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Abstract
Cerebral cavernous malformations (CCMs) often cause hemor-

rhages that can result in severe clinical manifestations, including
hemiparesis and seizures. The underlying mechanisms of the aggres-
sive behavior of CCMs are undetermined to date, but alterations
of vascular matrix components may be involved. We compared the
localization of the tight junction proteins (TJPs) in 12 CCM specimens
and the expression of glucose transporter 1 (GLUT-1), which is sen-
sitive to alterations in TJP levels, in 5 CCM specimens with those in
5 control temporal lobectomy specimens without CCM by immuno-
fluorescence microscopy. The TJPs occludin, claudin-5, and zonula
occludens ZO-1 were downregulated at intercellular contact sites and
partly redistributed within the surrounding tissue in the CCM samples;
there was also a marked reduction of GLUT-1 immunoreactivity
compared with that in control specimens. Corresponding analysis using
quantitative real-time reverse transcription polymerase chain reac-
tion on 8 CCM and 8 control specimens revealed significant down-
regulation of mRNA expression of occludin, claudin-5, ZO-1, and
GLUT-1. The altered expression and localization of the TJPs at
interendothelial contact sites accompanied by a reduction of GLUT-1
expression in dilated CCM microvessels likely affect vascular matrix
stability and may contribute to hemorrhages of CCMs.

Key Words: Cerebral cavernous malformation, Claudin-5, GLUT-1,
Occludin, Tight junctions, ZO-1.

INTRODUCTION
Cerebral cavernous malformations (CCMs) and arte-

riovenous malformations are the most common subtypes of
brain vascular malformations, affecting more than 0.5% of
the population (1Y4). Cerebral cavernous malformations are
composed of dilated blood-filled capillary clusters lined by
endothelium and lacking intervening brain parenchyma.
Based on their expression of angiogenic factors, they reflect

more a developing rather than a mature vessel phenotype
(1, 3, 5Y7). Cavernous malformations occur sporadically as
a single lesion or as an inherited autosomal dominant form with
multiple lesions (8). To date, mutations in 3 genes associated
with familial CCMs (i.e. CCM1/KRIT1, CCM2/MGC4607, and
CCM3/PDCD10) have been identified (9). A second hit in the
somatic allele may be necessary to cause CCM formation, and
indeed, a biallelic CCM1 somatic and germ line mutation was
shown in a surgically excised human lesion for the first time
(10); biallelic mutations have since been reported for CCM2
and CCM3 (11). Furthermore, transgenic mice heterozygous
for Ccm1 only develop CCM lesions when they exhibit an
additional homozygous knockout of the tumor suppressor
gene Trp53 (ccm1þ/j Trp53j/j). Similarly, heterozygous
mice (Ccm2þ/j) only form CCM lesions when sensitized by
a second hit (12, 13), further supporting the hypothesis of a
second genetic somatic mutation in CCMs.

Recently, it was shown that CCM1 represents an anti-
angiogenic protein, and that gene mutations in KRIT1 correlate
with excessive capillary sprouting, which is also characteristic
of human CCMs (7). Phosphatase and tensin homolog (PTEN)
promoter methylation, heart of glass (HEG) transmembrane
receptor expression, RhoA GTPase, and Rho kinase (ROCK)
activation are involved in CCM pathogenesis and may con-
tribute to mechanisms of their formation (14Y17).

Endothelial cells (ECs) are the major component of
vessel walls and likely play a central role in the clinical
behavior of CCMs (18). The EC-lined thin walls of CCM
channels possess a limited number of intact interendothelial
tight junctions (TJs), which may contribute to their propensity
for recurrent microhemorrhages (19). There is growing evi-
dence that an impairment of the blood-brain barrier (BBB)
correlates with a decrease of TJs in the endothelial layer,
and furthermore, that CCM1 and CCM2 may play junction-
stabilizing roles (15, 17, 20, 21). Recently, it was shown the
EC TJ protein (TJP) occludin is involved in intercellular gap
formation in porcine brain capillary ECs (22).

Tight junctions are located at the lateral apical side of
the cell membrane in regions of close cell-to-cell contacts,
such as in the cerebral microvascular endothelium. They turn
cell-to-cell contacts into zones of tight adherence, thereby in-
hibiting the paracellular pathway for drugs or solutes from
plasma into the central nervous system (23). Various integral
membrane proteins, associated cytoplasmic proteins, and ex-
tracellular matrix components are involved in the proper
assembly of TJ complexes (24). The junctional core proteins
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occludin and claudin-5 play a key role in BBB integrity in the
microvascular endothelium. Both consist of 4 transmembrane
domains, intracellular N- and C-termini, and 2 extracellular
domains that can interact with cell membranes of adjacent
cells, thereby sealing the intercellular clefts (22, 25, 26). Dif-
ferent gain-of-function and loss-of-function experiments reveal
that claudin-5 is involved in the structure of TJ strands and
cell adhesion, whereas occludin probably has some accessory
functions (27). The adaptor/scaffold proteins zonula occludens
ZO-1, ZO-2, and ZO-3 connect TJ-associated integral mem-
brane proteins to the actin cytoskeleton and other structural
proteins. The first reported linker protein, ZO-1, directly inter-
acts with occludin and claudins and is essential for TJ forma-
tion (27, 28). Because paracellular permeability increases when
an imbalance occurs between occludin and ZO-1 molecules,
the interaction of occludin with ZO-1 may modulate its func-
tion in sealing the junction (29, 30).

The localization of glucose transporter 1 (GLUT-1) in
ECs of microvessels is considered to indicate a functioning
BBB (31Y33). The GLUT-1 is widely expressed in adult tis-
sues, but it is most abundant in fibroblasts, erythrocytes, and
ECs with low levels of expression in muscle, liver, and adi-
pose tissue (34Y36). In healthy brain endothelium, TJ seal-
ing of the interendothelial clefts is linked to the expression
of GLUT-1. Alterations in transporter protein expression are
directly related to an increased permeability of EC layers in
the brain and linked to alterations in TJ properties (31Y33).

The role of TJs and their core proteins occludin and
claudin-5 is not understood in the context of CCMs, but there
is growing evidence that vascular development and endo-
thelial permeability are dysregulated in them (37). Decreased
expression of GLUT-1 is coupled to alterations in TJP ex-
pression levels and consequent BBB permeability in glio-
blastomas (38). Therefore, we analyzed the expression of the
TJPs occludin, claudin-5, and ZO-1, and the transporter pro-
tein GLUT-1 by immunohistochemistry and confocal fluo-
rescent microscopy on cryosections and paraffin sections of

7 CCM specimens and 5 control tissue samples from patients
with temporal lobe epilepsy. Mean fluorescence intensities
(FIs) were further quantified. Quantitative reverse transcrip-
tion polymerase chain reaction (RT-PCR) was also performed
to compare mRNA expression levels of TJPs and GLUT-1 in
8 CCM specimens and 8 control samples.

MATERIALS AND METHODS

Patients and Tissue Specimens
The CCM specimens (n = 12) were obtained from

patients undergoing neurosurgical resection. The patients
studied fulfill the consensus recommendations for minimal
reporting variables in CCM clinical research (39Y41). The
decision for surgical resection was made based on computed
tomographic scans and magnetic resonance images. The clini-
cal data of the 12 CCM patients are summarized in Table 1.
Control specimens (n = 13) were from temporal lobes
obtained during selective amygdalohippocampectomy in 12
patients with temporal lobe epilepsy. The median age of the
7 female patients and the 6 male patients was 38 years (range,
23Y52 years). Tissue specimens were immediately transferred
to the laboratory on ice and divided for snap-frozen prepa-
ration and in-vitro experiments. Samples were snap frozen
in liquid nitrogen and embedded in TissueTek OCT (Sakura
Finetek Europe, Zoeterwoude, Netherlands) before analysis. In
addition, histological diagnosis was obtained by routine clinical
neuropathologic examination and classified according to the
World Health Organization criteria at the Institute of Neuro-
pathology, University Hospital, Zurich, Switzerland.

Immunofluorescence, Laser Scanning
Confocal Microscopy, and Fluorescence
Microscopy Analysis

Immunofluorescence analysis was done using 3 differ-
ent protocols. First, 6-Km-thick cryosections were cut with a

TABLE 1. CCM Patient Data
Clinical Parameters CCM Characteristics

Patient No. Age, Years/Sex
Clinical

Presentation
Radiological
Findings

Family
History

Lesion
Location

Size (Diameter),
mm

Multiple
Lesions DVA

CCM1 38/M SH RH N R parietal N

CCM2 23/F SH RH N R brachium pontis N

CCM3 48/F SH NRH Y L brachium pontis N

CCM4 34/F NH-FND NRH N L cerebral peduncle 29 N Y

CCM5 36/F SH RH N L insula 10 Y Y

CCM6 6/M SH NRH N R pons 12 Y N

CCM7 14/F SH NRH N R pons 14 N N

CCM8 35/F NH-FND NRH N L pons 9 N Y

CCM9 7/F NH-FND NRH N R subinsula 23 N N

CCM10 27/F SH RH N L pons 20 N Y

CCM11 39/M NH-FND RH N R occipital 15 N N

CCM12 47/F SH NRH N Pons 20 N Y

All patients were white.
CCM, cerebral cavernous malformation; DVA, developmental venous anomaly associated with the CCM; F, female; L, left; M, male; N, no; NH-FND, nonhemorrhagic focal

neurological deficit; NRH, no recent hemorrhage; R, right; RH, recent hemorrhage; SH, symptomatic hemorrhage; Y, yes.
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Leica cryostat, mounted on Superfrost Plus slides (Menzel-
Glaser, Braunschweig, Germany), fixed with acetone p.a. for
10 minutes at room temperature (RT), and stored at j80-C
until further use. For analysis, slides were acetone fixed for
5 minutes at RT and air-dried. Sections were incubated with
3% hydrogen peroxide to quench endogenous peroxidase
activity and washed with PBS (pH 7.4). Unspecific bind-
ing sites were blocked with blocking solution (Candor,
WeiQensberg, Germany) for 25 minutes at RT. For indirect
immunofluorescence, polyclonal rabbit anti-human claudin-5
antibody (5 Kg/mL; Abcam, Cambridge, UK), monoclonal
mouse anti-human occludin antibody (4 Kg/mL; Invitrogen,
Carlsbad, CA), monoclonal mouse anti-human GLUT-1 anti-
body (1 Kg/mL; Abcam), monoclonal mouse anti-human fi-
bronectin (2 Kg/mL; Abcam), mouse monoclonal anti-human
CD31 (10 Kg/mL; DAKO, Glostrup, Denmark), monoclonal
rabbit antiYhuman CD31 (1:40; Epitomics, Burlingame, CA),
monoclonal mouse anti-human collagen IV antibody (2Kg/mL;
DAKO), and polyclonal rabbit anti-human collagen VI anti-
body (2 Kg/mL; Abcam) were incubated at 37-C for 1 hour.
Appropriate secondary antibodies, Alexa Fluor 488Yconjugated
(goat anti-rabbit and goat anti-mouse, 1:100) or Alexa Fluor
594Yconjugated secondary antibody (goat anti-rabbit and goat
anti-mouse, 1:100) (all from Invitrogen) were incubated for
25 minutes at RT. All antibodies were diluted in antibody
dilution buffer (DCS, Hamburg, Germany). Between each
step, the sections were washed in PBS 3 times for 5 minutes
each. Staining controls included the isotype-matched primary
monoclonal antibodies. In all cases, the result of each negative
control confirmed the specificity of the corresponding antibody
staining. Specimens were mounted in fluorescent mounting
medium (DAKO) and were viewed on a Leica TCS SP5 (Leica,
Wetzlar, Germany) confocal laser scanning microscope using
63� and 100� objectives. Confocal images were taken at 1-
to 2-Km intervals through the z axis of the section. Projection
images formed by serial optical planes were analyzed, digitally
recorded, and stored as tagged image file format (TIFF) files
using Adobe Photoshop CS3 software (Adobe Systems, San
Jose, CA). Second, tissue samples were placed in 4% neutral
buffered formalin for 12 hours and then processed routinely for
paraffin embedment. Sections were obtained at 4-Km intervals

using a Microm rotary microtome (Leica) and mounted on
Superfrost Plus slides (Menzel-Glaser). After rehydration, the
sections were boiled in a microwave oven in 0.01 mol/L citrate
buffer solution (pH 6) for 20 minutes for antigen retrieval.
Endogenous peroxidase was inactivated with 3% hydrogen
peroxide, and nonspecific antigenic sites were blocked with
blocking solution (Candor) for 25 minutes at RT. As previously
described, the sections were incubated with primary occludin
antibody (4 Kg/mL; Invitrogen), GLUT-1 antibody (1 Kg/mL;
Abcam), and polyclonal rabbit antiYhuman von Willebrand
factor (vWF) antibodies (28.5 Kg/mL; DAKO) followed by
incubation with appropriate secondary antibodies, Alexa Fluor
488Yconjugated secondary antibody (goat anti-mouse, 1:100;
Invitrogen) or Alexa Fluor 594Yconjugated secondary antibody
(goat anti-rabbit, 1:100; Invitrogen). Third, the specimens were
fixed for 3 hours at 4-C by immersion in 2% paraformalde-
hyde plus 0.2% glutaraldehyde solution and washed in PBS
(pH 7.6). The blocks of tissue were sectioned at 20-Km thick-
ness using a vibrating microtome (Leica), and the sections
were collected on polylysine slides (Menzel-Glaser). Heat-
mediated antigen retrieval was achieved by microwave pre-
treatment in 0.01 mol/L citrate buffer (pH 6.0) for 15 minutes at
750W. Sections were incubated with PBS/0.5% Triton X-100
for 30 minutes, blocked with serum-free protein block (DAKO)
for 15 minutes at RT, and incubated overnight at 4-C with
primary antibodies at various dilutions: mouse monoclonal
antiYhuman claudin-5 (1:20; Zymed Laboratories, Invitrogen),
rabbit polyclonal antiYhuman occludin (1:50; Zymed), rabbit
polyclonal antiYhuman collagen IV (1:200; Acris Antibodies,
Hiddenhausen, Germany), mouse monoclonal antiYhuman col-
lagen IV (1:50; DAKO), and mouse monoclonal antiYhuman
CD31 (1:50; DAKO). A mixture of biotinylated horse anti-
mouse IgG (1:400; Vector Laboratories, Inc, Burlingame, CA)
or biotinylated goat antiYrabbit IgG (1:400; Vector Labo-
ratories) and Alexa Fluor 568Yconjugated goat antiYrabbit IgG
(1:400; Invitrogen) or Alexa Fluor 555Yconjugated goat anti-
mouse IgG (1:400, Invitrogen) were incubated as secondary
antibodies for 40 minutes at RT. Streptavidin Alexa Fluor
488Yconjugated antibody (1:400; Invitrogen) was used for
staining of claudin-5 and occludin. The slices were counter-
stained with TO-PRO-3 (1:10000 in PBS; Invitrogen) and
finally mounted with Vectashield (Vector Laboratories) and
sealed with nail varnish. The slides were examined under the
Leica TCS SP5 confocal laser scanning microscope using a
sequential scan procedure during image acquisition of double
label sections. Confocal images were taken at 250- to 500-nm
intervals through the z axis of the sections. Images from indi-
vidual optical planes and image projections of stacks of serial
optical planes were analyzed by confocal software (Multicolor
Package, Leica).

Image Acquisition, Image Processing,
and Data Analysis

Digital image processing for the detection and quanti-
fication of FI in human CCM and control samples was per-
formed with a conventional light microscope (Axiovert 100,
Zeiss, Jena, Germany), a digital microscope camera (AxioCam
ICm, Zeiss), and the AxioVision 4.8 software (Zeiss). Fluo-
rescence quantification was subdivided into image acquisition,

TABLE 2. Primer Sequences for qRT-PCR
Occludin forward CACACAGGACGTGCCTTCAC

Occludin reverse GAGTATGCCATGGGACTGTCAA

Claudin-5 forward CTGCTGGTTCGCCAACATT

Claudin-5 reverse TGCGACACGGGCACAG

ZO-1 forward CAGCCGGTCACGATCTCCT

ZO-1 reverse TCCGGAGACTGCCATTGC

GLUT-1 forward TGCTCATGGGCTTCTCGAA

GLUT-1 reverse AAGCGGCCCAGGATCAG

CD31 forward TCTCCCAGCCCAGGATTTC

CD31 reverse TTCGATGGTCTGTCCTTTTATGAC

vWF forward AGAAACGCTCCTTCTCGATTATTG

vWF reverse TGTCAAAAAATTCCCCAAGATACA

GLUT-1, glucose transporter 1; qRT-PCR, quantitative real-time reverse transcription
polymerase chain reaction; vWF, von Willebrand factor; ZO-1, zonula occludens 1.
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image preprocessing, and data processing steps (42). All
parameters used in the acquisition (i.e. detector gain and ex-
posure time) were standardized to maximize reproducibility.
Image processing of each specimen was provided through re-
gion of interest (ROI) analysis. The software allows the inter-

active definition of areas for size and intensity measurements.
For data analysis, FI/ROI values were obtained for 5 ROI per
specimen (10 Km2 each). Statistical analysis describing the
distribution of FI signals was performed to obtain graphic
representations.

FIGURE 1. Localization of the tight junction protein occludin (green) in cerebral cavernous malformations (CCMs). Confocal z
series projections of CCM1, CCM2 (A, B), and control samples C2 and C4 (C, D). Occludin is distributed in a linear pattern along
vessels of control tissues ([C¶] cross sectional; [D¶] longitudinal). Occludin is redistributed and shows decreased expression in
endothelial cells (ECs) of CCMs ([A¶] cross sectional; [B¶] longitudinal). The EC marker protein PECAM-1 (CD31) is stained red
(A¶¶YD¶¶). The 4¶,6-diamidino-2-phenylindole (DAPI) staining (blue) is shown in (A) to (D) and merged images in (A¶¶¶) to (D¶¶¶).
Scale bars = 20 Km.
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Quantitative RT-PCR Analysis
Differential gene expression levels of claudin-5, occlu-

din, ZO-1, and GLUT-1 were determined by quantitative RT-
PCR. Total RNA was isolated from each CCM and control
tissue sample using the RNeasy Mini Kit Isolation System

according to the manufacturer’s protocol (Qiagen Ltd, Hom-
brechtikon, Switzerland); 0.5 Kg total mRNA of each sample
was reverse transcribed to cDNA using the High Capacity
cDNA Reverse Transcription Kit (ABI, Carlsbad, CA). Com-
plementary DNA was used for quantitative RT-PCR with

FIGURE 2. Distribution of claudin-5 (cld-5, green) and localization of the endothelial cell (EC) marker CD31 in cerebral cavernous
malformations (CCMs) by confocal microscopy. (AYD) The CCM specimens CCM2 and CCM3 (A, B) and controls c2 and c4 (C, D)
are shown. Claudin-5 (as for occludin) is distributed linearly in vessels of control tissues ([C¶] cross sectional; [D¶] longitudinal).
Claudin-5 expression is decreased in CCM ECs ([A¶, B¶] cross sectional). The PECAM-1 (CD31) is stained red (A¶¶YD¶¶); 4¶,6-diamidino-
2-phenylindole (DAPI) staining (blue) is shown in (A) to (D); merged images are in (A¶¶¶) to (D¶¶¶). Scale bars = 20 Km.
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SYBR Green PCR Master Mix (ABI) and specific primer
pairs on a 7900HT Fast Real-Time PCR System with SDS
Software v2.4 (ABI). Expression was normalized against the
endothelial marker CD31 or vWF. Specific primers were de-
signed with the Primer Express 3.0 software (ABI) (Table 2).

Statistical Analysis
For quantification and statistical analysis of protein ex-

pression levels, experiments were done in triplicate, analyz-
ing 5 ROI per specimen (10 Km2) for each patient. Mean FI
values were calculated and averaged. Regions of interest were

FIGURE 3. Confocal microscopic images of zonula occludens ZO-1 (green) and CD31 (red) in cerebral cavernous malforma-
tion (CCM) (CCM2, CCM3) and control specimens (c1, c4). (AYD) The ZO-1 staining in controls is distributed in a typical linear
vessel pattern ([C¶] cross sectional; [D¶] longitudinal). In contrast, ZO-1 is markedly decreased ([A¶, B¶] cross sectional) in CCM
samples. The 4¶,6-diamidino-2-phenylindole (DAPI) staining (blue) is mapped in (A) to (D); merged images are in (A¶¶¶) to (D¶¶¶).
Scale bars = 20 Km.
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randomly selected by criteria that only fluorescent signals
of vessel wall structures were measured for their intensity.
The statistical analysis, using the mean FI values of each

patient, was performed with Microsoft Excel and GraphPad
Prism software (version 5 for Windows). An unpaired Student
t-test was used to assess whether 2 independent samples

FIGURE 4. Immunostaining for occludin (occl, green) and collagen IV (col IV, red) in 2 cerebral cavernous malformation (CCM) and
control brain tissue samples, respectively. (AYC) There are different patterns of occludin distribution. As in control vessels, the linear
pattern of occludin staining in CCM is preserved but thinned ([A] longitudinal). To some extent, occludin is arranged in a punctate
pattern along cell-to-cell contacts ([B] longitudinal). At other foci, vessels are completely unstained along the major length of their
profile but show isolated residual protein aggregates (arrow) ([C] cross sectional). (D, E) Occludin is distributed in a linear pattern
in microvessels in the control brain (cerebral cortex). Basement membranes of capillaries are labeled with antiYcollagen IV antibody,
and nuclei are stained with TO-PRO3 (blue), as shown in (A) to (E). Scale bars = (A, B, D, E) 25 Km; (C) 10 Km.
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of observations came from the same distribution. Values of
p G 0.01 were considered significant.

Messenger RNA expression levels of each gene were
obtained via correction for endothelial density. The results

are expressed as mean T SEM. Statistical evaluation was
performed with the GraphPad Prism software. Statistical sig-
nificance was determined by Mann-Whitney-Wilcoxon test.
Values of p G 0.05 were considered statistically significant.

FIGURE 5. Immunostaining for claudin-5 (cld-5, green) and collagen IV (col IV, red) in 2 cerebral cavernous malformation (CCM)
and control specimens. (AYD) In most instances, vessels seem negative for claudin-5; in some foci, claudin-5 is diffusely distributed
within the tissue and not localized to intercellular contact sites ([A] cross sectional). A few vessels show a punctate staining pattern
([B] cross sectional). Decreased claudin-5 staining is seen along the EC contacts ([C] cross sectional). Linear claudin-5 staining in
capillaries of a control sample ([D] longitudinal). Microvessel basement membranes are labeled for collagen IV; nuclear staining
with TO-PRO3 (blue) is shown in (A) to (C). Scale bars = (A, D) 30 Km; (B, C) 10 Km.
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RESULTS

TJP Expression in CCM and Control Microvessels
Sections stained for the EC marker protein platelet/

endothelial cell adhesion molecule 1 (PECAM-1)/CD31 on cryo-

sections (Figs. 1Y3A¶¶YD¶¶) and vWF on paraffin sections (Figure,
Supplemental Digital Content 1, http://links.lww.com/NEN/A239)
showed a typical linear staining pattern at distinct EC borders
in control samples. Occludin, claudin-5, and ZO-1 immunoreac-
tivities were clearly decreased in endothelial layers of CCM tissue

FIGURE 6. Confocal imaging of cryosections of cerebral cavernous malformation (CCM) (CCM1, CCM6) and control brain tissues
(c1, c5) immunostained for glucose transporter 1 (GLUT-1) (green) and CD31 (red). (AYD) In control vessels, GLUT-1 is distributed
uniformly ([C¶] cross sectional/longitudinal; [D¶] longitudinal). The GLUT-1 staining is markedly reduced in CCM tissue samples
([A¶] cross sectional; [B¶] cross sectional/longitudinal). Non-EC staining in (C¶) and (C¶¶¶) likely represents extravasated erythro-
cytes. The 4¶,6-diamidino-2-phenylindole (DAPI) staining (blue) is mapped in (A) to (D) and merged images in (A¶¶¶) to (D¶¶¶). Scale
bars = 20 Km.
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compared with control brain microvessels (Figs. 1Y4; Figure, Sup-
plemental Digital Content 1, http://links.lww.com/NEN/A239).
The linear junctional labeling was either discontinuous or
amorphous, and many vessels even seemed negative for
TJPs. In several cases, redistribution of proteins was observed
in the endothelial layer, as well as the surrounding tissue
(Figs. 1Y3A¶YC¶). Costaining for CD31 and vWF addition-
ally revealed that only microvessels were analyzed for TJP
localization.

We next built 3-dimensional reconstructions of vascular
structures to validate the immunofluorescence experiments
that showed different localization patterns for TJPs along the
margin of cell-to-cell contacts and in the surrounding tissue
of CCMs when compared with controls (Figs. 4, 5). In re-
gions of CCM tissue where a protein signal could be deter-
mined, few vessels showed a punctate labeling for claudin-5
(Figs. 4B, C; 5A, B); in others, occludin and claudin-5 were
linearly arranged along the cell-to-cell contacts (Figs. 4A, 5C).
In those cases, the fluorescence signal of both proteins was
clearly less than that in the control samples. Furthermore, in
the control tissues, occludin and claudin-5 staining was limited
to the vascular intima (Figs. 4D, E; 5D) and was also detected
in the surrounding tissue in some regions of the CCM sections
(Fig. 5A).

GLUT-1 Expression in CCM Vessels
Because BBB permeability not only corresponds to

alterations in TJPs, but to an impairment of GLUT-1 ex-

pression, CCM and control tissue cryosections were immu-
nostained for this transmembrane transporter protein in
cryosections (Fig. 6) and paraffin sections (Supplemental
Digital Content 2, http://links.lww.com/NEN/A241). Microves-
sels of control brain samples uniformly showed a high level of
GLUT-1 staining, whereas GLUT-1 expression was markedly re-
duced or absent in CCM specimens (Fig. 6; Figure, Supplemental
Digital Content 2, parts A-B, http://links.lww.com/NEN/A241).
As an internal positive control, GLUT-1 immunoreactivity on
erythrocytes was observed in every sample (Fig. 6C¶). Irregular
fibronectin staining around CCM microvessels indicated BBB
impairment (Fig. 7).

Protein Expression Levels
There was a marked reduction of TJP and GLUT-1

levels along EC borders that corresponded to decreased FI per
ROI (Fig. 8). Lower occludin, claudin-5, ZO-1, and GLUT-1
fluorescence signals were demonstrated in each CCM speci-
men (Fig. 8A). Slight differences in the extent of protein
reduction were likely caused by different tissue compositions
of each CCM sample. Mean values calculated for CCMs and
controls revealed an FI signal reduction of 62% for occludin,
71% for claudin-5, and 74% for ZO-1 in CCM tissue versus
those in control tissue (Fig. 8B). The decrease of FI per pro-
tein expression in CCM vessels was highly significant in all
cases (p G 0.0001). The most striking decrease of protein ex-
pression in CCM vessels versus controls was found for
GLUT-1 (78%) (p G 0.0001).

FIGURE 7. Localization of fibronectin (green) and collagen VI as an endothelial cell (EC) marker ([A¶¶, B¶¶] red) in cerebral cavernous
malformation (CCM) (CCM5) and control (c1) samples by confocal microscopy (A, B). Fibronectin is uniformly distributed in
vessels of the control sample ([B¶] cross sectional). In CCM EC, there is less fibronectin expression, and the pattern is irregular ([A¶]
cross sectional). The 4¶,6-diamidino-2-phenylindole (DAPI) staining (blue) is shown in (A) and (B) and merged images in (A¶¶¶) and
(B¶¶¶). Scale bars = 20 Km.
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Messenger RNA Expression
To validate the immunohistochemistry findings, we

performed real-time RT-PCR and normalized against either
endothelial marker CD31 (Fig. 9) or vWF (not shown); these
analyses showed similar results. Total RNA expression from
8 samples was analyzed for each group of CCM and controls.
The RNA expressions of occludin (13% T 3.6%), claudin-5
(25.8% T 8.3%), and ZO-1 (8.2% T 3.6%) were significantly
decreased in CCM versus control samples (Mann-Whitney-
Wilcoxon test, p G 0.05). The GLUT-1 expression was also
significantly reduced (15.8% T 4.3%) when compared with
RNA expression in control samples.

DISCUSSION
We report that the expressions of TJPs and of GLUT-1

are decreased in CCMs compared with those in control sam-
ples. The expression of TJPs was markedly reduced at inter-
endothelial contact sites and seemed negative in most of the
vessels. The structural composition of TJs in ECs of brain
capillaries is highly complex (43), and impairment of TJ as-
sembly may lead to a loss of BBB integrity (44Y48). Occludin
and claudin-5 are critical for proper BBB function and per-

meability, and immunoreactivity for these proteins was de-
creased at interendothelial contact sites in CCM tissue.
Furthermore, the expression of the TJ-associated protein ZO-1
was also altered. The ZO-1 and occludin are considered to be
the most important protein components for the maintenance
of the BBB (49Y52); claudin-5 plays an essential role in TJ
formation, generating the structural and functional core of the
multiprotein complex (27). The resulting incorrect assembly
of TJs may lead to a malfunctioning BBB. Moreover, down-
regulation of ZO-1 suggests a disturbance in interaction of
TJs with the actin cytoskeleton, likely affecting the physiology
of the CCMs. The ZO-1 loss might lead to the disruption of
the cellular architecture and a mismatch between interacting
TJPs that result in cellular instability. Indeed, overexpression
of occludin and inadequate levels of ZO-1 impair BBB function
(29). In addition, occludin phosphorylation correlates with TJ
formation, regulation of junction permeability, and interaction
with ZO-1 (53Y55). Claudin-5 is a key determinant of trans-
endothelial resistance at the BBB, and alterations in its inter-
acting proteins can also lead to a disruption of the barrier
function (53). The deviations of TJP protein localization were
accompanied by protein redistribution within the surrounding
brain parenchyma of CCM vessels. Taken together, our obser-
vations suggest that cell-to-cell contacts of CCM vessels are
disorganized, and that TJ proteins are redistributed in parts
of the EC surrounding tissue. Quantification of signal inten-
sities of TJP expression confirmed our immunohistochemical
observations.

Alterations of TJ assembly in CCMs leading to a mal-
functioning permeability barrier are also reported in brain
tumor vessels and in brain capillaries after ischemic events
(22, 38, 56). In many patients, CCM pathology comprises
repeated microhemorrhages into the surrounding brain paren-
chyma, corresponding to an impaired permeability of the vas-
cular channels. On the other hand, CCM vessels are not devoid
of correctly assembled TJ complexes; although expression was

FIGURE 9. Relative mRNA expression of occludin, claudin-5,
zonula occludens ZO-1, and glucose transporter 1 (GLUT-1) in
cerebral cavernous malformation (CCM) and control brain tis-
sues. Data are shown as mean T SEM in 2 separate experi-
ments with 8 samples per group. Data were normalized against
the endothelial cell marker gene CD31. The mRNA expression
levels from controls (n = 8) are set as 100% (mean T SEM).
Differences in mRNA concentrations were determined by the
Mann-Whitney-Wilcoxon test, with p G 0.05 being considered
statistically significant. *** p G 0.001.

FIGURE 8. Analysis of fluorescent intensity (FI) of occludin,
claudin-5, zonula occludens ZO-1, and glucose transporter 1
(GLUT-1) staining in cryosections of cerebral cavernous mal-
formation (CCM) and control tissues. Experiments were done
in triplicate. (A) Mean FI of each CCM and control specimen.
(B) Mean FI (in percentage) of the 7 normalized CCM speci-
mens versus controls. Mean control FI was calculated as 100%
(mean T SEM). Changes in mean FI were highly significant for
all proteins examined (Student t-test, **** p G 0.0001).
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decreased, linear staining patterns of occludin, claudin-5, and
ZO-1 could still be observed along EC-EC contacts in very
few CCM foci. Therefore, further study is needed to deter-
mine whether a higher percentage of linear TJP arrangement at
cell-cell borders correlates with the aggressive clinical behav-
ior of CCMs, as suggested by others (20, 57). However, the
mechanisms underlying expansion and rupture of CCMs re-
main uncertain (58).

Because TJP alterations correlate with a reduction of
GLUT-1 in cerebral ECs, we also investigated GLUT-1 ex-
pression in CCMs. As expected, alterations in TJP distribution
were accompanied by a marked downregulation of GLUT-1;
vessel leakage was indicated by irregular fibronectin staining.
In most CCM vessels, GLUT-1 immunoreactivity was com-
pletely absent, with a positive signal detected only in eryth-
rocytes. Staining of red blood cells in extravascular CCM tissue
suggests recent hemorrhage and serves as an internal positive
control. The GLUT-1 is the only known endothelial BBB glu-
cose transporter protein; therefore, its downregulation probably
correlates with impaired glucose uptake and decreased cell
metabolism (59).

The decrease in TJP and GLUT-1 protein immuno-
reactivity corresponded to modifications in gene expression.
Therefore, differences in protein concentrations at TJs and EC
plasma membranes are most likely caused by downregulation
of mRNA expression. In addition, impaired TJP and GLUT-1
levels in CCM vessels may also correspond to protein redis-
tribution within the tissue that could be influenced by alterations
with further binding partners, such as impaired interactions with
adherens junction components (AJs). The most important ele-
ment of AJs consists of the VE-cadherin/A-catenin complex
(60), and it is known that CCM1/Krit1 interacts with A-catenin;
this in turn shows a cross reaction with TJs, probably in a Rap-
1 GTPaseYdependent manner (21, 61). Therefore, alterations in
TJPs and GLUT-1 levels could influence or be caused by im-
pairments in AJ protein components.

In conclusion, our data strongly support a fundamental
role of TJ complexes and TJP in the pathophysiology of
CCMs. We showed that CCMs have abnormal localizations
of occludin, claudin-5, and ZO-1 at interendothelial contact
sites, and that this is accompanied by a marked reduction of
GLUT-1 expression. These alterations may affect vascular
matrix stability and thus contribute to clinical progression in
CCMs. Future studies will need to determine the interactions
of TJPs with CCM1, CCM2, and CCM3 gene products and
other binding partners, such as AJ proteins. Furthermore,
more information on the role of EC TJPs in the BBB in CCM
will facilitate a better understanding of CCM behavior and
may be beneficial in the development of an appropriate
treatment.
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