Summary

The application of certain Bayesian techniques, such as the Bayes factor and model averaging, requires the specification of prior distributions on the parameters of alternative models. We propose a new method for constructing compatible priors on the parameters of models nested in a given directed acyclic graph model, using a conditioning approach. We define a class of parameterizations that is consistent with the modular structure of the directed acyclic graph and derive a procedure, that is invariant within this class, which we name reference conditioning.

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
You do not currently have access to this article.