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ABSTRACT  

Hollow cylindrical structures are susceptible to local buckling because they flatten and significantly reduce their stiffness when they bend. There- 
fore, many previous studies aimed to improve the strength of pipelines and building structures were conducted. Our research group has focused 
on bamboo and has theoretically proven that stiffness anisotropy caused by bamboo’s unique nodes and vascular bundles enhances the stiffness 
of cylindrical structures. In this study, to investigate this analytically, we carried out a finite-element analysis and succeeded in deriving a new di- 
mensionless parameter that the stiffening effect of an anisotropic consideration. This result is applicable to a wide range of cylindrical structures, 
from thin-walled to thick-walled, and it is expected that bamboo-inspired bionic designs wi l l be proposed in the future. 
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cylinder; therefore, suppression of ovalization strongly depends 
on the cylinder length. Based on a buckling analysis, Rot- 
ter et al . [ 20 –22 ] used an additional dimensionless parame- 
ter, ω, to study the geometric nonlinearity of a perfectly elas- 
tic cylindrical shell subjected to uniform bending. According 
to the results, the buckling resistance due to terminal stiffen- 
ing can be described by four behavioural regions ( i.e. the rel- 
ative lengths of the cylinders ) , in which ω defines the proper- 
ties of relatively short cylinders ( “short” and “medium”) and �

defines the properties of relatively long cylinders ( “transitional”
and “long”) . 
In this study, it is shown that the ω used by Rotter to clas- 

sify the relative length of hollow cylinders can be derived 
from the effective length of the cross-sectional stiffening ef- 
fect from the terminal, which is obtained from a finite-element 
analysis of the pure bending of hollow cylinders. In addition, 
we propose a new expression for ω that is extended to con- 
sider anisotropy. This enables the length of a hollow cylin- 
der with short anisotropy and that of an isotropic cylinder 
to be specified, which provides useful insights for structural 
design. 

2. EFFECT OF  CYLINDRICAL  LENGTH ON  

NONLINEAR BUCKLING  BEHAVIOUR 

The buckling resistance of a cylinder is highly dependent on its 
geometric nonlinearity and its defects [ 21 –23 ]. However, be- 
cause this study considers a perfect cylinder with no initial irreg- 
ularities, the elastic defect reduction factor αG can be expressed 
as the ratio of the nonlinear buckling moment M k to the linear 
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1. INTRODUCTION 

Hollow cylindrical structures ( e.g. pipes and tubes ) are suscepti-
ble to bending, which causes local buckling. The latter arises be-
cause of a nonlinear geometric phenomenon in which the cross
section flattens as a result of bending, and this significantly re-
duces the stiffness ( i.e. the Brazier effect ) [ 1 ]. To prevent such
structural weaknesses in hollow cylinders and improve buckling
resistance, Sato et al . proposed reinforcing the cross section with
a double-tube structure and placing discrete ring stiffeners in the
axial direction of the cylinder [ 2 –4 ]. 
In addition to man-made structures, hollow cylindrical struc-

tures are found in nature. One example is bamboo [ 5 –14 ], which
is a plant with a unique node structure inside a cylinder ( Fig. 1 a ) .
The nodes prevent the cross-sectional flattening caused by bend-
ing, and by varying the node spacing along its height, bamboo
is able to achieve the strength necessary to maximize its height
while minimizing its weight. This is one of the survival strate-
gies that bamboo has acquired over a long period of time. The
mechanical rationale for this nonuniform arrangement of nodes
in the height direction was demonstrated theoretically by Shima
et al . [ 15 ] using the dimensionless parameter, �, which repre-
sents the cross-sectional stiffening effect demonstrated by Calla-
dine [ 16 ]. Furthermore, by deriving � in a way that accounts
for anisotropy, it was shown that the anisotropic nature of the
stiffness enhances the stiffening effect. The anisotropy is caused
by the vascular bundle sheath ( Fig. 1 b ) , whose Young’s modulus
is in the order of several gigapascals, comparable to that of steel
[ 17 –19 ]. 
This cross-sectional stiffening effect at the edges propagates
in the axial direction from the edges to the middle of the 
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Figure 1 ( a ) Wild bamboo grove. ( b ) Diagram of bamboo, showing its unique structure with multiple unevenly arranged nodes inside a 
cylinder. 

Table 1 Classification of the effect of cylinder length on nonlinear buckling behaviour [ 21 –22 ]. 

Classification Range Limit point buckling/Features 

Short ω ≤ 4.8 αG � 1 αG ( ω ) = 1.93− 0.5 ( ω − 3.8 ) 2 − 0.44 ( ω − 3.8 ) 3 
/Local buckling and ovalization are fully restrained by the boundary condition 

Medium 4.8 ≤ ω ≤ 0.5 r / t 
� ≤ 0.5 

αG ≈ 0.9 
/The ∼10% reduction from M cr is caused by pre-buckling amplification of the edge 
boundary condition, as is also seen under axial compression. The resistance in this 
domain may be characterized as being relatively independent of r / t 

Transitional ω ≥ 0.5 r / t 
0.5 ≤ � ≤ 7 

0 . 5 ≤ αG ≤ 0 . 9 αG (�) = 1 . 07( 1 −0 . 22 �+0 . 061 �2 . 94 

1+0 . 12 �2 . 94 ) 
/Increasing length permits progressively more ovalization and causes an increasingly 
nonlinear pre-buckling equilibrium path, leading to premature local buckling 

Long � ≥ 7 αG ≈ 0.5 
/Ovalization has developed fully 
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uckling moment M cr as 

αG = 

M k 

M cr 
. ( 1 ) 

The effect of the cylindrical length on the nonlinear buckling
ehaviour can be classified into four regions based on � and ω,
hich are defined as [ 16 , 20 ] 

� = 

√ 

t l 2 

r 3 
, ( 2 ) 

ω = 

l √ 

tr 
, ( 3 ) 

espectively, where t is the cylinder wall thickness, r is the
ylinder radius and l is the cylinder length. The detailed
oundaries and characteristics of each region are listed in
able 1 . In the table, the boundary lengths of “medium” and
transitional” become shorter as the cylinder becomes thicker
nd is more strongly affected by geometr ic nonlinear ities. Ac-
ording to Rotter et al . [ 21 ], the nonlinear elastic buckling
oment M k in each region is defined as 

M k = αG ( �, ω ) 
(
1 + 

4 
ω 

2 

)
1 . 902 Er t 2 . ( 4 ) 

3.  ANALYSIS  

3.1 Analysis model 
o verify the mechanism by which a cylindrical bulkhead can
easonably resist a bending moment when subjected to pure
ending, a model of a bamboo internode was constructed
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Figure 2 ( a ) Specifications of the analysis model: uniform bending moments M were applied to both ends of a cylindrical shell defined by wall 
thickness t , radius r and length l . ( b ) The y –z cross section of the analytical model ( the moving support was placed in the y –z plane to ensure 
symmetry ) ; the fixed end acts as a rigid cap to prevent the cross section from bending. ( c ) The x –y cross section of the analytical model; the 
radius r is defined by the neutral plane. 
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Figure 3 Unidirectional fibre composite projected onto the ( x , y , z ) 
coordinate system; the z -direction is the fibre direction. 
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using ANSYS Workbench, a general-purpose finite-element
analysis software. Figure 2 a shows a single bamboo internode
surrounded by knots. A rigid cap, which was free to rotate, was
placed at both ends of the cylinder to serve as a bulkhead in the
bamboo. To save elements, symmetry was utilized in the analyti-
cal model, as shown in Fig. 2 b and c. The fixed end acts as a rigid
cap to prevent the flat cross section from bending. Hexahedral
quadratic elements were used to form the mesh, and the mesh
size was adjusted according to the specifications of the analysis
target to ensure accuracy. 

3.2 Analysis conditions 
In this analysis, the cylinder length l was set to 150 mm and the
uniform bending M acting on the end of the cylinder was set to
1000 N mm. 

3.2.1 Material properties ( isotropy ) 
A modulus of longitudinal elasticity of E = 200 GPa and Pois-
son’s ratio of ν = 0.3 were used. The analysis was performed by
varying the thickness t and radius r to determine their respective
contributions to the stiffening. 

3.2.2 Material properties ( orthogonal anisotropy ) 
Bamboo can be regarded as a unidirectional fibre-reinforced
composite material with a fibre structure known as a vascular
bundle sheath ( Fig. 3 ) . Therefore, in this study, we assumed
an orthotropic elastic material with a uniform cylindrical fibre
distribution in the axial direction. In this case, the stress–strain
relationship can be expressed by ⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

ε x 
ε y 
ε z 
γxy 
γyz 
γzx 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 / E T −νTT / E T −νTL / E T 
−νTT / E T 1 / E T −νTL / E T 
−νLT / E T −νLT / E L 1 / E L 

0 0 0 1
0 0 0 
0 0 0 

where E L and E T are the longitudinal and transverse moduli,
respectively; νLT , νTL and νTT are Poisson’s ratios; and G LT and
G are shear moduli. 
TT 
0 0 
0 0 
0 0 

T 0 0 
1 / G LT 0 

0 1 / G LT 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

σx 
σy 
σz 
τxy 
τyz 
τzx 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(5) 

There were seven modulus components. Considering the
symmetry of the matrix, as i l lustrated by auto 

νLT 

E L 
= 

νTL 

E T 
( 6 )

and 

G TT = 

E T 

2 ( 1 + νTT ) 
, ( 7 )

there were five independent components. In this analysis,
E T = 200 GPa, νLT = νTT = 0.3, G LT = 76.9 GPa, and only
the longitudinal modulus E L was used as a design variable for
the material properties. The analysis was performed by varying
the values of the wall thickness t , radius r and the longitudinal
modulus to ascertain their contributions to the stiffening. 



Effective length of hollow cylindrical structures • 253 

Figure 4 ( a ) Analysis results produced by ANSYS Workbench for the x -deformation ( in mm ) . ( b ) The flatnes s of the cross section was 
evaluated by the lateral protrusion of the cross section; the “pa th” was along the direction of the cylindrical axis on the x –y plane at θ = 45 ◦. 
( c ) The x -deformation of the nodes along the “path” is plotted in panel ( b ) . 

Figure 5 Relationship between x -deformation and the distance from the fixed end: effect of ( a ) varying the thickness t while fixing the radius r 
at 25 mm and ( b ) varying r while fixing t at 1.25 mm. 
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3.3 Evaluation 
igure 4 a shows an example of the analysis results, showing the
 -deformation due to bending. The contour plot indicates that
he deformation was large at θ = 45 ◦ . Therefore, a “pa th” was
reated in the direction of the cylinder length at θ = 45 ◦ ( see
ig. 4 b ) , and the magnitude of the x -deformation at the nodes
n this “pa th” is plot ted in Fig. 4 c. Additionally, the length from
he fixed end to where the deformation was at its maximum is
efined as the effective length l e , and this parameter was used to
valuate the stiffening. 
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Figure 6 Change in the effective length of the cross-sectional stiffening effect from the terminal as a function of ( a ) thickness t and ( b ) radius r . 

Figure 7 Elongation of the effective length of the cross-sectional stiffening effect from the terminal caused by the anisotropy of the material: 
( a ) effect of thickness t and ( b ) effect of radius r . 
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4.  RESULTS  

4.1 Isotropic elasticity 
To investigate the effective length of the stiffening ( see Fig. 5 a ) ,
the changes in the x -deformation were investigated by fixing the
radius r at 25 mm and varying the wall thickness t to the values of
0.25, 0.50, 0.75, 1.00 and 1.25 mm. In addition, the wall thick-
ness t was fixed at 1.25 mm, and the radius r was set to the values
of 25, 50, 75, 100 and 125 mm ( see Fig. 5 b ) . Because the ef-
fective length l e is proportional to 

√ 

t and 
√ 

r ( see Fig. 6 ) , the
effective length l e of the complementary effect of the terminal
constraint can be expressed by 

l e √ 

tr 
≈ 2 . 45 . ( 8 )

If l = 2 l e , the right-hand side of Eq. ( 8 ) corresponds to ω.
In this case, the stiffening effect extended to the entire cylinder,
and the constant in Eq. ( 8 ) corresponded to the “short” region.
Rotter defined this boundary length as “the region where local
buckling and ellipticity are completely suppressed by the bound-
ary condition,” and our analysis successfully confirmed this from
a cross-sectional deformation perspective. 

4.2 Orthogonal anisotropy 
The ratio of the longitudinal modulus to the transverse modulus
is called the modulus ratio: γ = E L / E T . In this case, the effec-
tive length is denoted by l e γ . For example, if we assume that the
material is isotropic elasticity ( E L = E T ) , then γ = 1 and l e γ =
l e1 . To verify the effect of the anisotropy of the material on the
stiffening, the thickness t and radius r of the cylinder were varied
accordingly. 
As shown in Fig. 7 , l e γ / l e1 is proportional to 4 

√ 

E L / E T . Us-
ing the linear approximation with the least-squares method,
l e γ / l e1 = 

4 
√ 

E L / E T is derived. This does not depend on the
combination of t and r . In addition to the above results, based on
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q. ( 8 ) and the second paragraph of Section 4.1 , the anisotropic
onsideration ω 

′ can be derived as 

ω 

′ = 

4 

√ 

E T 

E L 

l √ 

tr 
. ( 9 ) 

As the cylinders became thicker, they became more suscep-
ible to geometric nonlinearities and relatively less resistant to
uckling. Therefore, the anisotropy of the cylindr ical mater ial
nhanced the effect of terminal stiffening of the cylinder and
trengthened its resistance to buckling. The fact that the stiffen-
ng effect increased in proportion to the one-fourth power of the
odulus ratio was also observed for the anisotropic � [ 15 ]. It is
xpected that both findings wi l l be combined to derive nonlinear
lastic buckling moments by accounting for anisotropy. 

5. CONCLUSIONS  

n this study, it was shown that the ω used by Rotter to classify
he relative length of hollow cylinders can be derived from the
ffective length of the cross-sectional stiffening effect from the
erminal, which was obtained from a finite-element analysis of
he pure bending of a hollow cylinder. Furthermore, by focusing
n the unique knot and vascular bundle structure of bamboo, we
erived ω by considering the anisotropy and clarified that the
nisotropy of the stiffness enhanced the complementary effect
f the cylindrical terminal. This enabled the length of a short
ollow c ylinder w ith anisotropy and that of an isotropic cylinder
o be specified. In the future, we wi l l address the detailed buck-
ing analysis of hollow cylinders with anisotropic materials, and
n expression for the nonlinear bifurcation moment that con-
iders anisotropy wi l l be derived based on the knowledge ob-
ained from this study. And it wi l l provide useful information
or the design of hollow cylindrical structures such as electricity
oles, horizonal tanks, pipelines, tubular piles and wind turbine
upport towers. 
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