SUMMARY

An exploratory technique is introduced for investigating how much of the irregularity in an aperiodic time series is due to low dimensional chaotic dynamics, as opposed to stochastic or high dimensional dynamics. Non-linear models are constructed with a variable smoothing parameter which at one extreme defines a non-linear deterministic model, and at the other extreme defines a linear stochastic model. The accuracy of the resulting short-term forecasts as a function of the smoothing parameter reveals much about the underlying dynamics generating the time series. The technique is applied to a variety of experimental and naturally occurring time series data, and the results are compared with dimension calculations.

REFERENCES

1

Abraham
,
N. B.
,
Albano
,
A. M.
,
Passamante
,
A.
and
Rapp
,
P. E.
(eds) (
1989
)
Measures of complexity and chaos
.
NATO Adv. Sci. Inst. Ser.
,
208
.

2

Babloyantz
,
A.
(
1989
)
Some remarks on nonlinear data analysis of physiological time series
.
NATO Adv. Sci. Inst. Ser.
,
208
.

3

Babloyantz
,
A.
and
Destexhe
,
A.
(
1986
)
Low-dimensional chaos in an instance of epilepsy
.
Proc. Natn. Acad. Sci. USA
,
53
,
3513
3517
.

4

Badii
,
R.
and
Politi
,
A.
(
1985
)
Statistical description of chaotic attractors: the dimension function
.
J. Statist. Phys.
,
40
,
725
.

5

Bak
,
P.
,
Tang
,
C.
and
Wiesenfeld
,
K.
(
1987
)
Self-organized criticality: An explanation of 1/f noise
.
Phys. Rev. Lett.
,
59
,
381
.

6

Breeden
,
J. L.
and
Hubler
,
A.
(
1990
)
Reconstructing equations of motion from experimental data with hidden variables
.
Phys. Rev. A
,
42
,
5817
5826
.

7

Briggs
,
K.
(
1990
)
Improved methods for the analysis of chaotic time series
.
Mathematics Research Paper 90–2.
La Trobe University
,
Melbourne
.

8

Brock
,
W.
,
Dechert
,
W.
and
Scheinkman
,
J.
(
1987
)
A test for independence based on the correlation dimension
.
SSRI Paper 8702.
University of Wisconsin
,
Madison
.

9

Broomhead
D. S.
,
Indik
,
R.
,
Newell
,
A. C.
and
Rand
,
D. A.
(
1990
)
Local adaptive Galerkin bases for large dimensional dynamical systems
. Submitted to
Nonlinearity.

10

Broomhead
,
D. S.
and
King
,
G. P.
(
1986
)
Extracting qualitative dynamics from experimental data
.
Physica D
,
20
,
217
.

11

Brorson
,
S. D.
,
Dewey
,
D.
and
Linsay
,
P. S.
(
1983
)
Self-replicating attractor of a driven semiconductor oscillator
.
Phys. Rev A
,
28
,
1201
1203
.

12

Casdagli
,
M.
(
1989
)
Nonlinear prediction of chaotic time series
.
Physica D
,
35
,
335
.

13

Casdagli
,
M.
(
1991
)
Nonlinear forecasting, chaos and statistics
. In
Modeling Complex Phenomena
(eds
L.
Lam
and
V.
Naroditsky
).
New York
:
Springer
. to be published.

14

Casdagli
,
M.
,
DesJardins
,
D.
,
Eubank
,
S.
,
Farmer
,
J. D.
,
Gibson
,
J.
,
Hunter
,
N.
and
Theiler
,
J.
(
1991a
)
Nonlinear modeling of chaotic time series: theory and applications
. In
Proc. Electric Power Research Institute Workshop Applications of Chaos
(eds
J.
Kim
and
J.
Stringer
). to be published.

15

Casdagli
,
M.
,
Eubank
,
S.
,
Farmer
,
J. D.
and
Gibson
,
J.
(
1991b
)
State space reconstruction in the presence of noise
.
Physica D
,
51
,
52
98
.

16

Crutchfield
,
J. P.
and
Kaneko
,
K.
(
1988
)
Phenomenology of spatio-temporal chaos
. In
Directions in Chaos
(ed.
Hao
Bai-Lin
), vol.
I
.
Singapore
:
World Scientific
.

17

Crutchfield
,
J. P.
and
McNamara
,
B. S.
(
1987
)
Equations of motion from a data series
.
Complex Syst.
,
1
,
417
452
.

18

Doering
,
C. R.
,
Gibbon
,
J. D.
,
Holm
,
D. D.
and
Nicolaenko
,
B.
(
1988
)
Low dimensional behaviour in the complex Ginzburg–Landau equation
.
Nonlinearity
,
1
,
279
309
.

19

Eckmann
,
J. P.
,
Kamporst
,
S.
and
Ruelle
,
D.
(
1987
)
Recurrence plots of dynamical systems
.
Europhys. Lett.
,
4
,
973
977
.

20

Eckmann
,
J. P.
,
Kamporst
,
S.
,
Ruelle
,
D.
and
Ciliberto
,
S.
(
1986
)
Lyapunov exponents from a time series
.
Phys. Rev. A
,
34
,
4971
.

21

Eckmann
,
J. P.
and
Ruelle
,
D.
(
1985
)
Ergodic theory of chaos and strange attractors
.
Rev. Mod. Phys.
,
57
,
617
.

22

Ellner
,
S.
(
1991
)
Detecting low-dimensional chaos in population dynamics data: A critical review
. In
Does Chaos Exist in Ecological Systems?
(eds
J.
Logan
and
F.
Hain
).
University of Virginia Press
. to be published.

23

Eubank
,
S.
and
Farmer
,
J. D.
(
1989
)
An introduction to chaos and randomness
. In
1989 Lectures in Complex Systems
(ed.
E.
Jen
), vol.
II
.
Redwood City
:
Addison-Wesley
.

24

Falconer
,
K.
(
1990
)
Fractal Geometry.
Chichester
:
Wiley
.

25

Farmer
,
J. D.
and
Sidorowich
,
J. J.
(
1987
)
Predicting chaotic time series
.
Phys. Rev. Lett.
,
59
,
845
848
.

26

Farmer
,
J. D.
(
1988
)
Exploiting chaos to predict the future and reduce noise
. In
Evolution, Learning and Cognition
(ed.
Y. C.
Lee
).
Singapore
:
World Scientific
.

27

Fraser
,
A. M.
(
1989
)
Reconstructing attractors from scalar time series: A comparison of singular system and redundancy criteria
.
Physica D
,
34
,
391
404
.

28

Geweke
,
J.
(
1989
)
Inference and forecasting for chaotic nonlinear time series
.
Technical Report.
Duke University
,
Durham
.

29

Glass
,
L.
and
Mackey
,
M. C.
(
1988
)
From Clocks to Chaos: the Rhythms of Life.
Princeton
:
Princeton University Press
.

30

Gorman
,
M.
and
Robbins
,
K.
(
1991
)
Real-time identification of flame dynamics
. In
Proc. Electric Power Research Institute Workshop Applications of Chaos
(eds
J.
Kim
and
J.
Stringer
). to be published.

31

Grassberger
,
P.
(
1986
)
Do climatic attractors exist?
Nature
,
323
,
609
.

32

Grassberger
,
P.
and
Procaccia
,
I.
(
1983
)
Characterization of strange attractors
.
Phys. Rev. Lett.
,
50
,
346
.

33

Grassberger
,
P.
,
Schreiber
,
T.
and
Schaffrath
,
C.
(
1991
)
Nonlinear time sequence analysis
.
Preprint.
University of Wuppertal
.

34

Gunaratne
,
G.
,
Linsay
,
P.
and
Vinson
,
M.
(
1989
)
Chaos beyond onset: A comparison of theory and experiment
.
Phys. Rev. Lett.
,
63
,
1
.

35

Haucke
,
H.
and
Ecke
,
R.
(
1987
)
Mode locking and chaos in Rayleigh–Benard convection
.
Physica D
,
25
,
307
.

36

Hseih
,
D.
(
1991
)
Chaos and nonlinear dynamics: Application to financial markets
.
J. Finance
, to be published.

37

Hunter
,
N. F.
(
1991
)
Application of nonlinear time series models to driven systems
. In
Nonlinear Modeling and Forecasting
(eds
M.
Casdagli
and
S.
Eubank
).
Redwood City
:
Addison-Wesley
. to be published.

38

Ikeda
,
K.
(
1979
)
Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system
.
Opt. Communs
,
30
,
257
.

39

Keeler
,
J. D.
and
Farmer
,
J. D.
(
1986
)
Robust space–time intermittency and 1/f noise
.
Physica D
,
23
,
413
.

40

Kumar
,
A.
and
Mullick
,
S.
(
1990
)
Attractor dimension, entropy and modeling of phoneme time series
.
Preprint.
Indian Institute of Technology
.

41

Lapedes
,
A. S.
and
Farber
,
R.
(
1988
)
How neural nets work
. In
Evolution, Learning and Cognition
(ed.
Y. C.
Lee
).
Singapore
:
World Scientific
.

42

LeBaron
,
B.
(
1991
)
Nonlinear forecasts for the S&P stock index
. In
Nonlinear Modeling and Forecasting
(eds
M.
Casdagli
and
S.
Eubank
).
Redwood City
:
Addison-Wesley
. to be published.

43

Lee
,
T.
,
White
,
H.
and
Granger
,
C.
(
1989
)
Testing for neglected nonlinearity in time series models: A comparison of neural network methods and alternative tests
.
Preprint.
University of California
,
San Diego
.

44

Mackey
,
M. C.
and
Glass
,
L.
(
1977
)
Oscillation and chaos in physiological control systems
.
Science
,
197
,
287
.

45

Mandelbrot
,
B. B.
(
1985
)
The Fractal Geometry of Nature.
San Francisco
:
Freeman
.

46

Mayer-Kress
,
G.
(
1986
)
Dimensions and entropies in chaotic systems
.
Springer Ser. Synerg.
,
32
.

47

Mayer-Kress
,
G.
(
1988
)
Applications of dimension algorithms to experimental chaos
. In
Directions in Chaos
(ed.
Hao
Bai-Lin
), vol.
I
.
Singapore
:
World Scientific
.

48

Mayer-Kress
,
G.
and
Layne
,
S. P.
(
1987
)
Dimensionality of the human electroencephalogram
.
Ann. N. Y. Acad. Sci.
,
504
,
62
86
.

49

Mayer-Kress
,
G.
,
Yates
,
F.
,
Benton
,
L.
,
Keidel
,
M.
,
Tirsch
,
W.
,
Poppi
,
S.
and
Geist
,
K.
(
1988
)
Dimensional analysis of nonlinear oscillations in brain, heart and muscle
. In
Nonlinearity in Biology and Medicine
(eds
A.
Perelson
,
B.
Goldstein
,
M.
Dembo
and
J.
Jacquez
).
Amsterdam
:
Elsevier
.

50

McCaffrey
,
D.
,
Ellner
,
S.
,
Gallant
,
A.
and
Nychka
,
D.
(
1991
)
Estimating Lyapunov exponents with nonparametric regression
.
Preprint.
North Carolina State University
,
Raleigh
.

51

Mead
,
W. C.
,
Jones
,
R. D.
,
Lee
,
Y. C.
,
Barnes
,
C. W.
,
Flake
,
G. W.
,
Lee
,
L. A.
and
O'Rourke
,
M. K.
(
1991
)
Prediction of chaotic time series using CNLS net—example: the Mackey–Glass equation
. In
Nonlinear Modeling and Forecasting
(eds
M.
Casdagli
and
S.
Eubank
).
Redwood City
:
Addison-Wesley
. to be published.

52

Osborne
,
A.
and
Provenzale
,
A.
(
1989
)
Finite correlation dimension for stochastic systems with power-law spectra
.
Physica D
,
35
,
357
381
.

53

Packard
,
N. H.
(
1990
)
A genetic learning algorithm for the analysis of complex data
.
Complex Syst.
,
4
,
543
572
.

54

Packard
,
N. H.
,
Crutchfield
,
J. P.
,
Farmer
,
J. D.
and
Shaw
,
R. S.
(
1980
)
Geometry from a time series
.
Phys. Rev. Lett.
,
45
,
712
716
.

55

Press
,
W. H.
,
Flannery
,
B. P.
,
Teukolsky
,
S. A.
and
Vetterling
,
W. T.
(
1988
)
Numerical Recipes in C.
Cambridge
:
Cambridge University Press
.

56

Ruelle
,
D.
(
1990
)
Deterministic chaos: the science and the fiction
.
Proc. R. Soc. Lond. A
,
427
,
241
.

57

Ruelle
,
D.
and
Takens
,
F.
(
1971
)
On the nature of turbulence
.
Communs Math. Phys.
,
20
,
167
192
.

58

Sano
,
M.
and
Sawada
,
Y.
(
1985
)
Measurement of the Lyapunov spectrum from chaotic time series
.
Phys. Rev. Lett.
,
55
,
1082
.

59

Sauer
,
T.
,
Yorke
,
J. A.
and
Casdagli
,
M.
(
1991
)
Embedology
.
J. Statist. Phys.
, to be published.

60

Shaw
,
R.
(
1984
)
The Dripping Faucet as a Model Dynamical System.
Santa Cruz
:
Aerial
.

61

Silverman
,
B. W.
(
1986
)
Kernel Density Estimation Techniques for Statistics and Data Analysis.
London
:
Chapman and Hall
.

62

Smith
,
R. L.
(
1991
)
Optimal estimation of fractal dimension
. In
Nonlinear Modeling and Forecasting
(eds
M.
Casdagli
and
S.
Eubank
).
Redwood City
:
Addison-Wesley
. to be published.

63

Stokbro
,
K.
and
Umberger
,
D.
(
1991
)
Forecasting with weighted maps
. In
Nonlinear Modeling and Forecasting
(eds
M.
Casdagli
and
S.
Eubank
).
Redwood City
:
Addison-Wesley
. to be published.

64

Sugihara
,
G.
and
May
,
R.
(
1990
)
Nonlinear forecasting as a way of distinguishing chaos from measurement error in a data series
.
Nature
,
344
,
734
741
.

65

Takens
,
F.
(
1981
)
Detecting strange attractors in fluid turbulence
. In
Dynamical Systems and Turbulence
(eds
D.
Rand
and
L.-S.
Young
).
New York
:
Springer
.

66

Theiler
,
J.
(
1986
)
Spurious dimension from correlation algorithms applied to limited time series data
.
Phys. Rev. A
,
34
,
2427
2432
.

67

Theiler
,
J.
(
1990
)
Estimating fractal dimension
.
J. Opt. Soc. Am. A
,
7
,
1055
1073
.

68

Theiler
,
J.
(
1991
)
Some comments on the correlation dimension of 1/fα noise
.
Phys. Lett. A
, to be published.

69

Theiler
,
J.
,
Galdrikian
,
B.
,
Longtin
,
A.
,
Eubank
,
S.
and
Farmer
,
J. D.
(
1991
)
Using surrogate data to detect nonlinearity in time series
. In
Nonlinear Modeling and Forecasting
(eds
M.
Casdagli
and
S.
Eubank
).
Redwood City
:
Addison-Wesley
. to be published.

70

Tong
,
H.
(
1990
)
Nonlinear Time Series Analysis: A Dynamical Systems Approach.
Oxford
:
Oxford University Press
.

71

Tong
,
H.
and
Lim
,
K. S.
(
1980
)
Threshold autoregression, limit cycles and cyclical data (with discussion)
.
J. R. Statist. Soc. B
,
42
,
245
292
.

72

Townshend
,
B.
(
1990
)
Nonlinear prediction of speech signals
.
IEEE Trans. Acoust., Spch Sig. Process.
, to be published.

73

Weigend
,
A.
,
Huberman
,
B.
and
Rumelhart
,
D.
(
1990
)
Predicting the future: A connectionist approach
.
Int. J. Neural Syst.
,
1
,
193
209
.

74

Weigend
,
A.
(
1991
)
Predicting sunspots and exchange rates with connectionist networks
. In
Nonlinear Modeling and Forecasting
(eds
M.
Casdagli
and
S.
Eubank
).
Redwood City
:
Addison-Wesley
. to be published.

75

Wolf
,
A.
,
Swift
,
J.
,
Swinney
,
H.
and
Vastano
,
J.
(
1985
)
Determining Lyapunov exponents from a time series
.
Physica D
,
16
,
285
.

This content is only available as a PDF.
This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)