SUMMARY

In this paper we derive general formulae for first-order biases of maximum likelihood estimates of the linear parameters, linear predictors, the dispersion parameter and fitted values in generalized linear models. These formulae may be implemented in the GLIM program to compute bias-corrected maximum likelihood estimates to order n  −1, where n is the sample size, with minimal effort by means of a supplementary weighted regression. For linear logistic models it is shown that the asymptotic bias vector of β^ is almost collinear with β. The approximate formula βp/m+ for the bias of β^ in logistic models, where p = dim(β) and m+ =mi is the sum of the binomial indices, is derived and checked numerically.

REFERENCES

1

Anderson
,
J. A.
and
Richardson
,
S. C.
(
1979
)
Logistic discrimination and bias correction in maximum likelihood estimation
.
Technometrics
,
21
,
71
78
.

2

Baker
,
R.J.
and
Nelder
,
J. A.
(
1978
)
The GLIM Manual: Release 3
, sect. 4.4.
Oxford
:
Numerical Algorithms Group
.

3

Bartlett
,
M. S.
(
1953
)
Approximate confidence intervals II
.
Biometrika
,
40
,
306
317
.

4

Bowman
,
K. O.
and
Shenton
,
L. R.
(
1965
)
Biases and covariances of maximum likelihood estimators
.
Report K-1633.
Union Carbide Corporation
,
Oak Ridge
.

5

Bowman
,
K. O.
(
1968
)
Properties of estimators for the gamma distribution
.
Report CTC-1.
Union Carbide Corporation
,
Oak Ridge
.

6

Box
,
M. J.
(
1971
)
Bias in nonlinear estimation (with discussion)
.
J. R. Statist. Soc. B
,
33
,
171
201
.

7

Cook
,
R. D.
,
Tsai
,
C.-L.
and
Wei
,
B. C.
(
1986
)
Bias in nonlinear regression
.
Biometrika
,
73
,
615
623
.

8

Cordeiro
,
G. M.
(
1983
)
Improved likelihood ratio statistics for generalized linear models
.
J. R. Statist. Soc. B
,
45
,
404
413
.

9

Cordeiro
,
G. M.
(
1987
)
On the corrections to the likelihood ratio statistics
.
Biometrika
,
74
,
265
274
.

10

Cox
,
D. R.
and
Snell
,
E. J.
(
1968
)
A general definition of residuals (with discussion)
.
J. R. Statist. Soc. B
,
30
,
248
275
.

11

Cox
,
D. R.
(
1979
)
Analysis of Binary Data
, p.
32
.
London
:
Chapman and Hall
.

12

Folks
,
J. L.
and
Chhikara
R. S.
(
1978
)
The inverse Gaussian distribution and its statistical applications — a review (with discussion)
.
J. R. Statist. Soc. B
,
40
,
263
289
.

13

Fryer
,
J. G.
and
Robertson
,
C. A.
(
1972
)
A comparison of some methods for estimating mixed normal distributions
.
Biometrika
,
59
,
639
648
.

14

Greenwood
,
J. A.
and
Durand
,
D.
(
1960
)
Aids for fitting the gamma distribution by maximum likelihood
.
Technometrics
,
2
,
55
65
.

15

Haldane
,
J. B. S.
and
Smith
,
S. M.
(
1956
)
The sampling distribution of a maximum likelihood estimate
.
Biometrika
,
63
,
96
103
.

16

McCullagh
,
P.
(
1980
)
Regression models for ordinal data (with discussion)
.
J. R. Statist. Soc. B
,
42
,
109
142
.

17

McCullagh
,
P.
(
1987
)
Tensor Methods in Statistics.
London
:
Chapman and Hall
.

18

McCullagh
,
P.
and
Nelder
,
J. A.
(
1989
)
Generalized Linear Models.
London
:
Chapman and Hall
.

19

McLachlan
,
G. J.
(
1980
)
A note on bias correction in maximum likelihood estimation with logistic discrimination
.
Technometrics
,
22
,
621
627
.

20

Nelder
,
J. A.
and
Wedderburn
,
R. W. M.
(
1972
)
Generalized linear models
.
J. R. Statist. Soc. A
,
135
,
370
384
.

21

Pearson
,
E. S.
and
Hartley
,
H. O.
(
1972
)
Biometrika Tables for Statisticians
, vol.
2
.
Cambridge
:
Cambridge University Press
.

22

Robertson
,
C. A.
and
Fryer
,
J. G.
(
1970
)
The bias and accuracy of moment estimators
.
Biometrika
,
57
,
57
65
.

23

Shenton
,
L. R.
and
Bowman
,
K.
(
1963
)
Higher moments of a maximum-likelihood estimate
.
J. R. Statist. Soc. B
,
25
,
305
317
.

24

Shenton
,
L. R.
(
1969
)
Maximum likelihood estimate moments for the two-parameter gamma distribution
.
Sankhya B
,
31
,
379
396
.

25

Shenton
,
L. R.
(
1977
)
Maximum Likelihood Estimation in Small Samples.
London
:
Griffin
.

26

Shenton
,
L. R.
and
Wallington
,
P. A.
(
1962
)
The bias of moment estimators with an application to the negative binomial distribution
.
Biometrika
,
49
,
193
204
.

27

Sowden
,
R. R.
(
1971
)
Bias and accuracy of parameter estimates in a quantal response model
.
Biometrika
,
58
,
595
603
.

28

Sowden
,
R. R.
(
1972
)
On the first-order bias of parameter estimates in a quantal response model under alternative estimation procedures
.
Biometrika
,
59
,
573
579
.

29

Sweeting
,
T.
(
1981
)
Scale parameters: A Bayesian treatment
.
J. R. Statist. Soc. B
,
43
,
333
338
.

30

Young
,
D. H.
and
Bakir
,
S. T.
(
1987
)
Bias correction for a generalized log-gamma regression model
.
Technometrics
,
29
,
183
191
.

This content is only available as a PDF.
This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)