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Insights gained from novel molecular tests may improve the ability 
to make accurate prognostic assessments for patients with cancer. 
One of the most promising new biological measurements involves 
the expression of microRNAs (miRs), which are small, noncoding, 
highly stable 22-base-pair nucleic acids first discovered in the 
nematode Caenorhabditis elegans (1). Unlike messenger RNA, 
which serves as a template for DNA translation to protein, miRs 
are unique because they directly regulate this translation. To date, 
investigators have discovered several hundred of these oligomers 
(2). Furthermore, the ability of these molecules to act as gene sup-
pressors or activators at multiple sites, their relatively limited 
number, and their remarkable in vivo stability make them appealing 
to study as clinical biomarkers in cancer and other diseases (3).

Many articles have published promising results for miR-based 
prognostic classifiers in diverse malignancies. Whereas some 
studies test only a handful of miRs on an opportunistic basis, there 
are also many studies that evaluate a large number of miRs in an 
agnostic fashion, that is, they select the most prognostic miRs from 

a large initial unselected set. The development of miR-based clas-
sifiers requires rigorous methods and validation processes, and it is 
often challenging to make sense of the evidence accumulated from 
complex “omics” studies to ensure that results are unbiased and 
well validated (4,5). This problem applies to the cancer miR liter-
ature as well, and it is accentuated by the fact that the literature 
comprises many, mostly small, studies among different cancer 
types. Currently, a formal systematic synthesis of the evidence on 
miR prognostic markers for cancer outcomes is lacking.

For this study, we systematically evaluated and synthesized the 
data from miR studies that have attempted to identify prognostic 
classifiers in malignancies. We describe the characteristics of studies 
published to date, assess study design and limitations thereof—
with emphasis on the validation practices—and provide a quantita-
tive synopsis of the performance of these biomarkers for important 
clinical outcomes in cancer. We further evaluate the specific miRs 
that are most frequently identified as important prognostic indica-
tors of survival for diverse malignancies.
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 Background MicroRNA (miR) expression may have prognostic value for many types of cancers. However, the miR literature 
comprises many small studies. We systematically reviewed and synthesized the evidence.

 Methods Using MEDLINE (last update December 2010), we identified English language studies that examined associa-
tions between miRs and cancer prognosis using tumor specimens for more than 10 patients during classifier 
development. We included studies that assessed a major clinical outcome (nodal disease, disease progression, 
response to therapy, metastasis, recurrence, or overall survival) in an agnostic fashion using either polymerase 
chain reaction or hybridized oligonucleotide microarrays.

 Results Forty-six articles presenting results on 43 studies pertaining to 20 different types of malignancy were eligible for 
inclusion in this review. The median study size was 65 patients (interquartile range [IQR] = 34–129), the median 
number of miRs assayed was 328 (IQR = 250–470), and overall survival or recurrence were the most commonly 
measured outcomes (30 and 19 studies, respectively). External validation was performed in 21 studies, 20 of 
which reported at least one nominally statistically significant result for a miR classifier. The median hazard ratio 
for poor outcome in externally validated studies was 2.52 (IQR = 2.26–5.40). For all classifier miRs in studies that 
evaluated overall survival across diverse malignancies, the miRs most frequently associated with poor outcome 
after accounting for differences in miR assessment due to platform type were let-7 (decreased expression in 
patients with cancer) and miR 21 (increased expression).

 Conclusions MiR classifiers show promising prognostic associations with major cancer outcomes and specific miRs are 
consistently identified across diverse studies and platforms. These types of classifiers require careful external 
validation in large groups of cancer patients that have adequate protection from bias.
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Methods
Search Strategy and Eligibility Criteria
We searched MEDLINE for English language studies that analyzed 
associations between miRs and prognosis in cancer patients. The 
search strategy used the clinical queries prognosis filter, which has a 
sensitivity of 92% for detecting articles related to prognosis (6): 
(Prognosis/Broad [filter]) AND ((microRNA OR miRNA OR miR) 
AND (cancer OR tumor OR neoplas* OR tumour OR malignan* OR 
metastat* OR metastas* OR leukemia OR lymphoma OR recurren* 
OR tumor control OR lymph node OR response) AND 
(Humans[Mesh] AND English[lang])). The search was last updated to 
include articles published through December 31, 2010.

Studies were iteratively screened for inclusion at the title, 
abstract, and full-text levels. Titles or abstracts that were not 
clearly categorized as being eligible or not were reviewed at the 
next stage until a definitive assessment could be made. Articles 
were considered eligible if they described miR analyses in samples 
from patients with any type of malignancy, with the aim of evalu-
ating major clinical outcomes. Eligible outcomes included disease 
progression, response to therapy, metastasis, recurrence, and over-
all survival. We only considered studies that analyzed a large 
number of miRs (>20) without specifying a priori that only a select 
number of miRs should be tested based on speculation about their 
biological importance. Studies that included such agnostic testing 
of multiple miRs were eligible for consideration in this review if 
they examined associations between these miRs and clinical out-
comes in a single dataset or if they also performed validation of 
these associations (either by cross-validation or by external valida-
tion in a separate dataset). Articles that presented the results of 
studies with selective testing of one or a few miRs were eligible if 
they evaluated miRs associated with clinical outcomes in an earlier 
study that had started from the agnostic testing of a large number 
of miRs; these articles were then considered as efforts to validate 
the earlier studies. Finally, we only considered studies with a 
sample size exceeding 10 patients because the ability to evaluate 
any prognostic marker would be negligible in smaller studies.

Studies that used either quantitative real-time polymerase chain 
reaction (qRT-PCR) array or hybridized oligonucleotide microar-
ray (oligoarray) platforms were eligible for inclusion. We excluded 
cross-sectional studies (eg, those that addressed associations with 
tumor stage), studies concerning genetic alterations of an miR  
(eg, polymorphisms or methylation patterns), and studies involving 
oncoviruses. Studies that defined associations with tumor his-
tology, tumor size, tumor differentiation from normal tissue, or 
malignant potential without specifically examining associations 
with a clinical outcome were likewise excluded. Two reviewers  
(V. S. Nair and L. S. Maeda) identified eligible studies, and  
contested articles were adjudicated by a third reviewer (J. P. A. 
Ioannidis). The reference lists from included articles were exam-
ined to ensure that relevant studies were not missed.

Data Extraction
We used a worksheet to record information about all studies that 
qualified for final inclusion. The worksheet documented relevant 
metrics identified during full-text retrieval of the included studies 
based on previous empirical evaluations of “omics” studies and 

information that we thought would be important in identifying 
systematic variation for this genre of literature (4,5,7). More spe-
cifically, the worksheet included information on the journal in 
which the study was published, demographics, study characteris-
tics, array platform characteristics, technical validation procedures, 
statistical methods for selecting miRs, validation techniques,  
adjustment for other potential predictors, and clinical outcomes. 
The performance of miRs for prognosis was captured separately 
for training, cross-validation, and independent external validation 
settings whenever applicable.

Statistical Methods
Descriptive characteristics for studies were described by the  
median value with interquartile range (IQR) for continuous vari-
ables and by frequencies with percentages for categorical variables. 

CONTEXT AND CAVEATS

Prior knowledge
Many small studies have examined associations between tumor 
expression of microRNAs (miRs)—small, noncoding highly stable 
nucleic acids that regulate DNA translation to protein—and clinical 
outcome for a variety of cancers. However, there has been no for-
mal systematic synthesis of the evidence on miR prognostic 
markers for cancer outcomes.

Study design
A systematic review of 46 articles presenting results on 43 studies 
pertaining to 20 different cancers that examined associations 
between miRs and prognosis using tumor specimens for more 
than 10 patients during classifier development. Included studies 
used either polymerase chain reaction or hybridized oligonucleo-
tide microarrays to assess associations with a major clinical out-
come in an agnostic fashion (ie, without selection for prior 
credibility).

Contribution
The median study size was 65 patients, the median number of miRs 
assayed was 328, and the most commonly measured outcomes 
were overall survival and recurrence. Of the 21 studies that per-
formed external validation, 20 reported at least one nominally sta-
tistically significant result for a miR classifier. The median hazard 
ratio for poor outcome in externally validated studies was 2.52. 
Two miRs appeared repeatedly among the selected classifiers for 
different malignancies: let-7 (decreased expression in patients with 
cancer) and miR 21 (increased expression).

Implications
MiR classifiers show promising prognostic associations with major 
cancer outcomes. That fact that specific miRs are consistently iden-
tified across diverse studies and assay platforms suggests that 
regulatory pathways coordinated by miRs operate across cancers.

Limitations
The review excluded non–English language articles and studies that 
analyzed fewer than 20 miRs, cross-sectional studies, studies con-
cerning genetic alterations of a miR, and studies involving oncovi-
ruses. Some biases at the study or outcome level were difficult to 
assess due to non-standardized reporting in the primary studies.

From the Editors
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MiR classifiers were defined by the authors of each study; some 
classifiers consisted of a single miR, whereas other classifiers com-
bined information from multiple miRs. We abstracted the miR 
threshold published by the original investigators to define the  
association between miR expression and outcome along with the 
threshold metric used for this purpose. To quantify the risk of 
poor clinical outcome associated with each classifier, we extracted 
the hazard ratio (HR) from time-to-event analyses along with the 
95% confidence interval for the defined miR categories. Whenever 
the 95% confidence interval was not directly provided, we approx-
imated it using the hazard ratio and the P value from the log-rank 
test, or we estimated the variance of the natural logarithm of the 
hazard ratio using the formula [(n1 + n2)2/(n1 + n2) × t1 × t2], where 
n was the number of events per group delineated by miR expres-
sion levels and t was the total number of subjects per group (8). 
When the hazard ratio was not reported and it was not possible to 
approximate it with these calculations, we used the inverse of the 
ratio of the median survival times in groups that were defined by 
miR expression levels to approximate the hazard ratio. For consis-
tency, all hazard ratios were expressed as values greater than 1 to 
denote increased risk (ie, HRs <1 were presented as the inverted 
ratio). No formal quantitative synthesis (meta-analysis) of these 
data was performed because they pertained to heterogeneous 
cancers, miRs, validation settings, and adjustments.

Testing for Small-Study Effects and Excess of Statistically 
Significant Results
For estimates of effects derived from validation studies, we evalu-
ated whether smaller studies yielded different effects compared 
with larger studies by creating a funnel plot with sample size on the 
vertical axis and log10 hazard ratio on the horizontal axis. We used 
sample size for the funnel plot because there were no complete 
data on standard errors for all estimates. We used linear regression 
(9) to assess whether the sample size was associated with the log10 
hazard ratio. We also calculated the expected number of positive 
classifiers based on the power of each study to find nominally  
statistically significant (P < .05) results given the number of events 
and assuming an effect equal to the median effect found in these 
analyses. The expected number was then compared with the 
observed number using a x2 test to determine whether an excess of 
statistically significant findings existed (10,11).

Specific MiRs Associated With Survival
We also identified which specific miRs were identified most fre-
quently across all cancers regardless of expression level direction 
and those with increased or decreased expression levels. This 
analysis required adjusting for how many times each miR was 
assayed because not all known miRs were assessed up front in all 
studies. We therefore counted how many opportunities each miR 
had for selection, or in other words, how many times it was assayed 
in the original agnostic platform, and also counted how many 
times each miR was identified in training classifiers used for sur-
vival analysis. The null hypothesis is that all miRs had the same 
probability of being selected in a prognostic classifier across any 
study. This expected probability is equal to pexp= Ncl/Npl, where Ncl 
is the sum of the number of statistically significant miRs across all 
survival classifiers and Npl is the sum of the number of miRs across 

all platforms evaluated in survival studies. We used a binomial test 
to determine whether the observed frequency of selection for each 
miR across all classifiers differed from the expected probability. In 
a sensitivity analysis, we also assessed variants of the same “parent” 
miR as separate opportunities for classifier prediction. The parent 
is defined here as the root number assigned to each miR without 
additional annotation according to the Welcome Trust Sanger  
Institute’s miRBase registry (12) and represents the fundamental 
unique biological miR. As a hypothetical example, the parent miR 
of miR 0*, 0a, 0-1, and 0-3p would be coded as miR 0. We limited 
our analysis to overall survival because recurrence, progression, 
and metastasis were often studied in concert with survival and were 
typically not studied independently (recurrence was examined in 
nine studies, progression in four studies, and metastasis in one 
study). MiR platform data were recovered from the supplementary 
material of the relevant studies, the Gene Expression Omnibus of 
the National Center for Biotechnology Information, or the 
European Bioinformatics Institute Array Express Database.

All calculations were performed using Excel software (for Mac 
2011, Microsoft Corp, Seattle, WA) or SAS statistical software 
(v9.2; SAS Institute Inc, Cary, NC). Forest plots were developed 
using GraphPad Prism (v5; GraphPad Software, Inc, La Jolla, CA). 
P values are two-sided.

Results
Eligible Studies
Of the 987 items retrieved by the MEDLINE search, 908 were 
excluded based on screening of the title or abstract and 79 were 
evaluated in full text. Of these, ultimately 46 articles (13–58) per-
taining to 43 different studies (ie, unique miR classifiers associated 
with a clinical outcome) were considered eligible for inclusion in 
this review (Figure 1). One article (52) described a validation study 
of a classifier that had been developed but not externally validated 
in a previous article (18), another article (15) described a new 
validation study of a classifier that had already been externally 
validated in a previous article (14), and two other articles from the 
same research group (39,40) described the development and 
training of the same classifier and were counted as one study. We 
refer to these combined classifiers from here as “Calin–Visone” 
(18,52), “Bray–Buckley” (14,15), and “Navarro” (39,40) in the 
accompanying tables.

The median impact factor of the journals in which the eligible 
studies were published was 7.5 (IQR = 4.7–11). The first eligible 
article was published in the New England Journal of Medicine in 
2005 and 21 different journals published this research (Table 1). 
The median study size was 65 patients (IQR = 34–129 patients), 
most studies analyzed solid tumors, and more than three times as 
many studies used frozen tumor tissue vs formalin-fixed paraffin-
embedded tumor tissue. Hybridized oligoarrays were used by 81% 
of the studies to identify statistically significant miRs, whereas 
PCR arrays were used by 19% of the studies. The median number 
of miRs assayed across studies was 328 (IQR = 250–470).

Array Data Processing
In general, most studies that used oligoarray analysis reported 
data normalization procedures consisting of: 1) filtering probe 
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signal intensity by mean normalization across replicates to adjust 
for sample variability, 2) median centering across arrays to adjust 
for interarray variability, and 3) log normalization to accommo-
date further statistical analyses (Supplementary Table 1, avail-
able online). By contrast, studies that used qRT-PCR arrays 
performed mean normalization for replicates based on the  
amplification threshold cycle (Ct) with normalization to an 
endogenous control to account for between-sample variability. 
Among the 43 included studies, 33 of the 35 oligoarray studies 
defined a normalization procedure for microarray data process-
ing, with global median normalization being the most common 
method. Thirty-two oligoarray studies validated signal intensity 
by PCR, and none of the PCR array studies provided additional 
signal validation. Normalization using endogenous miR controls 
to account for between-sample variability for PCR arrays was 
performed in all cases, and the most commonly used endogenous 
miR controls were U6B and let-7. Comparative expression 
analysis was the dominant method used for quantifying PCR 
transcript expression (59).

Analytic Methods Used for Classifier Development
Although the included studies used diverse statistical methods, the 
majority (31 [72%] of 43) provided methods to account for  
multiple comparisons, either by reporting a false discovery rate  
(Q value) (60) or an adjusted P value. The most commonly used Q 
value was 0.05 (n = 9) and the median adjusted P value was .005 
(n = 8).

Thirty-three studies (13–19,22–28,32,33,35–37,39–50,53–55,
58) performed either cross-validation or external validation, and 

Table 1. Descriptive characteristics for included studies*

General study characteristics
 Journal impact factor† 7.5 (4.7–11)
 Year of publication
  2005–2007 3 (7)
  2008 12 (28)
  2009 13 (30)
  2010 15 (35)
 Sample size, all studies 65 (34–129)
 Sample size, internal validation studies only 76 (53–142)
 Sample size, external validation studies only 129 (69–182)
Tumor characteristics
 Tumor type
  Solid tumor 35 (81)
  Hematological 8 (19)
 Tissue preservation method
  Frozen 22 (51)
  Paraffin-embedded 7 (16)
  Frozen and paraffin-embedded 2 (5)
  Other 5 (12)
  Not reported 7 (16)
Assay characteristics
 Array type
  Oligoarray 35 (81)
  Polymerase chain reaction 8 (19)
 MiRs assayed 328 (250–470)
 Net miRs‡ 208 (167–298)
 Predictive miRs 6 (3.5–9.5)
  Increased expression 3 (0–6)
  Decreased expression 1 (0–3.3)
Validation
 Internal validation 20 (47)
  Sample size 62 (47–92)
 External validation 21 (49)
  Sample size 55 (32–79)
 Internal and external validation 8 (19)
  Sample size 186 (110–241)
Validation method§ 33 (77)
 Cross-validation 20 (47)
  K means 5 (12)
  Leave-one-out 1 (2)
  Bootstrapping 2 (5)
  Prediction of analysis microarray 2 (5)
  Other 10 (21)
 External validation§ǁ 21 (49)
  Split samples 7 (16)
  Independent samples 6 (13)
  Combined cohorts 3 (7)
  Not clearly defined 5 (12)
Outcome¶
 Response to therapy 1 (2)
 Metastasis 2 (5)
 Disease progression 6 (14)
 Recurrence 19 (44)
 Overall survival 30 (59)

* Continuous variables are displayed as the median (interquartile range) and 
categorical variables as No. (%). Data are based on 43 studies, except where 
explicitly enumerated and for the variables net miRs, miRs with increased 
expression, and miRs with decreased expression for which information was 
available from 17, 41, and 41 studies, respectively. miR = microRNA.

† Based on 2009 data.

‡ After data processing and filtration and before classifier development.

§ For prespecified outcomes as stated in the inclusion criteria.

ǁ Split-pair sampling was considered external validation. For one study, both 
split-sample and independent external cohort testing was performed. In that 
case, we considered only the external cohort as the external validation.

¶ All outcomes in training or test cohorts are tabulated per study.

Figure 1. Flow chart of study inclusion.
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seven studies (16,18,28,37,47,48,55) performed both cross-validation 
and external validation (Table 1). Among the 20 studies that 
performed cross-validation (14,16–19,23,26–28,36,37,41,42,45,
47,48,53–55,58), the most common methods were K-means clus-
tering with bootstrapping, leave-one-out cross-validation, and 
prediction analysis of microarrays (61–63). Two studies (23,24) 
used multiple cross-validation methods, and six studies 
(22,35,43,46,47,49) validated results using different model building 
methods for the same cohort. Of the 21 studies that carried a 
developed miR classifier to an external validation stage (14–
19,23,27,28,32,36,37,41,42,47,48,53–55,58), 17 used a distinct 
previously unexamined group of patients, whereas the other four 
studies (16,28,37,58) that claimed to externally validate actually 
combined the training and test groups for final classifier 
modeling.

Outcomes
The most commonly measured outcomes were overall survival  
(30 studies) and recurrence (19 studies), and 10 studies examined 
both (Table 1). Metastasis, disease progression, and response to 
therapy were not commonly studied endpoints.

Characteristics of Training Processes
The included studies addressed outcomes for 20 different malig-
nancies, with the most common being lung cancer (five studies), 
hepatocellular carcinoma (four studies), leukemia (four studies), 
and ovarian cancer (four studies) (Table 2). Several common can-
cers (ie, prostate, colon, and breast cancer) were evaluated in com-
paratively few studies. Training set sample size varied considerably. 
The largest training set was in a study of hepatocellular carcinoma 
(n = 131), and studies that addressed outcomes for gynecologic 
cancers generally had the smallest training cohorts. Sixteen studies 
assessed clinical variables in the miR training cohort, and 14 of 
these studies stated that these potentially prognostic variables were 
incorporated in multivariable adjusted analyses in the training set 
during miR classifier development (Table 2). Stage (n = 10 
studies), age (n = 6 studies), grade (n = 5 studies), and sex (n = 5 
studies) were the most commonly used adjustment factors.

Most studies assayed hundreds of miRs (range = 73–911), and 
the number of miRs that were found to be statistically significantly 
associated with an outcome of interest ranged from 1 to 42 (Table 2). 
Of the 43 studies, 14 used continuous miR expression levels to 
assess outcome without stratifying, whereas the remaining 29 
stratified miR levels to assess outcomes (Supplementary Table 2, 
available online). When we summed the number of miRs that were 
statistically significantly associated with outcomes across all devel-
oped classifiers, the total number of miRs selected was 339, and of 
those, 150 displayed increased expression in samples of patients 
with cancer, 103 displayed decreased expression, and for 86, it was 
not clearly stated whether their expression was increased or 
decreased in patients with cancer.

Selection of MiRs for External Validation
Of the 21 studies that performed external validation, 11 carried 
forward to the test set all of the statistically significant miRs in the 
training set, whereas the remaining 10 carried forward only part of 
the developed classifier for external validation testing. Four of the 
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studies that dropped part of the prognostic classifier in the test 
cohort did not provide a clear reason for doing so (Table 2).

External Validation Studies
The median sample size for training and test cohorts for the 21 
studies that performed external validation was 62 (range = 20–131) 
and 55 (range = 16–147), respectively. These studies externally 
validated their data on a total of 1188 patients by using disease 
progression (one study), metastasis (two studies), recurrence  
(10 studies), or overall survival (14 studies) as an outcome measure 
(Table 3). Six of 21 studies provided externally validated data for 
more than one outcome. Nine studies used a classifier for outcome 
analysis that combined information for more than one miR, and  
12 studies used only a single miR for outcome analysis. Six of these 
12 studies presented separate analyses for several miRs.

To assess the effect of miR expression levels on patient out-
come, studies performed survival analysis by regression modeling 
or Kaplan–Meier plots against a threshold miR expression level in 
most test sets except for one study where the threshold was not 
explicitly stated (52). Single miR classifiers used the median (n = 10 
studies), mean (n = 1 study), or some other (n = 1 study) expression 
threshold to dichotomize expression levels. Composite classifiers 
used a “summary” score for further analysis and selected various 
cutoffs (Supplementary Table 2, available online).

For these 21 externally validated studies, 45 cancer-specific 
outcomes were assessed (Table 3). We imputed hazard ratios for 
16 of the 45 outcomes reported in these 21 studies and 95% con-
fidence intervals for 19 of the 45 outcomes for which this informa-
tion was not explicitly provided. For 14 of the 45 outcomes, we 
could extract point estimates only. Examining unadjusted hazard 
ratios (unless only an adjusted value was available) revealed that 16 
of the 45 miR classifiers were not statistically significantly associ-
ated with outcome (Table 3). The median hazard ratio in external 
validation studies that reported statistically significant results at  
the P = .05 level for which we were able to extract or approxi-
mately calculate a hazard ratio (n = 25) was 2.52 (IQR = 2.26–5.40; 
range = 1.39–19.7) (Figure 2). Fifteen of these 25 estimates had 
a P value less than .01. For all 45 reported hazard ratios, regard-
less of statistical significance, the median hazard ratio was 2.29 
(IQR = 1.39–3.28) (Table 3).

Twelve studies adjusted for potentially prognostic clinical and  
pathological variables during multivariable regression in test 
cohorts (Table 3). Of the six studies that presented hazard ratios 
and 95% confidence intervals for both unadjusted and adjusted 
classifiers, only one (28) reported a substantially smaller hazard 
ratio with adjustment, whereas in the other studies (16,37,47,53,58), 
there was no substantial change or an increase in the hazard ratio 
estimate with adjustment. Only three studies performed adjusted 
and unadjusted analysis for their miR classifier in both training and 
test cohorts: two studies (47,53) adjusted for the same variables in 
both the test and training cohorts, and one study (45) adjusted for 
different variables.

Testing for Small-Study Effects and Excess of Statistically 
Significant Results
As shown in Figure 3, there was a suggestion that large effect sizes 
were seen predominantly in smaller studies (P = .08 for correlation 
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between log10HR and sample size). Moreover, we estimated the 
statistical power required for 40 of the 45 measured outcomes to 
achieve the median hazard ratio of 2.29 (we excluded five study 
outcome analyses for which the number of events was missing and 
could not be approximated). Power calculations showed that the 
expected number of measured outcomes with nominally statisti-
cally significant results among the 40 available was 17.9 vs the  
25 observed (P = .02 for an excess statistical significance of expected 
vs observed positive classifiers).

Specific MiRs Associated With Overall Survival
Thirty studies evaluated overall survival as a clinical outcome in a 
training cohort, and for 27 of these studies, we were able to extract 
data for the full miR profiles tested (Supplementary Tables 3 and 4,  
available online). A total of 257 prognostic miRs from the original 
339 miRs were identified in these 27 classifiers, and 20 miRs 
(7.8%) were identified statistically significantly more frequently 
than expected at an alpha level of 5%. Four miRs (let-7, 21, 100, 
and 125) were statistically significantly associated with overall  
survival at an alpha level of 1% (Table 4). In addition, four miRs 
(20, 21, 155, and 193) appeared more frequently than expected as 

miRs with increased expression and four miRs (let-7, 29, 30, and 
7039) appeared more frequently than expected as miRs with 
decreased expression at an alpha level of .01. Let-7 and miR 21 
were commonly part of classifiers associated with poor outcome, 
both overall and when miRs were grouped by direction of expres-
sion level. Expression of let-7 was decreased in a variety of tumors, 
including gastric, lung, liver, and ovarian carcinomas. Expression 
of miR 21 was increased consistently in lung, ovarian, and colon 
cancer as well as in astrocytoma. Additional sensitivity analyses for 
fully annotated miRs are presented in Supplementary Tables 5–8 
(available online).

Discussion
In this systematic review, we found that several miR classifiers 
were associated with prognosis above and beyond traditional clin-
ical and pathological metrics for a diverse group of cancers. The 
median hazard ratio for statistically significant classifiers that  
were developed and tested in separate groups of patients was 2.52, 
suggesting a modestly strong discriminatory ability. Moreover,  
we identified specific miRs that appeared repeatedly among the 

Figure 2. Nominally statistically significant hazard ratios of miR classifiers in 
test cohorts. Prognostic impact of miRs by cancer type and study are shown 
for statistically significant results. The point estimate (denoted by a circle) is 
bounded by a 95% confidence interval (CI) (indicated by error bars), and the 
dashed line represents no increased risk (unity) for the outcome. Each study 
is referred to by author name followed by the measured outcome and the 

miR(s) included in the classifier. Classifiers with many miRs per classifier 
are denoted as “multiple” (see Supplementary Table 2 [available online] for 
full details). Unadjusted hazard ratios (HRs) and 95% CIs are presented for 
all studies except for those by Garzon and Yu (27,55) for which only  
adjusted hazard ratios were available. CNS = central nervous system;  
miR = microRNA; OS = overall survival; recur = recurrence.
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selected classifiers for different malignancies. This finding sug-
gests that miR-coordinated regulatory pathways are common to 
many cancers.

Although these results are promising, this overview suggests 
several caveats and areas for improvement in miR-related transla-
tional research. There are many critical steps in the appraisal of 
miRs for prognostic purposes, and errors or biases can appear at all 
steps (64), including data acquisition, which is subject to preana-
lytical imprecision (65), and the large variety of statistical methods 
that are applied for classifier generation, which allows for a range 
of different results and creates opportunities for selective analysis 
and other reporting biases. We found that adjustment for impor-
tant prognostic factors in both training and test cohorts was nei-
ther common nor standardized. Moreover, miRs that were 
considered in datasets for external validation were often a selected 
subset of those found in the training sets and were sometimes  
chosen without clear justification. Furthermore, most test cohorts 
were small, and although a large number of classifiers reached 
nominally statistically significant results in external validation, 
many had wide 95% confidence intervals, and most P values were 
close to the .05 threshold. A “winner’s curse” has been demon-
strated in other biomarker fields: small studies are typically per-
formed first and have large effect sizes (66–68), whereas subsequent 
larger replication studies report smaller effects or no effect at all (69).

We also found some evidence in the available data that smaller 
studies tended to report the largest effect estimates and that the 
number of statistically significant studies was probably excessive 
given the generally small sample sizes and relatively limited statis-
tical power of many of these investigations. These observations  
are consistent with the possibility of publication bias, although 
other explanations such as genuine heterogeneity of effects cannot 
be excluded, especially given the large diversity of cancers and 
markers analyzed (70).

Figure 3. Association between sample size and effect size. Hazard ratios 
(HRs) for studies reporting statistically significant and non-statistically 
significant findings are shown by study size (P = .08 for correlation 
between log10HR and sample size). The relative sizes of the gray and 
black circles indicate the study size and the median log10HR is shown by 
the dashed line.

Table 4. MicroRNAs selected most frequently in classifiers compared with expected frequency*

MiR
No. of times  

assessed, npl (%)†

No. of times  
selected in  

classifier, ncl (%)‡ P§ Cancer type

All miRs in patients with poor outcome    
 let-7 244 (2.46) 16 (6.23) <.001 Gastric, HCC, leukemia, lung, 

 melanoma, NHL, ovarian
 21 34 (0.34) 5 (1.95) .0018 Astrocytoma, colon, lung, ovarian
 100 26 (0.26) 4 (1.56) .0043 Gastric, HCC, lung
 125 71 (0.72) 6 (2.33) .0084 HCC, gastric, neuroblastoma
MiRs with increased expression in  
 patients with poor outcome

   

 21 34 (0.34) 5 (4.72) <.001 Astrocytoma, colon, lung, ovarian
 20 47 (0.47) 4 (3.77) .0046 Colon, leukemia, NHL
 155 26 (0.26) 3 (2.83) .0063 Lung, melanoma
 193 55 (0.56) 4 (3.77) .0078 Melanoma
MiRs with decreased expression in  
 patients with poor outcome

   

 let-7 244 (2.46) 7 (9.59) .0017 Gastric, lung, HCC, ovarian
 30 135 (1.36) 5 (6.85) .0028 Astrocytoma, HCC, lung
 29 94 (0.95) 4 (5.48) .0046 Endometrial, NHL
 7039ǁ 1 (0.01) 1 (1.37) .0073 Ovarian

* For studies assessing overall survival as an outcome with platform data available (n = 27). HCC = hepatocellular carcinoma; miR = microRNA;  
NHL = non-Hodgkin lymphoma.

† From 9900 total miRs across 27 platforms.

‡ Percentages calculated for 257, 146, and 73 of the selected miRs in the all, increased expression, and decreased expression sets, respectively (for 38 selected 
miRs, it was not specified whether their expression was increased or decreased in patients with cancer).

§ Two-sided, using the binomial distribution to assess a statistically significant difference between npl and ncl.

ǁ This is a proprietary miR from Ambion (Foster City, CA) used by Nam et al. (38).
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An interesting question that remains poorly defined for the 
field is the number of features required for a robust classifier. Most 
studies in this review developed an miR classifier and carried it 
forward to an external test set using only a few miRs. Patnaik et al. 
(43) suggested that at least four miRs were required for optimal 
test performance when examining the area under the receiver  
operating characteristic curve during cross-validation, whereas 
Bray et al. (14) found very marginally, albeit statistically signifi-
cantly, improved test performance when expanding their classifier 
from 10 to 42 miRs. Previous work in the field (71) suggests that 
differences in expression levels across genes necessarily define the 
size of a classifier and that a 1.5-fold increase in expression across 
seven different features (eg, miRs) will result in a small classification 
error rate between classes or populations (eg, patients with cancer 
who have different outcomes). Given that the majority of studies 
to date have externally validated classifiers with only one or a few 
selected miRs, it is likely that larger studies and a larger number of 
validated miRs will provide substantial improvement in discrimi-
natory ability.

The miR field is evolving rapidly. The first database of miR 
sequences (miRBase) contained 506 entries for six organisms in 
2002; by 2010, it contained 1424 entries for humans alone (2). 
Furthermore, miR terms are dynamic, and some miRs are 
“deceased” based on misclassifications due to high sequence simi-
larities between preprocessed miRs, actual miRs, and minor varia-
tions among different miRs (72). Because platform arrays are made 
from probes that are specific for sequences and annotated to the 
most recent registry, each change can render current or previous 
studies inaccurate. For these reasons, we chose to use an ontolog-
ical approach commonly used in gene enrichment analysis to  
account for some of these issues and to understand the expression 
of miRs across diverse cancers (73).

Although previous reviews (74,75) have illustrated the impor-
tance of certain cancer-associated miRs, including let-7 and miR 
21, our analysis augments this literature by systematically pooling 
prognostic associations for classifiers across cancers. By using an 
ontological approach, we demonstrate that let-7 and miR 21 
remained statistically significantly associated with outcome across 
all classifiers as well as when analyzed separately for miRs with 
increased (miR 21) or decreased (let-7) expression.

Specific miRs could be selected more frequently in cancer 
prognosis classifiers if either they have large average expression 
differences in patients with good vs poor prognosis and/or if the 
values of expression within each of these two groups have small 
variability. There are not sufficient data to tell whether the vari-
ances of the distributions of miR values consistently tend to be 
higher for some miRs than for others across very heterogeneous 
malignancies. One possibility is that miRs that are more frequently 
found to be differentially expressed have smaller variances within 
compared groups and thus have higher statistical power to detect 
differences. Alternatively, it is possible that some miRs indeed 
tend to be more important determinants of cancer survival than 
others.

Limitations of this systematic review are as follows: The review 
excluded non–English-language articles and studies that analyzed 
fewer than 20 miRs, cross-sectional studies, studies concerning 
genetic alterations of a miR, and studies involving oncoviruses. 

Some of the outcome data were missing (eg, HR estimates were 
not available or possible to calculate for all studies). Similarly,  
information was not always provided on each analyzed miR  
separately. Finally, some of the primary studies did not provide  
full details on their design and some selection or information 
biases cannot be excluded, whereas adjustments for other factors, 
including potential confounders were not standardized. This sys-
tematic review suggests that these are fronts where standardized 
reporting may improve the quality of this research literature in the 
future.

In conclusion, imperfect methodology and potential biases 
hinder the clinical application of miR expression testing as a bio-
marker of prognosis. However, the availability of many promising 
results suggests that larger scale standardized investigations with 
robust external validation practices for the most promising miRs 
are likely to better define the true potential of these novel cancer 
biomarkers and help select miR classifiers for further successful 
clinical translation.

References
 1. Ambros V. The functions of animal microRNAs. Nature. 2004;431(7006):

350–355.
 2. Kozomara A, Griffiths-Jones S. miRBase: integrating microRNA annota-

tion and deep-sequencing data. Nucleic Acids Res. 2011;39(Database 
issue):D152–D157.

 3. Calin GA, Liu CG, Sevignani C, et al. MicroRNA profiling reveals  
distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad 
Sci U S A. 2004;101(32):11755–11760.

 4. Dupuy A, Simon RM. Critical review of published microarray studies for 
cancer outcome and guidelines on statistical analysis and reporting. J Natl 
Cancer Inst. 2007;99(2):147–157.

 5. Ntzani EE, Ioannidis JP. Predictive ability of DNA microarrays for cancer 
outcomes and correlates: an empirical assessment. Lancet. 2003;362(9394):
1439–1444.

 6. Haynes RB, McKibbon KA, Wilczynski NL, Walter SD, Werre SR. 
Optimal search strategies for retrieving scientifically strong studies of 
treatment from Medline: analytical survey. BMJ. 2005;330(7501):1179.

 7. Castaldi PJ, Dahabreh IJ, Ioannidis JP. An empirical assessment of valida-
tion practices for molecular classifiers. Brief Bioinform. 2011;12(3):
189–202.

 8. Kyrgiou M, Salanti G, Pavlidis N, Paraskevaidis E, Ioannidis JP. Survival 
benefits with diverse chemotherapy regimens for ovarian cancer: meta-
analysis of multiple treatments. J Natl Cancer Inst. 2006;98(22):
1655–1663.

 9. Sterne JA, Sutton AJ, Ioannidis JP, et al. Recommendations for examining 
and interpreting funnel plot asymmetry in meta-analyses of randomised 
controlled trials. BMJ. 2011;342:d4002.

 10. Ioannidis JP. Excess significance bias in the literature on brain volume 
abnormalities. Arch Gen Psychiatry. 2011;68(8):773–780.

 11. Ioannidis JP, Trikalinos TA. An exploratory test for an excess of signifi-
cant findings. Clin Trials. 2007;4(3):245–253.

 12. Griffiths-Jones S. The microRNA Registry. Nucleic Acids Res. 2004;
32(Database issue):D109–D111.

 13. Bloomston M, Frankel WL, Petrocca F, et al. MicroRNA expression 
patterns to differentiate pancreatic adenocarcinoma from normal pancreas 
and chronic pancreatitis. JAMA. 2007;297(17):1901–1908.

 14. Bray I, Bryan K, Prenter S, et al. Widespread dysregulation of MiRNAs 
by MYCN amplification and chromosomal imbalances in neuroblastoma: 
association of miRNA expression with survival. PLoS One. 2009;4(11):e7850.

 15. Buckley PG, Alcock L, Bryan K, et al. Chromosomal and microRNA expres-
sion patterns reveal biologically distinct subgroups of 11q-neuroblastoma. 
Clin Cancer Res. 2010;16(11):2971–2978.

 16. Budhu A, Jia HL, Forgues M, et al. Identification of metastasis-related 
microRNAs in hepatocellular carcinoma. Hepatology. 2008;47(3):897–907.

D
ow

nloaded from
 https://academ

ic.oup.com
/jnci/article/104/7/528/2517331 by guest on 23 April 2024



jnci.oxfordjournals.org   JNCI | Reviews 539

 17. Cairo S, Wang Y, de Reynies A, et al. Stem cell-like micro-RNA signature 
driven by Myc in aggressive liver cancer. Proc Natl Acad Sci U S A. 2010;
107(47):20471–20476.

 18. Calin GA, Ferracin M, Cimmino A, et al. A MicroRNA signature associ-
ated with prognosis and progression in chronic lymphocytic leukemia.  
N Engl J Med. 2005;353(17):1793–1801.

 19. Caramuta S, Egyhazi S, Rodolfo M, et al. MicroRNA expression profiles 
associated with mutational status and survival in malignant melanoma.  
J Invest Dermatol. 2010;130(8):2062–2070.

 20. Catto JW, Miah S, Owen HC, et al. Distinct microRNA alterations  
characterize high- and low-grade bladder cancer. Cancer Res. 2009;
69(21):8472–8481.

 21. Chung GE, Yoon JH, Myung SJ, et al. High expression of microRNA-15b 
predicts a low risk of tumor recurrence following curative resection of 
hepatocellular carcinoma. Oncol Rep. 2010;23(1):113–119.

 22. Cohn DE, Fabbri M, Valeri N, et al. Comprehensive miRNA profiling of 
surgically staged endometrial cancer. Am J Obstet Gynecol. 2010;202(6):
656e1–8.

 23. Di Lisio L, Gomez-Lopez G, Sanchez-Beato M, et al. antle cell  
lymphoma: transcriptional regulation by microRNAs. Leukemia. 2010;
24(7):1335–1342.

 24. Dyrskjot L, Ostenfeld MS, Bramsen JB, et al. Genomic profiling of 
microRNAs in bladder cancer: miR-129 is associated with poor outcome 
and promotes cell death in vitro. Cancer Res. 2009;69(11):4851–4860.

 25. Eitan R, Kushnir M, Lithwick-Yanai G, et al. Tumor microRNA expres-
sion patterns associated with resistance to platinum based chemotherapy 
and survival in ovarian cancer patients. Gynecol Oncol. 2009;114(2):
253–259.

 26. Foekens JA, Sieuwerts AM, Smid M, et al. Four miRNAs associated with 
aggressiveness of lymph node-negative, estrogen receptor-positive human 
breast cancer. Proc Natl Acad Sci U S A. 2008;105(35):13021–13026.

 27. Garzon R, Volinia S, Liu CG, et al. MicroRNA signatures associated with 
cytogenetics and prognosis in acute myeloid leukemia. Blood. 
2008;111(6):3183–3189.

 28. Guo Y, Chen Z, Zhang L, et al. Distinctive microRNA profiles relating to 
patient survival in esophageal squamous cell carcinoma. Cancer Res. 
2008;68(1):26–33.

 29. Haller F, von Heydebreck A, Zhang JD, et al. Localization- and mutation-
dependent microRNA (miRNA) expression signatures in gastrointestinal 
stromal tumours (GISTs), with a cluster of co-expressed miRNAs located 
at 14q32.31. J Pathol. 2010;220(1):71–86.

 30. Hiroki E, Akahira J, Suzuki F, et al. Changes in microRNA expression 
levels correlate with clinicopathological features and prognoses in endo-
metrial serous adenocarcinomas. Cancer Sci. 2010;101(1):241–249.

 31. Jiang J, Gusev Y, Aderca I, et al. Association of MicroRNA expression in 
hepatocellular carcinomas with hepatitis infection, cirrhosis, and patient 
survival. Clin Cancer Res. 2008;14(2):419–427.

 32. Landi MT, Zhao Y, Rotunno M, et al. MicroRNA expression differenti-
ates histology and predicts survival of lung cancer. Clin Cancer Res. 
2010;16(2):430–441.

 33. Lawrie CH, Chi J, Taylor S, et al. Expression of microRNAs in diffuse 
large B cell lymphoma is associated with immunophenotype, survival and 
transformation from follicular lymphoma. J Cell Mol Med. 2009;13(7):
1248–1260.

 34. Lee CH, Subramanian S, Beck AH, et al. MicroRNA profiling of 
BRCA1/2 mutation-carrying and non-mutation-carrying high-grade 
serous carcinomas of ovary. PLoS One. 2009;4(10):e7314.

 35. Li W, Xie L, He X, et al. Diagnostic and prognostic implications of 
microRNAs in human hepatocellular carcinoma. Int J Cancer. 2008;123(7):
1616–1622.

 36. Marcucci G, Radmacher MD, Maharry K, et al. MicroRNA expression in 
cytogenetically normal acute myeloid leukemia. N Engl J Med. 2008;
358(18):1919–1928.

 37. Mathe EA, Nguyen GH, Bowman ED, et al. MicroRNA expression in 
squamous cell carcinoma and adenocarcinoma of the esophagus: associa-
tions with survival. Clin Cancer Res. 2009;15(19):6192–6200.

 38. Nam EJ, Yoon H, Kim SW, et al. MicroRNA expression profiles in serous 
ovarian carcinoma. Clin Cancer Res. 2008;14(9):2690–2695.

 39. Navarro A, Diaz T, Martinez A, et al. Regulation of JAK2 by miR-135a: 
prognostic impact in classic Hodgkin lymphoma. Blood. 2009;114(14):
2945–2951.

 40. Navarro A, Gaya A, Martinez A, et al. MicroRNA expression profiling in 
classic Hodgkin lymphoma. Blood. 2008;111(5):2825–2832.

 41. Ogawa R, Ishiguro H, Kuwabara Y, et al. Expression profiling of micro-
RNAs in human esophageal squamous cell carcinoma using RT-PCR. 
Med Mol Morphol. 2009;42(2):102–109.

 42. Pass HI, Goparaju C, Ivanov S, et al. hsa-miR-29c* is linked to the prog-
nosis of malignant pleural mesothelioma. Cancer Res. 2010;70(5):
1916–1924.

 43. Patnaik SK, Kannisto E, Knudsen S, Yendamuri S. Evaluation of 
microRNA expression profiles that may predict recurrence of localized 
stage I non-small cell lung cancer after surgical resection. Cancer Res. 
2010;70(1):36–45.

 44. Raponi M, Dossey L, Jatkoe T, et al. MicroRNA classifiers for predicting 
prognosis of squamous cell lung cancer. Cancer Res. 2009;69(14):5776–5783.

 45. Schaefer A, Jung M, Mollenkopf HJ, et al. Diagnostic and prognostic 
implications of microRNA profiling in prostate carcinoma. Int J Cancer. 
2010;126(5):1166–1176.

 46. Schepeler T, Reinert JT, Ostenfeld MS, et al. Diagnostic and prognostic 
microRNAs in stage II colon cancer. Cancer Res. 2008;68(15):6416–6424.

 47. Schetter AJ, Leung SY, Sohn JJ, et al. MicroRNA expression profiles  
associated with prognosis and therapeutic outcome in colon adenocarci-
noma. JAMA. 2008;299(4):425–436.

 48. Schulte JH, Schowe B, Mestdagh P, et al. Accurate prediction of neuro-
blastoma outcome based on miRNA expression profiles. Int J Cancer. 
2010;127(10):2374–2385.

 49. Segura MF, Belitskaya-Levy I, Rose AE, et al. Melanoma MicroRNA 
signature predicts post-recurrence survival. Clin Cancer Res. 2010;16(5):
1577–1586.

 50. Ueda T, Volinia S, Okumura H, et al. Relation between microRNA  
expression and progression and prognosis of gastric cancer: a microRNA 
expression analysis. Lancet Oncol. 2010;11(2):136–146.

 51. Veerla S, Lindgren D, Kvist A, et al. MiRNA expression in urothelial 
carcinomas: important roles of miR-10a, miR-222, miR-125b, miR-7 and 
miR-452 for tumor stage and metastasis, and frequent homozygous losses 
of miR-31. Int J Cancer. 2009;124(9):2236–2242.

 52. Visone R, Rassenti LZ, Veronese A, et al. Karyotype-specific microRNA 
signature in chronic lymphocytic leukemia. Blood. 2009;114(18):
3872–3879.

 53. Yanaihara N, Caplen N, Bowman E, et al. Unique microRNA molecular 
profiles in lung cancer diagnosis and prognosis. Cancer Cell. 2006;
9(3):189–198.

 54. Yang N, Kaur S, Volinia S, et al. MicroRNA microarray identifies Let-7i 
as a novel biomarker and therapeutic target in human epithelial ovarian 
cancer. Cancer Res. 2008;68(24):10307–10314.

 55. Yu SL, Chen HY, Chang GC, et al. MicroRNA signature predicts survival 
and relapse in lung cancer. Cancer Cell. 2008;13(1):48–57.

 56. Zhang H, Luo XQ, Zhang P, et al. MicroRNA patterns associated with 
clinical prognostic parameters and CNS relapse prediction in pediatric 
acute leukemia. PLoS One. 2009;4(11):e7826.

 57. Zhao JJ, Lin J, Lwin T, et al. microRNA expression profile and identifica-
tion of miR-29 as a prognostic marker and pathogenetic factor by target-
ing CDK6 in mantle cell lymphoma. Blood. 2010;115(13):2630–2639.

 58. Zhi F, Chen X, Wang S, et al. The use of hsa-miR-21, hsa-miR-181b and 
hsa-miR-106a as prognostic indicators of astrocytoma. Eur J Cancer. 
2010;46(9):1640–1649.

 59. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using 
real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. 
Methods. 2001;25(4):402–408.

 60. Efron B, Tibshirani R. Empirical bayes methods and false discovery rates 
for microarrays. Genet Epidemiol. 2002;23(1):70–86.

 61. Sauerbrei W, Schumacher M. A bootstrap resampling procedure for 
model building: application to the Cox regression model. Stat Med. 1992;
11(16):2093–2109.

 62. Verweij PJ, Van Houwelingen HC. Cross-validation in survival analysis. 
Stat Med. 1993;12(24):2305–2314.

D
ow

nloaded from
 https://academ

ic.oup.com
/jnci/article/104/7/528/2517331 by guest on 23 April 2024



540   Reviews | JNCI Vol. 104, Issue 7  |  April 4, 2012

 63. Tibshirani R, Hastie T, Narasimhan B, Chu G. Diagnosis of multiple 
cancer types by shrunken centroids of gene expression. Proc Natl Acad Sci 
U S A. 2002;99(10):6567–6572.

 64. Ioannidis JP. Why most published research findings are false. PLoS Med. 
2005;2(8):e124.

 65. Simon RM, Paik S, Hayes DF. Use of archived specimens in evaluation of 
prognostic and predictive biomarkers. J Natl Cancer Inst. 2009;101(21):
1446–1452.

 66. Kavvoura FK, McQueen MB, Khoury MJ, Tanzi RE, Bertram L, 
Ioannidis JP. Evaluation of the potential excess of statistically significant 
findings in published genetic association studies: application to Alzheimer’s 
disease. Am J Epidemiol. 2008;168(8):855–865.

 67. Ioannidis JP. Excess significance bias in the literature on brain volume 
abnormalities. Arch Gen Psychiatry. 2011; 68(8):773–780.

 68. Pfeiffer T, Bertram L, Ioannidis JP. Quantifying selective reporting and 
the Proteus phenomenon for multiple datasets with similar bias. PLoS One. 
2011;6(3):e18362.

 69. Ioannidis JP, Panagiotou OA. Comparison of effect sizes associated with 
biomarkers reported in highly cited individual articles and in subsequent 
meta-analyses. JAMA. 2011;305(21):2200–2210.

 70. Lau J, Ioannidis JP, Terrin N, Schmid CH, Olkin I. The case of the  
misleading funnel plot. BMJ. 2006;333(7568):597–600.

 71. Dobbin KK, Zhao Y, Simon RM. How large a training set is needed to 
develop a classifier for microarray data? Clin Cancer Res. 2008;14(1):108–114.

 72. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. 
Cell. 2004;116(2):281–297.

 73. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative 
analysis of large gene lists using DAVID bioinformatics resources. Nat 
Protoc. 2009;4(1):44–57.

 74. Esquela-Kerscher A, Slack FJ. Oncomirs—microRNAs with a role in 
cancer. Nature reviews. Cancer. 2006;6(4):259–269.

 75. Nana-Sinkam SP, Croce CM. MicroRNAs as therapeutic targets in  
cancer. Transl Res. 2011;157(4):216–225.

Funding
This work was supported by the National Institutes of Health (5T32HL00794 
to V.S.N.).

Notes
The authors take full responsibility for the study design, the data collection, 
the analysis and interpretation of the data, the decision to submit the article for 
publication, and the writing of the article.

Affiliations of authors: Division of Pulmonary & Critical Care Medicine, 
Stanford University School of Medicine, Stanford, CA (VSN); Division of 
Oncology, Stanford University School of Medicine, Stanford, CA (LSM); 
Stanford Prevention Research Center, Stanford University School of 
Medicine, Stanford, CA (JPAI); Department of Medicine (VSN, LSM, JPAI) 
and Department of Health Research and Policy (JPAI), Stanford University 
School of Medicine, Stanford, CA.

D
ow

nloaded from
 https://academ

ic.oup.com
/jnci/article/104/7/528/2517331 by guest on 23 April 2024


