Abstract

A recently reported approach to the prediction of blood-brain drug distribution uses the general linear free energy equation to correlate equilibrium blood-brain solute distributions (logBB) with five solute descriptors: R2 an excess molar refraction term; π2H, solute dipolarity or polarizability; α2H and β2H, the hydrogen bond acidity or basicity, and VX, the solute McGowan volume. In this study we examine whether the model can be used to analyse kinetic transfer rates across the blood-brain barrier in the rat.

The permeability (logPS) of the blood-brain barrier to a chemically diverse series of compounds was measured using a short duration vascular perfusion method. LogPS data were correlated with calculated solute descriptors, and octanol-water partition coefficients (logPoct) for comparison.

It is shown that a general linear free energy equation can be constructed to predict and interpret logPS values. The utility of this model over other physicochemical descriptors for interpreting logPS and logBB values is discussed.

References

Abraham
,
M. H.
(
1993
)
Scales of solute hydrogen-bonding: their construction application to physicochemical and biochemical processes
.
Chem. Soc. Rev.
 
22
:
73
83
.

Abraham
,
M. H.
,
Chadha
,
H. S.
(
1996
)
Applications of a solvation equation to drug transport properties
. In:
Pliska
,
V.
,
Testa
,
B.
,
van de Waterbeemd
,
H.
(eds)
Lipophilicity in Drug Action and Toxicity
.
VCH
,
Weinheim, Germany
, pp
311
337
.

Abraham
,
M. H.
,
McGowan
,
J. C.
(
1987
)
The use of characteristic volumes to measure cavity terms in reversed phase liquid chromatography
.
Chromatographia
 
23
:
243
246
.

Abraham
,
M. H.
,
Weathersby
,
P. K.
(
1994
)
Hydrogen bonding 30. The solubility of gases and vapors in biological liquids and tissues
.
J. Pharm. Sci.
 
83
:
1450
1455
.

Abraham
,
M. H.
,
Chadha
,
H. S.
,
Mitchell
,
R. C.
(
1994a
)
Hydrogen bonding. Part 33. The factors that influence the distribution of solutes between blood and brain
.
J. Pharm. Sci.
 
83
:
1257
1268
.

Abraham
,
M. H.
,
Chadha
,
H. S.
,
Whiting
,
G. S.
,
Mitchell
,
R. C.
(
1994b
)
Hydrogen bonding Part 32. An analysis of water-octanol and water-alkane partitioning and the (logP parameter of Seiler
.
J. Pharm. Sci.
 
83
:
1085
1100
.

Abraham
,
M. H.
,
Chadha
,
H. S.
,
Mitchell
,
R. C.
(
1995
)
The factors that influence the skin permeation of solutes
.
J. Pharm. Pharmacol.
 
47
:
8
16
.

Awouters
,
F. H. L.
,
Niemegeers
,
C. J. E.
,
Janssen
,
P. A. J.
(
1983
)
Pharmacology of the specific H1 antagonist, astemizole
.
Arzneim. Forsch.
 
33
:
381
388
.

Bradbury
,
M. W. B.
(
1979
)
The Concept of a Blood-Brain Barrier
,
Wiley
,
New York
.

Brightman
,
M. W.
,
Reese
,
T. S.
(
1969
)
Junctions between intimately apposed cell membranes in the vertebrate brain
.
J. Cell. Biol.
 
40
:
648
677
.

Chikhale
,
E. G.
,
Ng
,
K. Y.
,
Burton
,
P. S.
,
Borchardt
,
R. T.
(
1994
)
Hydrogen bonding potential as a determinant of the in vitro and in situ blood-brain barrier permeability of peptides
.
Pharm. Res.
 
11
:
412
419
.

Chikhale
,
E. G.
,
Burton
,
P. S.
,
Borchardt
,
R. T.
(
1995
)
The effect of verapamil on the transport of peptides across the blood-brain barrier in rats: kinetic evidence for an apically polarized efflux mechanism
.
J. Pharmacol. Exp. Ther.
 
273
:
298
303
.

Davson
,
H.
,
Danielli
,
J. F.
(
1943
)
The Permeability of Natural Membranes
,
Cambridge University Press
,
UK
.

Deane
,
R.
,
Bradbury
,
M. W. B.
(
1990
)
Transport of lead-203 at the blood-brain barrier during short cerebrovascular perfusion with saline in the rat
.
J. Neurochem.
 
54
:
905
914
.

Dearden
,
J. C.
(
1990
)
Molecular structure and drug transport
. In:
Hansch
,
C.
(ed.)
Comprehensive Medicinal Chemistry
. Vol.
64
,
Pergamon Press
,
Oxford
, pp
375
411
.

Fenstermacher
,
J. D.
,
Rapoport
,
S. I.
(
1984
)
Blood-brain barrier
. In:
Renkin
,
E. M.
,
Michell
,
C. C.
(eds)
Handbook of Physiology, The Cerebrovascular System
, Vol.
IV
. Part 2,
American Physiological Society
,
Bethesda, Maryland
, pp
969
1000
.

Ghersiegea
,
J. F.
,
Leninger-Muller
,
B.
,
Suleman
,
G.
(
1994
)
Localization of drug metabolizing enzyme activities to blood-brain interfaces and circumventricular organs
.
J. Neurochem.
 
62
:
1089
1096
.

Gratton
,
J. A.
,
Lightman
,
S. L.
,
Bradbury
,
M. W.
(
1993
)
Transport into retina measured by short vascular perfusion in the rat
.
J. Physiol.
 
470
:
651
663
.

Gupta
,
S. P.
(
1989
)
QSAR studies of drugs acting on the central nervous system
.
Chem. Rev.
 
89
:
1765
1800
.

Hansen
,
C.
,
Steward
,
A. R.
,
Anderson
,
S. M.
,
Bentley
,
D. L.
(
1968
)
The parabolic dependence of drug action upon lipophilic character as revealed by a study of hypnotics
 
J. Med. Chem.
 
11
:
1
11
.

Hansch
,
C.
,
Bjorkroth
,
J. P.
,
Leo
,
A.
(
1987
)
Hydrophobicity and central nervous system agents: on the principle of minimal hydrophobicity in drag design
.
J. Pharm. Sci.
 
76
:
663
687
.

Heykants
,
J.
,
Michielis
,
H.
,
Knaeps
,
A.
,
Burgmans
,
J.
(
1974
)
(R68553), a novel type of antidiarrheal agent
.
Arzneim. Forsch.
 
24
:
1649
1653
.

Krogh
,
A.
(
1946
)
The active and passive exchanges of inorganic ions through the surfaces of living cells and through living membranes generally
.
Proc. R. Soc. Biol.
 
133
:
140
200
.

Laduron
,
P. M.
,
Janssen
,
P. F. M.
,
Gommeren
,
W.
,
Leysen
,
J. E.
(
1982
)
In-vitro and in-vivo binding characteristics of a new histamine H1 antagonist, astemizole
.
Mol. Pharmacol.
 
26
:
294
300
.

Levin
,
V. A.
(
1980
)
Relationship of octanol water partition coefficient and molecular weight to rat brain permeability
.
J. Med. Chem.
 
23
:
682
684
.

Mayer
,
S. E.
,
Maickel
,
R. P.
,
Brodie
,
B. B.
(
1959
)
Kinetics of penetration of drugs and other foreign compounds into cerebrospinal fluid and brain
.
J. Pharmacol.
 
127
:
205
211
.

Ohno
,
K.
,
Pettigrew
,
K. D.
,
Rapoport
,
S. I.
(
1978
)
Lower limits of cerebrovascular permeability to non-electrolytes in the conscious rat
.
Am. J. Phys.
 
253
:
H299
H307
.

Pardridge
,
W. M.
(
1983
)
Brain metabolism: a perspective from the blood-brain barrier
.
Physiol. Rev.
 
63
:
1481
1535
.

Pardridge
,
W. M.
,
Triguero
,
D.
,
Yang
,
J.
,
Cancilla
,
P. A.
(
1990
)
Comparison of in-vitro and in-vivo models of drug transcytosis through the blood-brain barrier
.
J. Pharmacol. Exp. Ther.
 
253
:
884
891
.

Rapoport
,
S. I.
,
Levitan
,
H.
(
1974
)
Neurotoxicity of X-ray contrast media: relation to lipid solubility and blood brain barrier permeability
.
Am. J. Roentgenol.
 
122
:
186
193
.

Reese
,
T. S.
,
Karnovsky
,
M. J.
(
1967
)
Fine structural localization of the blood-brain barrier to exogenous peroxidase
.
J. Cell Biol.
 
34
:
207
217
.

Renkin
,
E. M.
(
1959
)
Transport of potassium-42 from blood to tissue in isolated skeletal muscles
.
Am. J. Phys.
 
197
:
1205
1210
.

Seelig
,
A.
,
Gottschlich
,
R.
,
Devant
,
R. M.
(
1994
)
A method to determine the ability of drags to diffuse through the blood-brain barrier
.
Proc. Natl Acad. Sci.
USA
91
:
68
72
.

Seiler
,
P.
(
1974
)
Interconversion of lipophilicities from hydrocarbon/water systems into the octanol/water system
.
Eur. J. Med. Chem.
 
9
:
473
479
.

Smith
,
Q. R.
(
1989
)
Quantitation of blood-brain barrier permeability
. In:
Neuwelt
,
E. A.
(ed.)
Implications of the Blood-Brain Barrier and its Manipulation
. Vol.
6
,
Plenum
,
New York
, pp
85
113
.

Takasato
,
Y.
,
Rapoport
,
S. I.
,
Smith
,
Q. R.
(
1984
)
An in situ perfusion technique to study cerebrovascular permeability in the rat
.
Am. J. Phys.
 
247
:
H484
H493
.

van de Waterbeemd
,
H.
,
Boekel
,
C. C. A. A.
,
De Sevaux
,
R. L. F. M.
,
Jansen
,
A. C. A.
,
Gerritsma
,
K. W.
(
1981
)
Transport in QSAR IV. The interfacial drug transfer model. Relationships between partition coefficients and rate constants in drag partitioning
.
Pharm. Weekbl. [Sci.]
 
3
:
224
236
.

Young
,
R. C.
,
Mitchell
,
R. C.
,
Brown
,
T. H.
,
Ganellin
,
C. R.
,
Griffiths
,
R.
,
Jones
,
M.
,
Rana
,
K. K.
,
Saunders
,
D.
,
Smith
,
I. R.
,
Sore
,
N. E.
,
Wilkes
,
T. J.
(
1988
)
Development of a new physicochemical model for brain penetration and its application to the design of centrally acting H2 receptor histamine antagonists
.
J. Med. Chem.
 
31
:
656
671
.

This content is only available as a PDF.
This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)