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Abstract

This is a brief review of what is known about the role

of pectate lyases in plants. The mode of action and

three-dimensional structure of microbial pectate

lyases is discussed ®rst and then the limited informa-

tion on the plant proteins is presented. Pectate lyase-

like genes have been isolated from a wide range of

plant tissues including germinating seeds, pollen,

cell cultures, and ripening fruits. The abundance of

ESTs for these genes in tomato and the presence of

pectate lyase-like transcripts in many other fruits

may indicate that these enzymes have a more import-

ant role in ripening than previously suspected.
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Introduction

Pectate lyases (PL, EC 4.2.2.2), otherwise known as
pectate transeliminases, catalyse the eliminative cleavage
of de-esteri®ed pectin, which is a major component of the
primary cell walls of many higher plants (Carpita and
Gibeaut, 1993). The backbone of pectic polysaccharides is
built of blocks of a-1,4 linked polygalactosyluronic acid
residues interspersed with regions of alternating galacto-
syluronic acid and rhamnosyl residues (Willats et al.,
2001). Cleavage by PL requires the presence of calcium
ions and generates oligosaccharides with unsaturated
galacturonosyl residues at their non-reducing ends.

Until recently, it was thought that PLs were secreted
mainly by plant pathogens, their action resulting in the
maceration of plant tissues. However, the abundance of
PL-like sequences in plant genomes (currently 27 genes in
the Arabidopsis genome are thought to encode PL-like

proteins, www.tigr.org, Arabidopsis database, July 2002)
strongly suggests an important role for these enzymes in
various plant developmental processes.

Microbial PLs: mode of action and three-
dimensional structures

PL activity was ®rst discovered in 1962 in cultures of
Erwinia carotovora and Bacillus sp. (Starr and MoraÂn,
1962) and their secretion by plant pathogenic bacteria is
today well-documented (Collmer and Keen, 1986;
Kotoujansky, 1987; Nakajima et al., 1999). PL action
results not only in plant cell-wall degradation, but also in
the activation of defence systems, presumably through the
release of oligogalacturonides from the plant cell wall,
which then function as defence elicitors (De Lorenzo et al.,
1991).

The best-studied microbial PLs to date are those from
Erwinia chrysanthemi, which causes devastating diseases
involving maceration of parenchymatous tissues of various
dicot plants (PeÂrombelon and Kelman, 1980; Keen et al.,
1984; Kelemu and Collmer, 1993). These enzymes act by
depolymerizing cell-wall polygalacturonides in the pres-
ence of calcium ions, thus destroying the integrity of the
plant tissues (Collmer and Keen, 1986; Barras et al., 1994).
This bacterium has been shown to express up to ®ve
independently regulated PL genes (pelA, B, C, D, and E)
coding for ®ve isozymes of PL (®rst reported by Lietzke
et al., 1994, 1996). Erwinia isoforms, obtained by
expression in E. coli, have been shown to act synergisti-
cally to extend the range of pectin substrates that the
bacterium can degrade (Bartling et al., 1995).

The three-dimensional structures of various extracellu-
lar PLs (family 1 lyases as de®ned by http://
afmb.cnrsmrs.fr/~pedro/CAZY/lya.html) have been deter-
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mined, including PelC (Yoder et al., 1993a, b; Yoder and
Jurnak, 1995), and PelE (Lietzke et al., 1994) from
Erwinia chrysanthemi and BsPel from Bacillus subtilis
(Pickersgill et al., 1994). All these enzymes share an
unusual structure termed `the parallel b helix' in which b-
strands are folded into a large, right-handed superhelix
(Fig. 1). Two PLs, which cleave methylated pectin, also
belong to this family (Mayans et al., 1997; Vitali et al.,
1998). There is also a brief preliminary description of the
E. chrysanthemi PL, which also has parallel b-helix
architecture and PL activity, but no sequence similarity
with the family 1 enzymes (Jenkins and Pickersgill, 2001).
The PL structures differ in the size and conformation of the
loops that protrude from the parallel b-helix core, never-
theless they all share the same basic structure. It can be
deduced from sequence similarity, the position of the
calcium-binding site in BsPel and from site-directed
mutagenesis (Kita et al., 1996), that the protruding loops
on one side of the parallel b helix form the pectolytic
active site. The structural differences in the loops are
probably related to subtle differences in the enzymatic and
maceration properties of the proteins (Scavetta et al.,
1999). Recent work on E. chrysanthemi PelC, the ®rst
protein in which the parallel b-helix structure was
recognized, shows that it appears to consist of two
domains that strongly interact and unfold at pH 7, the
co-operativity decreasing at higher and at lower pH
(Kamen et al., 2000). However, the crystal structure of
PelC only reveals a single domain.

It is likely that the PLs secreted by plant pathogens share
a common enzymatic mechanism but, unfortunately, the

catalytic roles of the amino acid residues in the active site
have not yet been identi®ed. The crystal structure of a PelC
mutant complexed to a plant cell-wall fragment has
recently been published (Scavetta et al., 1999). The
substrate binds in a cleft, interacting primarily with
positively charged groups; either lysine or arginine
amino acids on PelC or the four Ca2+ ions found in the
complex (Scavetta et al., 1999). The suggestion made by
the authors is that an arginine, which is invariant in the PL
superfamily, is the amino acid that initiates proton
abstraction during b elimination cleavage of polygalac-
turonic acid.

Plant PLs

PL-like sequences from higher plants were ®rst reported
from pollen (Wing et al., 1989). Two genes with sequence
similarity to Erwinia PLs were expressed at maximal
levels in mature tomato ¯owers, anthers and pollen. Since
then, many other similar sequences have been shown to be
expressed in pollen, anthers and pistils (Kulikauskas and
McCormick, 1997) and a Japanese cedar pollen allergen
has been positively identi®ed as having PL activity
(Taniguchi et al., 1995). Functions suggested for PL in
pollen include the initial loosening of the pollen cell wall
to enable pollen tube emergence and growth and break-
down of the cell wall of transmitting tissue in the style to
facilitate penetration of pollen (Taniguchi et al., 1995; Wu
et al., 1996). Genes encoding a variety of cell-wall-
degrading enzymes, including polygalacturonase (Brown
and Crouch, 1990; Niogret et al., 1991; Allen and
Lonsdale, 1993), pectinesterase (Albani et al., 1991) and

Fig. 1. (a) The overall fold of Bacillus subtilis pectate lyase with calcium shown as a sphere. (b) The essentials for catalysis are a base to abstract
the C5 proton, an acid to protonate the glycosidic oxygen and a positive environment to decrease the pKa of the a-proton at C5. (c) The active site
of pectate lyase, looking down onto parallel b-sheet one (PB1) with strands 3 through 6 shown. Note the conserved carboxylates on or close to
strands 3 and 4 and invariant arginine before strand 6. (Figure kindly provided by Professor R Pickersgill.)
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b-galactosidase (Rogers et al., 2001) have also been
reported in pollen.

In a search for genes involved in cell wall modi®cations
during trans-differentiation of Zinnia elegans cells, two
PL-like genes were isolated recently (Domingo et al.,
1998; Milioni et al., 2001). The detailed study of ZePel1
(Domingo et al., 1998) showed that it was active at a very
early stage in tracheary element induction and its expres-
sion was modulated by auxin. Furthermore, the recombi-
nant protein made in E. coli exhibited calcium-dependent
PL activity. The authors speculated that these enzymes
may assist in the removal and modi®cation of the existing
pectin matrix to allow the deposition of newly synthesized
wall polymers for a specialized function.

In the capsules of the opium poppy, latex-containing
laticifers are abundant and the laticifer system develops
through the gradual disappearance of adjacent cell walls
between differentiating laticifer elements throughout the
plant. Sequences with homology to PL and other cell-wall-
degrading enzymes have recently been isolated from an
opium poppy latex cDNA library and PL activity has also
been observed in the latex (Pilatzke-Wunderlich and
Nessler, 2001).

A search of the tomato EST database (http://www.ti-
gr.org/tdb/lgi/index.html) shows that PL-like sequences
were isolated from a host of cDNA libraries including
those made from germinating seeds, developing ¯owers,
ovaries, pollen, trichomes, and ripening fruits suggesting
that PL gene expression is widespread, if not ubiquitous in
plant tissues.

PL and fruit softening

Perishable horticultural commodities such as ¯eshy fruits
have a relatively short post-harvest shelf life during which
the fruit tissues undergo profound changes in texture,
colour and ¯avour, as well as becoming more susceptible
to pathogenic attack (Seymour et al., 1993). Fruit softening
is associated with cell wall disassembly (Seymour and
Gross, 1996) and modi®cations to the pectin fraction are
some of the most apparent changes that take place in the
cell wall during ripening.

The majority of work on the disassembly of fruit cell
walls has focused on ripening in tomatoes. The ripe
pericarp of these fruit is rich in polygalacturonase activity
and it was long assumed that this was the principal enzyme
responsible for fruit softening. However, transgenic
experiments in which the accumulation of polygalactur-
onase mRNA was suppressed still softened normally
(Smith et al., 1989a). Also, in other fruits such as
strawberry and banana, polygalacturonase activity is very
low or absent despite evidence for pectin solubilization
and degradation (Huber, 1984; Smith et al., 1989b). Early
experiments to measure the presence of PL activity in
tomato fruit proved unsuccessful (Besford and Hobson,

1972). However, the tomato EST programme (http://
www.tigr.org/tdb/lgi/index.html) suggests a high level of
PL-like gene expression in ripe tomato fruits.

PL sequences have also been reported from banana
(DomõÂnguez-Puigjaner et al., 1997; Medina-SuaÂrez et al.,
1997; Pilatzke-Wunderlich and Nessler, 2001; MarõÂn-
RodrõÂguez, 2001) and strawberry fruits (Medina-Escobar
et al., 1997) and from ripening grape berries (Nunan et al.,
2001). In bananas, the expression of two distinct PL-like
genes (Pel I and Pel II) has been detected during ripening.
Both show different levels of expression in ripening pulp
and peel, with Pel I predominating. An active PL protein
was produced by expression of banana Pel I in yeast. More
importantly, for the ®rst time from fruit tissue, PL activity
has been obtained directly from banana pulp with a
substantial increase in activity during ripening (MarõÂn-
RodrõÂguez, 2001). Additionally, a PL sequence from
strawberry has also been expressed in yeast giving an
active protein, although the authors were unable to observe
any endogenous enzyme activity in the fruits themselves
(Medina-Escobar et al., 1997). More recently PL gene
expression has been manipulated in transgenic strawberry
fruits and suppression of the PL mRNA during ripening
resulted in signi®cantly ®rmer fruits (JimeÂnez-BermuÂdez
et al., 2002). The highest reduction in softening occurring
during the transition from the white to the red stage.

Conclusion

The likely importance of PLs in plant development has
been appreciated only recently as a result of genome
sequencing and EST programmes and from biochemical
studies where PL activity has been measured in various
plant tissue extracts. While pectin degrading enzymes such
as polygalacturonase have been the focus of signi®cant
research, PLs have been less well studied. However, the
extent of PL-like gene expression in ripening fruits
suggests that these enzymes could play a more important
role in fruit softening than previously thought.
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