Abstract

Based on the characterization of the chemical composition of endodermal and hypodermal cell walls isolated from seven monocotyledonous and three dicotyledonous plant species, a model of the composition of apoplastic barriers in roots is proposed. Depending on the species, endodermal and hypodermal cell walls of roots contained varying amounts of the biopolymers suberin, lignin, cell wall proteins, and carbohydrates. Although analysis of the chemical composition of these apoplastic barriers of roots is now possible, it is pointed out that conclusions from these data concerning the functional properties of these cell walls can not easily be drawn. However, in analogy to suberized periderms it is argued that the suberin should play a role in establishing an apoplastic transport barrier in roots, albeit not a perfect barrier. Furthermore, due to the combined occurrence of suberin, lignin and cell wall proteins it is argued that endodermal and hypodermal cell walls also have an important function as barriers towards pathogens. Finally, it is pointed out that additional experimental approaches combining the investigation of transport properties and of the chemical composition of apoplastic transport barriers in roots are necessary before the function of endodermal and hypodermal cell walls in roots can be fully understood.

This content is only available as a PDF.
You do not currently have access to this article.

Comments

0 Comments
Submit a comment
You have entered an invalid code
Thank you for submitting a comment on this article. Your comment will be reviewed and published at the journal's discretion. Please check for further notifications by email.