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Abstract

Ixodes pacificus Cooley & Kohls (Acari: Ixodidae), the primary vector of Lyme disease spirochetes to humans in 
the far-western United States, is broadly distributed across Pacific Coast states, but its distribution is not uniform 
within this large, ecologically diverse region. To identify areas of suitable habitat, we assembled records of locations 
throughout California where two or more I. pacificus were collected from vegetation from 1980 to 2014. We then 
employed ensemble species distribution modeling to identify suitable climatic conditions for the tick and restricted 
the results to land cover classes where these ticks are typically encountered (i.e., forest, grass, scrub-shrub, riparian). 
Cold-season temperature and rainfall are particularly important abiotic drivers of suitability, explaining between 50 
and 99% of the spatial variability across California among models. The likelihood of an area being classified as suitable 
increases steadily with increasing temperatures >0°C during the coldest quarter of the year, and further increases when 
precipitation amounts range from 400 to 800 mm during the coldest quarter, indicating that areas in California with 
relatively warm and wet winters typically are most suitable for I. pacificus. Other consistent predictors of suitability 
include increasing autumn humidity, temperatures in the warmest month between 23 and 33°C, and low-temperature 
variability throughout the year. The resultant climatic suitability maps indicate that coastal California, especially the 
northern coast, and the western Sierra Nevada foothills have the highest probability of I. pacificus presence.
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The western blacklegged tick, Ixodes pacificus Cooley & Kohls (Acari: 
Ixodidae), is a primary vector of Borrelia burgdorferi and Anaplasma 
phagocytophilum, the etiological agents of Lyme disease and human 
granulocytic anaplasmosis, respectively (Lane et al. 1994, Teglas and 
Foley 2006). I. pacificus also is suspected to be a vector of Borrelia 
miyamotoi based on demonstrated vector competence of the closely 
related blacklegged tick Ixodes scapularis Say (Acari: Ixodidae) (Scoles 
et al. 2001) and consistent detection of the spirochete in field-collected 
I. pacificus in California (Mun et al. 2006, Padgett et al. 2014).

Previous surveys demonstrated that I. pacificus occurs in all but 
two Californian counties (Dennis et al. 1998, Eisen et al. 2016a), and 
habitat suitability based on county-scale records indicate suitabil-
ity for the tick broadly across most of the state (Hahn et al. 2016). 
However, most I. pacificus-borne diseases are reported from counties 
in northwestern or north-central California (Lane et al. 1992, Eisen 
et al. 2006b, Padgett et al. 2014, Yoshimizu et al. 2016). Nevertheless, 

county-scale distribution maps have limited value in targeting vector 
surveillance and prevention resources at the sub-county level, particu-
larly in large and ecologically diverse counties in the western United 
States, generally, and California in particular (Eisen and Eisen 2007, 
2008). In Mendocino County, for example, host-seeking nymphs, the 
life stage associated with most B. burgdorferi infections in humans 
(Clover and Lane 1995), are most commonly encountered in dense 
woodlands having leaf or fir-needle litter, and nymphal densities are 
elevated in woodlands having annual growing degree-days between 
2,600 and 3,000 (10°C base) (Eisen et al. 2006b). These vegetation 
and climatic characteristics, which support elevated densities of 
host-seeking nymphs in a single north-coastal Californian county 
(Mendocino), were extrapolated across the state to identify potential 
areas of risk for exposure to I. pacificus nymphs. Overall, the sub-
county distribution of acarological risk mirrored the distribution of 
reported human Lyme disease cases (Eisen et al. 2006b).
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Since adult ticks also have the potential to transmit each of the 
three pathogens described above and larval ticks potentially could 
serve as vectors of B. miyamotoi (Rollend et al. 2013, Molloy et al. 
2015), we endeavored to develop species distribution models for 
California that encompass all parasitic life stages. Species distribu-
tion models estimate the existence of a process (a detailed probabil-
ity map describing the likely niche of a species) from a sample of the 
process (known locations of a species) through the development of 
statistical relationships between species presence and absence and 
key climatic variables (Graham et al. 2004, Guo et al. 2005, Keenan 
et al. 2011, Easterday et al. 2016). To capture the broad range in 
climatic conditions associated with I. pacificus presence, we devel-
oped species distribution models using more than 600 geocoded tick 
records from 51 of 58 Californian counties. To minimize extrapo-
lation of our models to land-cover classes that were not sampled 
or included in model development, we applied a spatial land-cover 
mask to the resulting models that displays areas classified as forest, 
grass, scrub-shrub or riparian with suitable climatic conditions for 
I. pacificus. Our models reveal substantial variability in climate suit-
ability for I. pacificus both within and among counties.

Methods

I. pacificus Records
We used published and unpublished data on locations where host-
seeking I. pacificus larvae, nymphs, and/or adults were collected in 
California. These data were compiled from Eisen et al. (2006a) and 
the Vector-Borne Disease Section, California Department of Public 
Health (CDPH) tick database. The CDPH tick database maintains 
the following historic and contemporary information on California 
tick collection sites: number of ticks collected by species and life 
stage, location, date, and pathogen test-results, when available. 
While the majority of tick database records reflect environmen-
tal surveillance, primarily as part of human risk assessment, some 
records are from ticks recovered from people and animals and sub-
mitted to CDPH for identification. In this analysis, we only included 
I. pacificus records from those locations from which two or more 
I. pacificus of any life stage were collected from vegetation between 
1980 and 2014. Although the CDPH tick database dates back to 
1900, a contemporary time period, 1980–2014, was chosen and 
matched temporally with the climate data employed in our models. 
Tick locations that were within 1.415 km of each other (i.e., the 
length of the diagonal of a 1-km grid cell, which is the resolution of 
the environmental data discussed below) were excluded to remove 
potential oversampling bias and pseudo-replication. In total, 621 
unique presence locations from 51 counties were included (Table 1). 
We used the random points tool in ESRI ArcMap (Environmental 
Systems Research Institute; Redlands, CA) to generate a set of back-
ground (pseudo-absence) data, at a rate of ~four background points 
per presence point; points were confined within the state borders, 
and no background points were located within 1.415 km of each 
other or of any location where I. pacificus was present.

Climate Data Sources
Thirty-five candidate climatic predictor variables were selected based 
on our knowledge of the biological and ecological requirements of 
I. pacificus (Table 2). These variables have been described previously 
(Springer et al. 2015, Hahn et al. 2016). We computed monthly, sea-
sonal, and annual averages of precipitation, maximum temperature, 
minimum temperature, vapor pressure, and day length using the 
daily 1 km spatial resolution Daymet (Version 2) dataset for each 

Table  1. Percentage of Californian counties classified as forest, 
grass, scrub-shrub or riparian and estimated to be climatically suit-
able for I. pacificus by three or more models having sensitivities 
of 90% or 99%

% area classified as suitable

County No. tick locations 90% sensitivity 99% sensitivity

Alameda 21 46.28 62.56
Alpine 0 0.00 2.00
Amador 8 63.62 76.65
Butte 6 51.29 63.42
Calaveras 14 73.06 89.55
Colusa 6 26.20 49.05
Contra Costa 17 39.40 53.77
Del Norte 4 11.30 75.10
El Dorado 25 46.60 68.07
Fresno 0 8.61 30.10
Glenn 2 11.32 57.86
Humboldt 18 33.32 85.31
Imperial 0 0.00 0.00
Inyo 1 0.00 0.00
Kern 2 0.00 18.57
Kings 1 0.00 9.51
Lake 28 66.37 83.89
Lassen 1 0.00 0.01
Los Angeles 30 23.18 47.31
Madera 8 19.02 47.21
Marin 14 71.03 71.04
Mariposa 14 59.32 79.93
Mendocino 62 75.34 90.74
Merced 0 0.00 33.16
Modoc 0 0.00 0.04
Mono 0 0.00 0.00
Monterey 12 18.45 83.71
Napa 11 74.94 74.94
Nevada 19 48.60 57.36
Orange 7 25.80 40.31
Placer 20 31.74 50.86
Plumas 3 3.19 33.21
Riverside 10 7.18 20.71
Sacramento 5 9.44 31.26
San Benito 4 4.12 82.97
San Bernardino 19 1.31 4.21
San Diego 10 16.66 59.40
San Francisco 0 5.26 5.26
San Joaquin 5 1.17 20.98
San Luis Obispo 6 18.21 81.90
San Mateo 15 66.89 66.89
Santa Barbara 18 32.12 87.12
Santa Clara 15 57.56 71.62
Santa Cruz 20 82.62 82.62
Shasta 36 41.77 75.01
Sierra 4 5.29 26.56
Siskiyou 7 6.05 45.62
Solano 5 19.87 31.14
Sonoma 13 75.49 75.52
Stanislaus 3 4.19 47.75
Sutter 2 1.44 15.88
Tehama 5 51.36 80.46
Trinity 21 22.37 64.66
Tulare 8 5.18 31.18
Tuolumne 9 41.50 54.83
Ventura 12 51.58 74.11
Yolo 4 27.39 35.90
Yuba 11 54.92 64.48
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year of the 35-yr (1980–2014) dataset (Thornton et al. 2012). We 
also computed monthly, monthly cumulative (from 1 January), sea-
sonal, and annual growing degree-days with respect to 10°C from 
Daymet monthly maximum and minimum temperature data. The 
35-yr annual average number of days with a snow-water equivalent 
depth > 1 mm was computed from the daily Daymet snow-water 
equivalent field. Nineteen ‘bioclimatic’ variables (Hijmans et  al. 
2005) were computed from the 35-yr monthly averages of Daymet 
maximum temperature, minimum temperature, and precipitation 
using the ‘bioclim’ function in the ‘dismo’ species distribution mod-
eling package (Hijmans et al. 2005) in the R statistical computing 
language.

Variable Selection
We used VisTrails Software for Assisted Habitat Modeling (SAHM; 
version 2.0) (Morisette et al. 2013) to manage data, perform species 
distribution modeling, and create ensemble models. Using SAHM, 
we prepared our data for the analysis (e.g., by clipping the envir-
onmental variables data to the extent and shape of California) and 
tested the environmental variable data for collinearity by compar-
ing each pair of variables. We performed three different correlation 
tests (Pearson, Spearman, and Kendall) to evaluate collinearity and 
limited inclusion of variables into models to those with pairwise 

correlations <0.80. When variables were strongly correlated, we 
retained the variable with the highest percent deviance explained 
(e.g., a measure of how well a single variable predicts tick presence/
absence) and/or deemed to be most biologically meaningful. The 
selected variables included isothermality (a measure of consistency 
in temperature), maximum temperature of warmest month, mean 
temperature of coldest quarter, precipitation seasonality, precipita-
tion of warmest quarter, precipitation of coldest quarter, average day 
length in summer, and average vapor pressure in fall (Table 2). The 
spatial distributions of these variables are shown in Fig. 1.

Modeling the Distribution of I. pacificus
The species distribution models for I.  pacificus were fit with five 
algorithms using SAHM software: 1) boosted regression trees (BRT), 
2) generalized linear model (GLM), 3) multivariate adaptive regres-
sion spline (MARS), 4) maximum entropy (Maxent), and 5) random 
forest (RF) (Talbert and Talbert 2001). We modeled the distribu-
tion of I. pacificus using these five algorithms, rather than just one 
of them, to identify potential biases of the individual models. Each 
model run produced a continuous relative probability surface of 
suitable climatic conditions for I.  pacificus presence. We used the 
locations of I. pacificus, pseudo-absence locations, and the raster cli-
matic layers as inputs to the models. For each algorithm, we used 
the SAHM default parameters, with the exception of the BRT model 
where we used a tree complexity of two, a learning rate of 0.005, and 
5,000 trees (Elith et al. 2008, Springer et al. 2015, Hahn et al. 2016).

We converted each continuous surface for each model run into a 
binary representation of suitable habitat using a probability thresh-
old that represented 90% or 99% model sensitivity. That is, at the 
selected threshold, 90 or 99% of tick presence points were correctly 
classified as suitable by the model. The resulting binary raster classi-
fied each 1 km cell as either suitable or unsuitable, with a score of 1 
or 0, respectively (Fielding and Bell 1997, Guisan et al. 2007). Next, 
we evaluated model agreement by combining the five binary models 
for each sensitivity threshold into a single layer showing the num-
ber of models predicting presence for each 1 km raster cell based on 
fixed suitability thresholds.

Evaluation and Visualization of Model Results
We used a 10-fold cross-validation method to test the performance 
of our models (Elith et al. 2006). The location data were partitioned 
into 10 equal samples—1 test sample and 9 training samples—and 
the model was run 10 times with a different test-sample used each 
time. This type of validation reduced the overall variance by averag-
ing the 10 different samples (Rodriguez et al. 2010). We evaluated 
each model using standard accuracy metrics including Area Under 
the Receiver-Operator Curve(AUC), and specificity at fixed sensitiv-
ity thresholds (Phillips et al. 2006). AUC is a threshold independ-
ent measure of model performance and ranges from 0 to 1 with 
a value of 0.5 representing a model with prediction probabilities 
close to random, and values greater than 0.5 signifying a model 
with a greater power to predict areas of high suitability in loca-
tions of known species presence. We evaluated specificity of mod-
els at 90 and 99% sensitivity thresholds (Hahn et al. 2017). Next, 
we calculated the relative contribution of each climatic variable to 
each modeling algorithm. We also plotted the response curves for 
each environmental variable by algorithm to aid in comparing the 
relationship between an environmental variable and I. pacificus cli-
matic suitability.

Finally, because I. pacificus is primarily a woodland-associated 
species that has been collected from forest, grass, and scrub-shrub 

Table 2. Candidate and selected variables used to model climatic 
suitability of I. pacificus in California

Candidate variables
Selected 
variables

Annual mean temperature (BIO1)
Mean diurnal temperature range (BIO2)
Isothermality (BIO3) x
Temperature seasonality (BIO4)
Max. temperature of warmest month (BIO5) x
Min. temperature of coldest month (BIO6)
Temperature annual range (BIO7)
Mean temperature of wettest quarter (BIO8)
Mean temperature of driest quarter (BIO9)
Mean temperature of warmest quarter (BIO10)
Mean temperature of coldest quarter (BIO11) x
Annual precipitation (BIO12)
Precipitation of wettest month (BIO13)
Precipitation of driest month (BIO14)
Precipitation seasonality (BIO15) x
Precipitation of wettest quarter (BIO16)
Precipitation of driest quarter (BIO17)
Precipitation of warmest quarter (BIO18) x
Precipitation of coldest quarter (BIO19) x
Average day length annual
Average day length winter (Dec., Jan., Feb.)
Average day length summer (Jun., Jul., Aug.) x
Average day length spring (Mar., Apr., May)
Average day length fall (Sep., Oct., Nov.)
Average growing degree days annual
Average growing degree days winter (Dec., Jan., Feb.)
Average growing degree days summer (Jun., Jul., Aug.)
Average growing degree days spring (Mar., Apr., May)
Average growing degree days fall (Sep., Oct., Nov.)
Annual average number of days with snow depth > 1 mm
Average vapor pressure annual
Average vapor pressure winter (Dec., Jan., Feb.)
Average vapor pressure summer (Jun., Jul., Aug.)
Average vapor pressure spring (Mar., Apr., May)
Average vapor pressure fall (Sep., Oct., Nov.) x
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vegetation (Furman and Loomis 1984, Lane and Stubbs 1990, 
Kramer and Beesley 1993, Eisen et al. 2004), we applied a spatial 
mask representing these categories, as well as those categorized as 
‘riparian’ in order to detect fragmented woodlands following riv-
ers and streams, to our final models predicting suitability for the 
tick. We recognize that tick abundance differs among these land 
cover classes; however, our model assesses only the likelihood of 
presence, not abundance. We chose not to include land cover class 
as a potential predictor in the model for two reasons. First, the cat-
egories included in the mask are those where sampling was focused; 
these included land cover types where ticks were perceived to be 
most common (e.g., wooded, grassy, or scrubby vegetation). Second, 
if the models are projected under different climate change scenarios, 
our certainty in how land-cover will change over time is low, and 
therefore inclusion of land cover class in the models would increase 
uncertainty in model projections. To create the mask, we used a 
California vegetation layer developed by the California Department 
of Forestry and Fire Protection (http://frap.fire.ca.gov/data/frapgis-
data-sw-fveg_download). This layer is a compilation of the ‘best 
available’ land cover data for California into a single comprehensive 
statewide raster data set at 30 m resolution. We reclassified the layer 
to show only the following classes: forest, grass, scrub-shrub, and 
riparian. Then, we reprojected and resampled the resulting dataset 
to have the same cell size (e.g., from 30 m to 1 km) as the input ras-
ters used in the modeling effort. Functionally, this mask allowed us 
to exclude areas that are climatically suitable, but where land-cover 

types are unfavorable to the survival of I. pacificus (e.g., water, wet-
lands, agriculture, and impervious surface land cover classes).

Results

In total, 4,546 I.  pacificus presence locations were considered for 
inclusion as presence points in our model development. The full 
database included ticks collected from 55 of 58 (95%) California 
counties and the majority (3,489 of 4,546; 76.8%) were collected 
from either forest, grass, scrub-shrub or riparian land cover classes. 
To yield a more contemporary dataset, we included only samples 
collected in 1980 or later and to avoid over-representing areas that 
were sampled intensively, we excluded locations in close proximity 
to one another (e.g., within 1.415 km). As a result, our final presence 
dataset included 621 I. pacificus presence locations distributed across 
51 counties; most (499 or 80.3%) were collected from forest, grass, 
scrub-shrub or riparian land cover class categories (Table 1, Fig. 2).

We reduced the original set of 35 climate variables to eight uncor-
related variables (Table 2). Among these variables, one model (GLM) 
retained only three variables, two (BRT and MARS) retained six 
variables and two (Maxent and RF) retained all eight (Table 3). All 
five models retained precipitation of the coldest quarter (Bio 19) and 
mean temperature of the coldest quarter (Bio 11) with normalized 
contributions ranging from 37.8 to 70.3% for the former and from 
10.4 to 32.5% for the latter (Table  3). Suitability for I.  pacificus 
increases between 0 and 400 mm of cold-season precipitation, levels 

Fig. 1. Geographic distribution of the eight explanatory variables used to model the distribution of I. pacificus in California. This figure is available in colour 
at Journal of Medical Entomology online.
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off between 400 and 800 mm, and declines somewhat for precipi-
tation amounts >800  mm (Fig.  2). Thus, the highest suitability is 
in areas that receive a moderate amount of cold-season precipita-
tion, and is lower in drier regions in southern California as well as 
in the high precipitation regions in the Sierra Nevada and Klamath 
mountains and in coastal northern California (Fig. 1). Conditions 
are unsuitable for I.  pacificus when cold-season average tempera-
tures are below freezing (0°C), but suitability gradually increases for 

conditions above freezing, leveling off at beyond ~5°C. Therefore, 
Bio11 excludes areas in the Sierra Nevada and Klamath mountains 
that have cold season temperatures below freezing. Collectively, 
Bio19 and Bio11 contribute between 49.7 and 98.8% to the five 
I. pacificus models (Table 3). Other explanatory variables in order of 
summed normalized contributions across models are autumn vapor 
pressure (positively associated with suitability indicating a preference 
for higher humidity); maximum temperature of the warmest month 

Fig. 2. Predicted distribution of forest, grass, scrub-shrub, and riparian land classes with suitable climatic conditions for I. pacificus provided by five different 
environmental niche models based on 90 and 99% sensitivities. Locations of I. pacificus in California also are overlaid on the distribution of the four land cover 
classes for which the results are masked. This figure is available in colour at Journal of Medical Entomology online.

Table 3. Normalized contributions of the climate variables used in each of the modeling algorithms for I. pacificus

Description

Normalized contribution values (%)

BRT GLM MARS Maxent RF

Precipitation of coldest quarter (Bio 19) 37.8 70.3 48.9 50.7 37.9
Mean temperature of coldest quarter (Bio 11) 19.0 28.5 32.5 10.4 11.8
Autumn vapor pressure (Sep, Oct, Nov) 12.3 - - 10.9 11.7
Max. temperature of warmest month (Bio 5) 10.0 - 9.4 6.6 8.2
Isothermality (Bio 3) 10.2 - 2.2 8.2 8.2
Precipitation seasonality (Bio 15) 10.7 - - 2.6 8.9
Average summer day length (Jun., Jul., Aug.) - 1.2 3.6 7.9 7.6
Precipitation of warmest quarter (Bio 18) - - 3.4 2.8 5.7
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(Bio5; peaking around 30°C and decreasing for lower or higher 
temperatures indicating an optimal range for survival between ~23 
and 33°C); isothermality (Bio3; positively associated with suitability 
indicating a preference for small temperature fluctuations); precipi-
tation seasonality (Bio15; no consistent response among models); 
average summer day length (generally negatively associated with 
suitability indicating a preference for shorter days); and precipita-
tion of the warmest quarter (Bio18; no consistent association).

Among models, AUC values based on training datasets ranged 
from 0.85 (GLM) to 0.95 (BRT) and AUC values based on test sets 
ranged from 0.86 (GLM) to 0.90 (RF), indicating very good predict-
ive capability for each model. The difference between test and train-
ing set AUC values ranged from 0.00 (RF) to 0.06 (BRT), showing 
good consistency in model predictions between training and testing 
datasets. We dichotomized continuous probabilities of suitability 
based on 90 and 99% sensitivity thresholds, which resulted in speci-
ficity ranges from 73 to 97% and 41 to 88%, respectively (Table 4, 
Fig. 4). As expected, as sensitivity increases, the area predicted to be 
suitable expands, resulting in lower specificity.

All models predict suitable habitat (i.e., forest, grass, scrub-shrub 
or riparian land cover classes with suitable climatic conditions) for 
I.  pacificus in the coastal regions from Humboldt County south-
ward and include suitable habitat in the western foothills of the 
Sierra Nevada (Figs.  2 and 4). In general, excluded areas are dry, 
hot, or high elevation. Based on models with 90 or 99% sensitivity, 
17.5% (71,636 km2) and 37.9% (155,243 km2) of California land 
surface were considered suitable by three or more models, respect-
ively (Fig. 4). Using the most inclusive threshold to dichotomize the 
model (99% sensitivity) and counting only counties where three or 
more models predicted suitability, 55 of 58 counties were classified 
as suitable; however, the percentage of land within counties consid-
ered suitable based on these criteria ranged from 0.01% in Lassen 
County to as high as 90.74% in Mendocino County (Table 1, Fig. 4).

Discussion

Our models indicate consistently that precipitation and average tem-
peratures during the coldest quarter of the year play a key role in 
defining the ecological niche of I. pacificus in California. The like-
lihood of an area being classified as suitable increases steadily with 
increasing temperatures above 0°C during the coldest quarter of the 
year, and further increases when precipitation amounts range from 
400 to 800  mm during the coldest quarter, indicating that areas 
in California with relatively warm and wet winters typically are 
most suitable for the tick. Other consistent predictors of suitabil-
ity include increasing autumn humidity, maximum temperatures in 
the warmest month ranging from 23 to 33°C, and low temperature 
variability throughout the year. Consistent with previously published 
distribution records (Bishopp and Trembley 1945, Furman and 
Loomis 1984), our suitability maps indicate that coastal California, 

especially the northern coast, and the western Sierra Nevada foot-
hills have the highest probability of I. pacificus presence.

Compared with a recently published habitat suitability model 
for I. pacificus in the western United States (Hahn et al. 2016) that 
was based on county records showing where the tick was report-
edly established (Dennis et al. 1998, Eisen et al. 2016a), our models 
identify a similar geographical range in the distribution of suitable 
habitat, but reveal substantial variability in suitability at the sub-
county scale. Specifically, although 55 of 58 counties were classified 
by our most inclusive ensemble model as suitable (i.e., agreement 
among at least three models based on 99% sensitivity), within these 
counties, the percentage of the county’s total area that was classi-
fied as suitable ranged from 0.01% in Lassen County, located in the 
northeastern portion of the state to 90.74% in Mendocino County, 
located along the north-coast.

The variables included in our models are biologically plausible. 
The two leading variables, precipitation and mean temperature both 
measured in the coldest quarter, correspond to the host-seeking peri-
ods of the adult ticks (Lane and Stubbs 1990, Kramer and Beesley 
1993, Clover and Lane 1995, Padgett and Lane 2001, Eisen et al. 
2004, Salkeld et al. 2014, MacDonald and Briggs 2016), but these 
variables likely impact other life stages as well. Ixodes spp. ticks 
generally can tolerate short periods of very cold conditions, though 
prolonged exposure to sub-zero temperatures for long durations is 
almost universally lethal to the tick (Eisen et al. 2016b). On the other 
hand, snow cover (associated with increased winter precipitation) 
may provide some protective insulation (Eisen et al. 2016b). Further, 
survival and host-seeking rates in ixodid ticks increase with increas-
ing humidity (Needham and Teel 1991, Eisen et  al. 2002, 2003), 
which explains the significance of precipitation and autumn vapor 
pressure as predictive variables. Areas that are generally warmer 
and wetter during the adult host-seeking season likely promote suc-
cessful host-seeking conditions for adult ticks that are vulnerable 
to desiccation and require a minimal level of warmth and humidity 
to effectively find hosts, mate, and reproduce (Salkeld et al. 2014, 
MacDonald and Briggs 2016).

Maximum temperature of the warmest month was retained by 
four of the five models and indicated an optimal range for survival 
between approximately 23–33°C. This range might appear slightly 
higher than expected based on previous studies that measured host-
seeking of nymphs relative to air temperature (Eisen et  al. 2002), 
but such ticks typically do not actively host-seek during the warmest 
months of the year and may be experiencing much lower tempera-
tures in certain refugia (e.g., in leaf litter). This variable is strongly 
correlated with maximum temperatures during other warm months 
that are more apt to correspond with the peak activity periods of 
immature ticks, but those were excluded here as candidate predic-
tors. A previous study from Mendocino County demonstrated that 
in oak woodlands the abundance of host-seeking nymphs typically 
begins to decline when the mean maximum daily air temperatures 
exceed 23°C (Eisen et al. 2002). Overall, excessive heat (generally 
between 32 and 40°C) increases ixodid tick mortality and reduces 
oviposition success (Needham and Teel 1991, Peavey and Lane 
1996, Ogden et al. 2004, Eisen et al. 2016b).

Recent technological improvements, such as digitization of 
records, cloud-based processing, freeware and open source ana-
lytical tools, have facilitated the integration of increasing amounts 
of geo-referenced biological data with high-resolution global cli-
mate data and made species distribution models more available to 
researchers (Graham et al. 2004, Jimenez-Valverde et al. 2008, Elith 
and Leathwick 2009). Species distribution models are used often to 
examine potential climate change impacts on biodiversity and to aid 

Table 4. Threshold independent (AUC) and dependent (90 and 99% 
sensitivity thresholds) performance metrics for BRT, GLM, MARS, 
Maxent, and RF models

Model

BRT GLM MARS Maxent RF

AUC (test/train) 0.89/0.95 0.86/0.85 0.89/0.88 0.88/0.91 0.90/0.90
Specificity (%)
 90% sensitivity 87 67 73 77 97
 99% sensitivity 64 43 41 49 88
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in conservation (Loarie et al. 2008), and they are increasingly being 
used in public health contexts to prioritize vector management or 
eradication (Dicko et al. 2014, Fuller et al. 2016).

Despite their utility, species distribution models have been criti-
cized for theoretical and practical reasons. First, these models assume 
that the niche being modeled is based solely on physical, noninterac-
tive requirements for a population to exist, and can be ascertain-
able from a species’ current distribution (Austin 2007, Easterday 
et  al. 2016). These can be problematic assumptions, but the ben-
efits of mapping potential niche for medically important species to 
target vector surveillance and prevention resources outweigh these 
concerns. Additionally, these models can be biased by the choice of 
the temporal and spatial scale of the input data (e.g., data are not 
detailed enough to reveal important niches). This is especially prob-
lematic when downscaled climate data are not available for a given 
region. Finally, recent studies have revealed that projections by alter-
native models can be variable (Araujo and New 2007), and reliance 
on a single model is not useful. Our use of an ensemble approach 
helps shield against biases imposed by reliance on a single model.

Although our model yielded a good fit to the available tick-col-
lection records, there are several remaining limitations to address. 
We restricted our model extrapolation only to forest, grass, scrub-
shrub, and riparian areas because these were the main land cover 
classes where tick sampling was conducted and therefore believed 

to be the most significant classes for I. pacificus survival (Furman 
and Loomis 1984, Lane and Stubbs 1990, Kramer and Beesley 1993, 
Eisen et al. 2004). Applying the mask avoided classifying intensive 
agricultural lands, impervious surfaces, and aquatic environments as 
suitable for the tick. However, given the spatial resolution and qual-
ity of our land cover mask, small isolated woodlands may have been 
excluded. These kinds of small or isolated habitats are difficult to 
map using remote sensing, and might have been missed in the origi-
nal land cover dataset (Nagendra 2001), and in the resampled mask. 
For example, in parts of the northern Central Valley where wood-
lands are extremely fragmented but climatic conditions are consist-
ent with classification as suitable, these areas may not be coded as 
suitable on our maps. As a result, field sampling may reveal that the 
tick is present in woodlands in this region that are not represented 
in our maps.

Our models should be evaluated further by means of ground-
truthing field studies and to assess geographic variation in the density 
of host-seeking ticks and in prevalence of infection in those ticks. 
Also, they may prove useful for guiding vector surveillance efforts. 
Although those models that were based on a 99% sensitivity thresh-
old should portray the most inclusive distribution of suitable habitat 
for the tick, many such sites might yield low tick abundance either 
because certain regions manifest lower probabilities of suitability, or 
because of model error. Indeed, specificity of the models based on this 

Fig. 3. Response curves of environmental variables selected by the I. pacificus models. The x-axis represents the range of each environmental variable in the 
training dataset; the y-axis represents the probability of suitable and non-suitable habitat, 1 and 0, respectively.
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threshold ranged from 44 to 88%. By contrast, when surveillance 
resources are scarce, focusing tick collection efforts on areas classi-
fied as suitable based on a 90% sensitivity threshold are more likely 
to yield ticks compared with the models based on a 99% sensitivity.

Although presence of a vector tick is a prerequisite for risk of 
tickborne diseases, our models are not intended to predict the like-
lihood of I.  pacificus-borne disease occurrence. Among counties 
reporting an incidence of ≥3.0 confirmed Lyme diseases cases per 
100,000 person-years from 2007 to 2016 (Mendocino, Humboldt, 
Trinity and Sierra) (Yoshimizu et  al. 2016), our models predicted 
between 26.56 and 90.74% of those counties to be suitable for 
I. pacificus and reveal considerable spatial variability within coun-
ties. For example, suitable habitat within Sierra County appears to 
be restricted to lower elevations in the western portion of the county, 
whereas it is more widespread in Mendocino County. Within these 
suitable areas, risk of encountering infected ticks may differ based 
on spatial variation in the abundance of infected ticks, presence or 
absence of primary reservoir hosts capable of infecting ticks with 
zoonotic agents, how much time people spend in various vegetation 
types infested with ticks, or regional differences in human behaviors 
that put people at risk for exposure to tick bites (Lane et al. 2004). 
In general, the density of host-seeking nymphs or the density of host-
seeking nymphs infected with B.  burgdorferi are better indicators 
of Lyme disease incidence than simple measures of the tick’s pres-
ence (Mather et al. 1996, Stafford et al. 1998, Eisen et al. 2006b, 
Pepin et al. 2012). Moreover, the density of host-seeking I. pacifi-
cus nymphs differs among land cover classes such that nymphs are 
typically more common in dense woodlands compared with grass, 
chaparral or woodland-grass, but there also are notable differences 
in the densities of host-seeking nymphs among woodland types and 
between northern and southern regions of the state (Lane and Stubbs 
1990; Kramer and Beesley 1993; Clover and Lane 1995; Eisen et al. 

2003, 2004, 2006a,b, 2010; Salkeld et  al. 2014; MacDonald and 
Briggs 2016; MacDonald et al. 2017). Thus, within areas classified 
as suitable for I.  pacificus, a tremendous amount of variability is 
expected in the abundance of host-seeking ticks and in their infec-
tion rates with zoonotic agents, which are often associated with host 
community composition (Mather et al. 1989, LoGiudice et al. 2003, 
Salkeld and Lane 2010), a variable not included in our models.

In conclusion, our study updates maps of suitable habitat for 
I. pacificus in California and reveals substantial variability within 
and among counties. Moreover, we identified climatic variables asso-
ciated with suitability, which provides a basis for predicting future 
changes in the tick’s distribution in response to climate variability.
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