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Abstract
Reactive astrogliosis is associated with many pathologic processes

in the central nervous system, including gliomas. The glycoprotein
podoplanin (PDPN) is upregulated in malignant gliomas. Using a
syngeneic intracranial glioma mouse model, we show that PDPN is
highly expressed in a subset of glial fibrillary acidic proteinYpositive
astrocytes within and adjacent to gliomas. The expression of PDPN
in tumor-associated reactive astrocytes was confirmed by its colocalization
with the astrocytic marker S100A and with connexin43, a major as-
trocytic gap junction protein. To determine whether the increase in
PDPN is a general feature of gliosis, we used 2 mouse models in
which astrogliosis was induced either by a needle injury or ischemia
and observed similar upregulation of PDPN in reactive astrocytes in
both models. Astrocytic PDPN was also found to be coexpressed with
nestin, an intermediate filament marker for neural stem/progenitor
cells. Our findings confirm that expression of PDPN is part of the
normal host response to brain injury and gliomas, and suggest that it
may be a novel cell surface marker for a specific population of reactive
astrocytes in the vicinity of gliomas and nonneoplastic brain lesions.
The findings also highlight the heterogeneity of glial fibrillary acidic
proteinYpositive astrocytes in reactive gliosis.
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INTRODUCTION
Gliomas include the most aggressive forms of adult

primary brain tumors (1, 2); they are characterized by high

degrees of intratumoral heterogeneity that complicate their
treatment (3, 4). The complex composition of glioma envi-
ronments is also attributable to the presence of nontransformed
central nervous system (CNS) resident cells within the tumors
that may facilitate tumor progression, thereby affecting patient
survival (5Y7). Reactive astrocytes expressing increased levels
of glial fibrillary acidic protein (GFAP) are found around gli-
omas (8Y11); by the formation of glial scars, they can separate
healthy CNS tissues from a variety of focal lesions (12Y15).

Podoplanin (PDPN) is a mucin-type transmembrane
glycoprotein that has been implicated in various cellular
processes, including tumor migration and invasion (16Y19);
the mechanisms by which PDPN mediates its action are
unclear, although it affects the activities of RhoA and ERM
(Ezrin, Radixin, Moesin) proteins, which link cell mem-
branes and the cytoskeleton (20). Much more is known about
PDPN as a ligand for C-type lectin receptor CLEC-2 in
platelet aggregation (21) and its association with the immune
system (16).

Enhanced expression of PDPN has been associated with
malignant progression of astrocytic tumors (22Y24). In addi-
tion, PDPN is detected in glioma stem cells (25), which in-
teract extensively with the tumor microenvironment (26).
Podoplanin coexpressed with nestin, an embryonic interme-
diate filament that is re-expressed in reactive astrocytes
(27Y30). It also colocalized with connexin43 (Cx43), a gap
junction protein that is expressed in neural progenitor cells
(31, 32) and upregulated in reactive astrocytes induced by
various brain injuries, including stab wounds (33Y36). Recent
evidence suggests that the glial scar contains a distinct popu-
lation of reactive astrocytes that are derived from neural stem
cells (37).

Here, we found that PDPN is highly expressed within
some gliomas and in tissues adjacent to gliomas. Its up-
regulation in glioma-associated reactive astrocytes was dem-
onstrated using a mouse model consisting of intracranial
syngeneic implantation of mouse GL261 glioma cells. We
further show that induction of PDPN is not attributable to the
presence of glioma cells per se because increased PDPN was
also observed in GFAP-positive astrocytes activated by stab
wounds and ischemic injury. Our findings suggest that PDPN
is a novel cell surface marker for reactive astrocytes with an
expression profile that is associated with progenitor cells,
raising the possibility that PDPN may have a role in pro-
viding a permissive environment for cellular regeneration
after brain injury.
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MATERIALS AND METHODS

Animals
Male and female mice were maintained in an animal

facility with a 12-hour light/dark cycle and provided food and
water ad libitum. All breeding and animal procedures were
approved by The University of British Columbia Animal Care
Committee and performed in accordance with the guidelines
established by the Canadian Council on Animal Care.

Cell Line
Mouse GL261 glioma cells (NCI-Frederick Division

of Cancer Treatment and Diagnosis, Frederick, MD) were
maintained in Dulbecco modified Eagle medium supple-
mented with 10% fetal bovine serum and transfected with
pcDNA-mCherry plasmid with Lipofectamine 2000 (Invitrogen,
Carlsbad, CA).

Antibodies
The antibodies used for Western blot and immunofluo-

rescence histochemistry were as follows: rabbit anti-Cx43
(C6219, 1:400 for immunofluorescence histochemistry; Sigma,
St Louis, MO); mouse antiYglyceraldehyde 3-phosphate dehy-
drogenase (5G4 MAb 6C5, 1:5000 for Western blot; HyTest
Ltd, Turku, Finland); mouse anti-GFAP (G3893, 1:600 for
immunofluorescence histochemistry and 1:2000 for Western
blot; Sigma); rabbit anti-IBA1 (1:400 for immunofluorescence
histochemistry; Wako, Richmond, VA); mouse anti-nestin
(rat-401, 1:85 for immunofluorescence histochemistry; Develop-
mental Studies Hybridoma Bank, Iowa City, IA); hamster anti-
PDPN (8.1.1, 1:200 for immunofluorescence histochemistry and
1:5000 for Western blot; Developmental Studies Hybridoma
Bank) (38); rabbit anti-PDPN (SC-134483, 1:50 for immuno-
fluorescence histochemistry; Santa Cruz Biotechnology, Santa
Cruz, CA); rabbit anti-S100A (ab868, 1:200 for immunofluo-
rescence histochemistry; Abcam, Cambridge, MA); and
antiYRFP/mCherry (A00682, 1:750 for Western blot; Genscript,
Piscataway, NJ).

Intracranial Implantation of Glioma Cells
Mice were anesthetized with isoflurane and a 1.0-mm-

diameter hole was drilled through the skull. GL261 cells
(2.5 � 104) were resuspended in 2 KL of Hanks balanced salt
solution and injected intracerebrally with a 33-gauge syringe
into the striatum of adult C57BL/6 mice at a position 2.5 mm
lateral to the midline, 1.0 mm anterior to the bregma, and
3.0 mm ventral to the dura. At 7 or 14 days after injection, mice
were killed and brains were fixed by transcardial perfusion
with 4% paraformaldehyde in 0.1 mol/L of phosphate-
buffered saline (PBS) before being removed and processed
for immunofluorescence.

Intracerebral Needle Injury
Stab wounds were performed as previously described

(33). Essentially, 2 KL of PBS was injected intracerebrally,
and brains were removed at 6 days postinjury.

Middle Cerebral Artery Occlusion
The procedure was carried out as previously described (39).

Briefly, an incision was made on the right side of the head of

anesthetized 8-month-old mice, and the exposed middle cerebral
artery was cauterized above and below the rhinal fissure using an
electronic coagulator (Codman & Shurtleff, West Chester, PA).
Mice were killed 4 or 6 days later for subsequent analysis.

Immunohistochemistry
Human brain tumor tissue microarray slides (GL208,

GL2082, and GL2083; US Biomax, Rockville, MD) were
probed with anti-PDPN antibody (D2-40, 1:100; BioLegend,
San Diego, CA) and processed by Wax-it Histology Services
Inc (Vancouver, British Columbia, CA), as previously de-
scribed (40). Slides were scanned with an Aperio microscope
scanner.

Immunofluorescence and Image Analysis
Sucrose-equilibrated brains were frozen in OCT com-

pound (Tissue-Tek/Sakura, Torrance, CA) and sectioned at
10 Km thickness. Brain sections were blocked with 2% bovine
serum albumin and 0.3% Triton X-100 in PBS and incubated
sequentially with primary antibodies in 1% bovine serum al-
bumin and 0.3% Triton X-100 at 4-C overnight and with cor-
responding Alexa Fluor secondary antibodies in 1% bovine
serum albumin and 0.3% Triton X-100 at room temperature for
1 hour. Sections were mounted with Prolong Gold (Invitrogen)
and imaged with a Leica TCS SP5 II Basic VIS system.

To quantify the extent of PDPN and GFAP staining
from the tumor border or needle tract, we delineated the tumor
border in ImageJ with reference to mCherry fluorescence or
visually identified the needle tract. Images were adjusted by
thresholding, and 20 to 30 measurements were performed
around the tumor (from the delineated border or needle tract to
the last point along each radius, where the proteins could be
detected) as previously described (33). At least 3 animals
were analyzed under each experimental condition.

Protein Extraction and Western Blot Analysis
Tumor samples were obtained by microdissection of

fresh brain tissue from mice containing implanted GL261
cells. Tissue surrounding the stab wound and cortical tissues
from mice subjected to middle cerebral artery occlusion
(MCAO) were isolated from fresh frozen brain sections with a
25-gauge needle under a dissection microscope. Tissue sam-
ples were lysed in RIPA buffer containing 0.1% sodium
dodecyl sulfate, 1% IGEPAL, 0.5% sarkosyl, 50 mmol/L of
Tris-HCl (pH 8.0), and 150 mmol/L of NaCl supplemented
with protease inhibitors (Roche Applied Science, Indianapolis,
IN) and phosphatase inhibitors (Sigma). Protein concentra-
tions were determined with a bicinchoninic acid assay kit
before the separation of the protein lysate on a sodium
dodecyl sulfateYpolyacrylamide gel electrophoresis gel. After
incubation of membranes with primary antibodies at 4-C
overnight, they were rinsed and incubated with corresponding
horseradish peroxidaseYconjugated secondary antibodies (Sigma).
Protein bands were detected with Amersham ECL Western de-
tection reagents (GE Healthcare).

Statistical Analysis
To evaluate significance between 2 groups, we performed

comparisons using Student t-test. p G 0.05 was considered
significant. Data are presented as mean T SE.
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RESULTS

PDPN Is Expressed in Glioma-Associated
Reactive Astrocytes

The presence of reactive astrocytes in brain lesions is
usually confirmed by their enhanced GFAP immunoreactivity
(8,14); a recent report has highlighted the possibility of
stratifying Grade IV gliomas based on the expression of in-
termediate filament proteins (41). Expression of PDPN is

significantly higher in malignant gliomas (22Y24), and we
similarly observed PDPN upregulation in Grade III and Grade
IV glioma tissues when we probed a tissue tumor array for
PDPN expression (Figure, Supplemental Digital Content 1,
http://links.lww.com/NEN/A684). Interestingly, we observed
PDPN staining in cell types resembling GFAP-positive as-
trocytes that were most obvious in Grade I and Grade II
glioma tissues (Fig. 1A). Because PDPN expression has
been detected in astrocytes (42Y44), our results suggest

FIGURE 1. Expression of PDPN in primary low-grade human gliomas and adjacent tissues. (A) Representative images of 4 tumor
cores (1 mm diameter) from Grade I and Grade II glioma samples. Images of hematoxylin and eosin (H&E) stains were obtained
from US Biomax (http://www.biomax.us/). Podoplanin and GFAP immunoreactivity are visualized by brown staining. IgG served as
negative control. Magnified images of PDPN and GFAP immunoreactivity are shown (two columns to the right of tumor cores).
Structures resembling astrocyte processes in gliomas and adjacent normal tissues are PDPN-positive. (B) Western blot showing
PDPN and GFAP expression in primary cultured mouse astrocytes and mouse GL261 glioma cells. GL261 cells express minimal
levels of PDPN and GFAP in vitro. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used as loading control. (C)
Coexpression of PDPN and GFAP in vivo in a 1-week-old GL261 tumor cell intracranial implant. mCherry-expressing glioma cells
were pseudocolored in blue. Bottom panel shows the magnified image of the white box in the upper panel showing colocalization
of PDPN and GFAP (white arrowhead).
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that some of the PDPN immunoreactivity in glioma tissues
may be attributed to reactive astrocytes.

To confirm that PDPN is expressed in nonneoplastic
glial cells, we used a mouse glioma cell line, GL261, that
expresses minimal levels of endogenous PDPN and GFAP in

vitro (Fig. 1B) in an intracranial animal model. We implanted
mCherry-labeled GL261 cells into the striatum of syngeneic
C57B/6 mice with an intact immune system (45, 46) and
observed the expression of PDPN protein specifically in cells
that did not express the fluorescent marker for transplanted

FIGURE 2. Upregulation of PDPN in reactive astrocytes at the glioma periphery. (A) Coexpression of PDPN and GFAP-positive
reactive astrocytes at the tumor periphery. A glial scar formed around the implanted tumor at 2 weeks after intracranial implan-
tation of GL261 cells. mCherry-expressing glioma cells were pseudocolored in blue. Glial fibrillary acidic protein immunofluores-
cence marks the region of gliosis. (B) Membrane-bound PDPN (green) surrounding S100A (red) at the tumor border. S100A is a
cytosolic marker for astrocytes. Right panel shows the magnified image of white boxes > and A. (C) Western blot showing PDPN
and GFAP expression in different mouse brain tissue samples obtained by microdissection. There is a noticeable increase in PDPN
and GFAP protein levels in the tumor border sample compared to the core. Podoplanin is upregulated to a greater extent than
GFAP. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used as loading control.
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neoplastic cells (Fig. 1C). Using anti-GFAP antibody at a
concentration that only detects reactive astrocytes (47, 48), we
observed coexpression of GFAP and PDPN (Fig. 1C). This
result was further supported by examination of PDPN ex-
pression in the glial scar, which was visualized as a region of
enhanced GFAP expression caused by hypertrophy of astro-
cytes (14) at the glioma periphery (Fig. 2A). By costaining
PDPN-labeled cells with anti-S100A (49), which is a cyto-
plasmic marker for astrocytes, we showed that PDPN is
expressed in astrocytic glial cells; membrane-bound PDPN
immunoreactivity surrounded cytoplasmic S100A in the same
cells (Fig. 2B). Upregulation of PDPN protein at the tumor
periphery was confirmed by Western blot analysis (Fig. 2C).

Consistent with immunofluorescence data, high PDPN expres-
sion was detected at the tumor border, and not in the tumor core,
by Western blot (Fig. 2C). Upregulation of PDPN was greater
than the corresponding upregulation of GFAP at the tumor
border compared to the tumor core (Fig. 2C). In contrast, PDPN
was not detected in IBA1-positive microglia, another major cell
type found in the glioma microenvironment (Figure, Supplemental
Digital Content 2, http://links.lww.com/NEN/A685) (5, 50).

Upregulation of astrocytic Cx43 has been detected in
gliomas, particularly in the peritumoral region (51Y53). Sim-
ilar to PDPN, increased Cx43 immunoreactivity was observed
in the brain parenchyma within 100 Km of the edge of the
GL261 tumor mass (Fig. 3A). In addition, Western blot

FIGURE 3. Colocalization of PDPN and Cx43 in tumor-associated reactive astrocytes. (A) Expression of Cx43 (green) and GFAP-
positive reactive astrocytes (red) at the glioma periphery confirmed by co-immunostaining coronal brain sections with anti-Cx43
and anti-GFAP antibodies (white arrowheads). GL261 glioma cells were pseudocolored in blue. Bottom panel shows the magnified
image of white boxes in the upper panel. (B) Western blot analysis with lysate from microdissected brain tissues. Co-upregulation
of Cx43 and GFAP proteins at the tumor border compared to the core. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was
used as loading control. (C) Colocalization of PDPN and Cx43 in reactive astrocytes at the tumor border.
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analysis of proteins isolated from microdissected tissue
showed coexpression of Cx43 and GFAP at the glioma
periphery, which is identified by its minimal mCherry
level compared to the tumor core (Fig. 3B). Therefore,
colocalization of Cx43 with PDPN (Fig. 3C) indicates that
these proteins are expressed simultaneously in tumor-
associated astrocytes adjacent to the mCherry-labeled
GL261 glioma periphery.

PDPN Is Expressed in a Subset of Reactive
Astrocytes Closest to the Tumor Periphery

Glial fibrillary acidic protein immunoreactivity has been
widely used to assess the extent of gliosis under various
pathologic conditions in the CNS (8, 14). We noticed that not
all GFAP-expressing astrocytes were PDPN-positive in glio-
mas (Fig. 1A) and adjacent to implanted gliomas (Fig. 4A).
Although the intensity of GFAP immunoreactivity reduced
gradually until it was undetectable (429.9 T 14.5 Km from
the tumor border), PDPN staining diminished sharply (96.1 T
4.2 Km from the tumor periphery) (Fig. 4B). These observa-
tions suggest the selective upregulation of PDPN in a subset
of reactive astrocytes, indicating that a heterogeneous popu-
lation of astrocytes comprises peritumoral tissue.

Upregulation of PDPN in Reactive Astrocytes
Induced by Mechanical and Ischemic Injuries

To determine whether gliosis-induced PDPN upreg-
ulation is a host response independent of glioma cells, we first
examined the expression of PDPN in astrocytes activated by a
stab wound. The extent of astrogliosis, as visualized by en-
hanced GFAP and Cx43 immunoreactivity, peaked at 6 days
postinjury (33). Using a stab wound injury model that we
have previously established (33), we observed a significant
increase in PDPN staining within a distance of 100 Km from
the stab wound (Fig. 5A). In contrast, GFAP-positive astro-
cytes were more dispersed and detected at a considerably
farther distance from the stab wound (Fig. 5A). Upregulation
of PDPN within the region surrounding the stab wound,
compared to the same region in the contralateral hemisphere,
was confirmed by Western blot analysis of microdissected
mouse brain tissues (Fig. 5B). Similar to our observation in
gliosis induced by glioma, coexpression of PDPN and GFAP
was also detected in gliosis induced by a mechanical stab
wound (Figure, Supplemental Digital Content 3, A, B,
http://links.lww.com/NEN/A686).

We next investigated whether there is a similar increase
in PDPN levels in reactive astrocytes induced by MCAO. In
agreement with previous studies (39, 54), there was a signif-
icant increase in GFAP immunoreactivity in the peri-infarct
region surrounding dead tissue at 4 days postinjury (Fig. 6A).
In contrast, upregulation of PDPN protein was more subtle
(Fig. 6A). Although the temporal profile of MCAO-induced
astrogliosis is not known, we speculate that maximal astrogliosis
is unlikely to occur at 4 days postinjury (55, 56). Based on our
results from stab woundYinduced astrogliosis (33), we examined
MCAO-induced PDPN expression at 6 days postinjury and
observed a dramatic increase in PDPN expression in the peri-
infarct region (Fig. 6A). The upregulation of PDPN in reactive
astrocytes was confirmed by its colocalization with S100A

(Fig. 6B) and its coexpression with GFAP (Figure, Suppmental
Digital Content 3, C, http://links.lww.com/NEN/A686). The
differential upregulation of GFAP and PDPN in the ipsilateral
ischemic hemisphere was also confirmed by Western blot
analysis with microdissected brain tissues (Figure, Supple-
mental Digital Content 4, http://links.lww.com/NEN/A687).

Expression of PDPN in Nestin-Positive
Reactive Astrocytes

Connexin43 colocalizes with nestin, which is re-
expressed in reactive astrocytes (29,57Y59). Using double
immunofluorescence staining, we observed that PDPN co-
localized with nestin in some reactive astrocytes (Fig. 7).

DISCUSSION
Astrocytes become ‘‘reactive’’ in response to neuronal

death (12). At the molecular level, a specific set of proteins is
upregulated in these astrocytes, although the significance of
their increased expression remains unclear (42Y44). In this

FIGURE 4. Expression of PDPN in a subset of reactive astrocytes
closest to the tumor. (A) Immunofluorescence image showing
PDPN immunostaining close to the tumor border (white dot-
ted line) and sharply diminishing with distance. Glial fibrillary
acidic protein (GFAP) expression is observed farther away from
the tumor border. (B) Box plots representing the maximal
distance of detectable PDPN and GFAP expression. * p = 0.0026
(Student t-test).
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regard, GFAP is the most widely used marker for reactive
astrocytes (48, 60, 61), and its absence seems to attenuate
astrogliosis (62). A genomic analysis reveals that astrocytes in
reactive gliosis are highly heterogeneous and that distinct
subsets of proteins are altered in response to specific injuries
(63). Here, we demonstrate for the first time that PDPN ex-
pression is increased in astrocytes activated by glioma growth,
mechanical stab wound, and brain ischemia.

Reactive astrogliosis serves to protect neurons from
further damage, although it also inhibits their regeneration
(13). Recent evidence reveals that the glial scar formed after
spinal cord injury contains a distinct neural stem cell progeny
adjacent to the lesion, and these cells exert a neuroprotective
effect (64, 65). Moreover, cerebral infarction induces a subset

of astrocytes with stem cellYlike characteristics and the ability
to form neurons (66, 67). We found that PDPN is upregulated
in a subset of GFAP-positive reactive astrocytes that are
proximal to a cerebral infarct. Podoplanin has been detected in
stem cells (25, 68, 69); its colocalization with Cx43, which is
also expressed in neural stem cells (32, 70,71), suggests that
PDPN is a novel marker for detecting a specific subpopulation
of reactive astrocytes. Furthermore, the coexpression of PDPN
with nestin suggests that PDPN is expressed in reactive astro-
cytes with proliferative potential (29, 65, 72Y74); therefore, the
temporal expression of PDPN in ischemic brain suggests that it
may play a role in recovery after the initial cellular insult.

Astrogliosis is a prominent feature of gliomas (10, 11, 75),
and it is often difficult to distinguish glioma cells from reactive

FIGURE 5. Upregulation of PDPN protein in reactive astrocytes induced by a mechanical stab wound. (A) Podoplanin is
upregulated up to 100 Km from the needle tract (white arrowhead). The region of gliosis is highlighted by GFAP immunoreactivity.
(B) Western blot analysis of cell lysate from microdissected brains showing the upregulation of PDPN protein (2.5-fold, as mea-
sured by Image J) in the stab wound compared to the same region in the contralateral side; this side shows a basal level of PDPN
similar to that in the striatum, corpus callosum, and cortex of a noninjured brain. Glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) served as loading control.
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astrocytes (75). An increase in PDPN expression has been
reported in malignant gliomas (22Y24), and our study suggests
that a significant proportion of PDPN detected in gliomas may
be attributed to tumor-associated reactive astrocytes. Therefore,

our findings may explain why PDPN is not a useful diagnostic
marker for grading glioma malignancy (24). The selective
upregulation of PDPN and Cx43 in reactive astrocytes adjacent
to glioma cells at the tumor-host interface implicates a role for

FIGURE 6. Increased PDPN expression in reactive astrocytes adjacent to ischemic infarcts. (A) Images of coronal brain sections
showing enhanced GFAP staining surrounding the infarct region (white dotted line), with minimal GFAP immunoreactivity within
the infarct core (*) after MCAO-induced ischemic infarct at 4 and 6 days postinjury. Podoplanin expression (green) is increased in
the peri-infarct region at 6 days postinjury (white arrows). (B) Colocalization of PDPN (green) with the astrocyte marker S100A
(red) in the peri-infarct region at 6 days postinjury.
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PDPN in microenvironment signaling at the invasive niche. In
addition, some evidence suggests that progenitor cells have a
major role in glioma progression and in the resistance of tumors
to anticancer therapies (76, 77). Indeed, expression of PDPN in
cancer-associated fibroblasts has been shown to enhance tumor
progression in peripheral cancers (78Y80). Podoplanin has be-
come a promising target for chemotherapy for a variety of
cancers, including gliomas (81Y84). Accordingly, anti-PDPN
antibody has been investigated for its feasibility to target ma-
lignant gliomas (83). Taken together, our findings highlight an
unexplored role for PDPN in reactive gliosis, which is promi-
nent in the glioma microenvironment and in brain injury.
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