Abstract

Human leukocyte antigen-DR induction and lymphocyte infiltrates in the brains of patients with Parkinson disease (PD) and the presence in serum of α-synuclein (α-syn)-specific antibodies suggest that the peripheral immune system may have an active role in the progression of PD. We designed a vaccination strategy to attempt to control these processes and mediate protection against disease progression in a rat PD model. Using a recombinant adeno-associated viral vector, we unilaterally overexpressed human α-syn in the rat substantia nigra to induce a progressive neuropathologic process. Prior to stereotactic delivery of the viral vector, animals were vaccinated with recombinant α-syn (asyn). This resulted in a high-titer anti-α-syn antibody response on α-syn overexpression; the accumulation of CD4–positive, MHC II-positive ramified microglia in the substantia nigra; long-lasting infiltration of CD4–positive, Foxp3–positive cells throughout the nigrostriatal system; and fewer pathologic aggregates in the striatum versus control animals that had received a mock vaccine. A long-term increase in GDNF levels in the striatum and IgG deposition in α-syn-overexpressing cells and neurites in the substantia nigra were also observed. Together, these results suggest that a protective vaccination strategy results in induction of regulatory T cells and distinctly activated microglia, and that this can induce immune tolerance against α-syn .

You do not currently have access to this article.