Abstract

Previous studies suggest that the synthesis of glutamate/glutamine is regulated by the mitochondrial thioredoxin (TRX) system. However, the mechanisms behind it remains unclear. Here, we demonstrated that the level of citrate and glutamate was higher in illuminated leaves from Arabidopsis mutants lacking the mitochondrial TRX o1 (trxo1) or both NADPH-dependent TRX reductases A/B (ntrab), that are found in nucleus, cytosol and mitochondria, when compared to the wild type (WT). Increased 13C-labelling in glutamate derived from 13C-pyruvate was observed in illuminated trxo1 and ntrab leaves, but not in WT and in the microsomal trxh2 mutant. The lack of TRX o1 decreased the content and activity of glutamine synthetase (GS), which leads to a lower level of glutamine, and exacerbated the increases in GS activity triggered by high light, when compared to the WT. The level of glutamine was positively correlated with the percentage of the oxidized GS band. However, the GS redox status was unaltered in all mutants. Our results indicate mitochondrial TRX mutants have higher metabolic fluxes from the TCA to the GS/GOGAT cycle in vivo, likely associated to an increased substrate availability and by direct-and-indirect TRX-mediated mechanisms that regulate enzymes of both TCA and GS/GOGAT cycles.

Information Accepted manuscripts
Accepted manuscripts are PDF versions of the author’s final manuscript, as accepted for publication by the journal but prior to copyediting or typesetting. They can be cited using the author(s), article title, journal title, year of online publication, and DOI. They will be replaced by the final typeset articles, which may therefore contain changes. The DOI will remain the same throughout.
This content is only available as a PDF.
This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/pages/standard-publication-reuse-rights)
You do not currently have access to this article.

Comments

0 Comments
Submit a comment
You have entered an invalid code
Thank you for submitting a comment on this article. Your comment will be reviewed and published at the journal's discretion. Please check for further notifications by email.