Vaccination with minor capsid protein L2 induces antibodies that cross-neutralize diverse papillomavirus types. However, neutralizing antibody titers against the papillomavirus type from which the L2 vaccine was derived are generally higher than the titers against heterologous types, which could limit effectiveness against heterologous types. We hypothesized that vaccination with concatenated multitype L2 fusion proteins derived from known cross-protective epitopes of several divergent human papillomavirus (HPV) types might enhance immunity across clinically relevant HPV genotypes.


Antibody responses of mice (n = 120) and rabbits (n = 23) to vaccination with HPV-16 amino-terminal L2 polypeptides or multitype L2 fusion proteins, namely, 11-200 × 3 (HPV types 6, 16, 18), 11-88 × 5 (HPV types 1, 5, 6, 16, 18), or 17-36 × 22 (five cutaneous, two mucosal low-risk, and 15 oncogenic types), that were formulated alone or in GPI-0100, alum, or 1018 ISS adjuvants were compared with vaccination with L1 virus-like particles (VLPs), including Gardasil, a licensed quadrivalent HPV L1 vaccine, and a negative control. Mice were challenged with HPV-16 pseudovirions 4 months after vaccination. Statistical tests were two-sided.


The HPV-16 L2 polypeptides generated robust HPV-16–neutralizing antibody responses, albeit lower than those to HPV-16 L1 VLPs, and lower responses against other HPVs. In contrast, vaccination with the multitype L2 fusion proteins 11-200 x 3 and 11-88 x 5 induced high serum neutralizing antibody titers against all heterologous HPVs tested. 11-200 × 3 formulated in GPI-0100 adjuvant or alum with 1018 ISS protected mice against HPV-16 challenge (reduction in HPV-16 infection vs phosphate-buffered saline control, P < .001) 4 months after vaccination as well as HPV-16 L1 VLPs, but 11-200 × 3 alone or formulated with either alum or 1018 ISS was less effective (reduction in HPV-16 infection, P < .001).


Concatenated multitype L2 proteins in adjuvant have potential as pan-oncogenic HPV vaccines.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.0/uk/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
You do not currently have access to this article.