-
Views
-
Cite
Cite
M. Kariuki Njenga, Paul D. Murray, Dorian McGavern, Xiaoqi Lin, Kristen M. Drescher, Moses Rodriguez, Absence of Spontaneous Central Nervous System Remyelination in Class II-deficient Mice Infected with Theiler's Virus, Journal of Neuropathology & Experimental Neurology, Volume 58, Issue 1, January 1999, Pages 78–91, https://doi.org/10.1097/00005072-199901000-00009
- Share Icon Share
Abstract
We previously showed that Theiler's murine encephalomyelitis virus (TMEV)-infected major histocompatibility complex (MHC) class II-deficient mice develop both demyelination and neurologic deficits, whereas MHC class I-deficient mice develop demyelination but no neurologic deficits. The absence of neurologic deficits in the class I-deficient mice was associated with preserved sodium channel densities in demyelinated lesions, a relative preservation of axons, and extensive spontaneous remyelination. In this study, we investigated whether TMEV-infected class II-deficient mice, which have an identical genetic background (C57BL/6 x 129) as the class I-deficient mice, have preserved axons and spontaneous myelin repair following chronic TMEV-infection. Both class I- and class II-deficient mice showed similar extents of demyelination of the spinal cord white matter 4 months after TMEV infection. However, the class I-deficient mice demonstrated remyelination by oligodendrocytes, whereas class II-deficient mice showed minimal if any myelin repair. Demyelinated lesions, characterized by inflammatory infiltrates in both mutants, revealed disruption of axons in class II- but not class I-deficient mice. Further characterization revealed that even though class II-deficient mice lacked TMEV-specific IgG, they had virus-specific IgM, which, however, did not neutralize TMEV in vitro. In addition, class II-deficient mice developed TMEV-specific cytotoxic T-lymphocytes in the CNS during the acute (7 days) disease, but these cytotoxic lymphocytes were not present in the chronic stage of disease, despite a high titer of infectious virus throughout the disease. We envision that the presence of demyelination, high virus titer, absence of remyelination, and axonal disruption in chronically infected class II-deficient mice contributes to the development of paralytic disease.
- central nervous system
- axon
- lymphocytes
- major histocompatibility complex
- maus elberfeld virus
- mice, inbred c57bl
- oligodendroglia
- paralysis
- sodium channel
- theilovirus
- t-lymphocytes, cytotoxic
- immunoglobulin g
- immunoglobulin m
- infections
- mice
- spinal cord
- viruses
- white matter
- infiltrates
- demyelination
- theiler murine encephalomyelitis virus
- myelin
- neurologic deficits
- genetic background