thyroid hormone synthesis 0.007806 1 46 40 13815 ATF6B

hsa04024 cAMP signaling pathway 0.007912 2 46 123 13815 ADORA1, ATP2B4

hsa04970 Salivary secretion 0.008581 1 46 42 13815 ATP2B4

hsa05031 Amphetamine addiction 0.00898 1 46 43 13815 ATF6B

hsa04260 Cardiac muscle contraction 0.01066 1 46 47 13815 TNNC1

hsa04911 Insulin secretion 0.012004 1 46 50 13815 ATF6B

hsa04370 VEGF signaling pathway 0.012468 1 46 51 13815 SH2D2A

hsa05032 Morphine addiction 0.012468 1 46 51 13815 ADORA1

hsa05410 Hypertrophic cardiomyopathy (HCM) 0.0144 1 46 55 13815 TNNC1

hsa05414 Dilated cardiomyopathy 0.015412 1 46 57 13815 TNNC1

hsa04915 Estrogen signaling pathway 0.026446 1 46 76 13815 ATF6B

hsa04514 Cell adhesion molecules (CAMs) 0.03251 1 46 85 13815 NLGN3
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occurrence of diseases. Actually, identifying and preventing

‘un-occurred disease’ state is also an important concept raised

2000 years ago in Yellow Emperor’s Medicine, one of the earliest

books for Traditional Chinese Medicine (Zeng et al., 2014). In

future, the edge biomarkers or dynamical edge biomarkers are

expected to be extracted from big biological data for reliable char-

acterization of complex diseases and biological processes.

In conclusion, edge biomarkers can extract differential correla-

tions of gene expression changes, either from multiple samples

or from single sample for an individual. Different from the conven-

tional node biomarkers that representing genes with differential

expressions, edge biomarkers further include genes with non-

differential expressions but with differential correlations. In this

study, EdgeBiomarker approach was applied to the TCGA cancer

datasets to capture edge biomarkers from NDGs, in addition to

node biomarkers. With either lung cancer or breast cancer data-

sets, edge biomarkers have shown a better performance in discrim-

ination of progressive stages (i.e. earlier and advanced stages) of

cancer than the conventional node biomarkers. Particularly, the

EdgeBiomarker approach can measure the differential expression

correlations in an individual sample, which enables the clinical appli-

cation in individual patients, e.g. diagnosing diseases and the pro-

gressive stages for personalized medicine or precision medicine.

Supplementary material

Supplementary material is available at Journal of Molecular Cell

Biology online.
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