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Abstract

Little is known about the biological role of nucleases

induced during plant senescence and programmed

cell death (PCD). Arabidopsis BFN1 has been identi-

fied as a senescence-associated type I nuclease,

whose protein sequence shares high homology with

some other senescence- or PCD-associated plant

nucleases. To learn about BFN1 regulation, its expres-

sion pattern was analysed. A 2.3 kb portion of the 5#
promoter sequence of BFN1 was cloned and its ability

to activate the GUS reporter gene was examined.

Transgenic Arabidopsis and tomato plants harbouring

this chimeric construct were analysed for GUS expres-

sion. In both, the BFN1 promoter was able specifically

to direct GUS expression in senescent leaves, differ-

entiating xylem and the abscission zone of flowers.

Thus, at least part of the regulation of BFN1 is

mediated at the transcriptional level, and the regula-

tory elements are recognized in the two different

plants. In tomato, specific expression was observed in

the leaf and the fruit abscission zones. The BFN1

promoter was also active in other tissues, including

developing anthers and seeds, and in floral organs

after fertilization. PCD has been implicated in all of

these processes, suggesting that in addition to senes-

cence, BFN1 is involved in PCD associated with

different development processes in Arabidopsis.

Key words: Abscission, BFN1, nuclease, programmed cell

death, promoter, senescence.

Introduction

Leaf senescence is an endogenously controlled degenera-
tive process leading to cell death. It is an active, energy-
requiring, genetically controlled process (Nooden et al.,
1997; Guo and Gan, 2005; Lim et al., 2007) which, in
plants, is believed to be a form of programmed cell death
(PCD) (van Doorn and Woltering, 2004). However, it is
viewed as a special type of PCD which does not share all
of PCD’s typical characteristics (Thomas et al., 2003).
Nevertheless, senescence is likely to be distantly related to
other plant PCD processes (Thomas et al., 2003). During
senescence, the leaf’s cellular structure, metabolic activi-
ties, and physiological role are greatly altered. Chloro-
plasts degenerate and the photosynthetic apparatus is
disassembled (Hortensteiner, 2006).

Senescence is characterized by a wide and significant
change in the pattern of gene expression (Buchanan-
Wollaston et al., 2005; Van der Graaff et al., 2006): the
expression of many genes, such as those associated with
photosynthesis, is repressed, while that of many other
genes, termed senescence-associated genes (SAGs), is
induced. Microarray analyses have demonstrated that
>800 genes are distinctively up-regulated during senes-
cence, illustrating the dramatic alteration in cellular
physiology that underlies leaf senescence (Guo et al.,
2004; Buchanan-Wollaston et al., 2005).

The molecular mechanisms governing senescence regu-
lation are poorly understood. They have been suggested to
form a complex network responsible for activation of the
different SAGs (Guo and Gan, 2005). Various SAGs
exhibit differential expression in different tissues and in
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response to different senescence-promoting factors, in-
cluding hormones, salicylic acid, ozone, UV radiation,
hydration, and dark incubation (Park et al., 1998; Weaver
et al., 1998; Morris et al., 2000). At least part of SAG
regulation occurs at the transcriptional level (Hanfrey
et al., 1996; Oh et al., 1996; Noh and Amasino, 1999).
Genes with a possible regulatory role in senescence have
been reported, including members of the WRKY tran-
scription factor family (Robatzek and Somssich, 2002;
Miao and Zentgraf, 2007; Ulker et al., 2007), a NAC
family transcription factor (Guo and Gan, 2006), and
a zinc-finger protein (Kong et al., 2006).

In senescence, intensive catabolic processes leading to
macromolecule degradation occur while the leaf becomes
a source of mobilized carbon, nitrogen, phosphate, and
other minerals (Fischer, 2007). Some of the SAGs encode
hydrolytic enzymes, such as proteases and nucleases
(Buchanan-Wollaston et al., 2005), which are likely to be
involved in macromolecule degradation during senes-
cence. Specific nuclease activities that can degrade both
RNA and DNA have been reported to be induced in
parallel to the advancement of senescence in leaves (Blank
and McKeon, 1989; Wood et al., 1998; Lers et al., 2001;
Canetti et al., 2002) and flower petals (Panavas et al.,
1999; Xu and Hanson, 2000; Langston et al., 2005). The
general aim of this study was to understand both the
function and regulation of the senescence-associated BFN1
nuclease in Arabidopsis. The BFN1 gene has been cloned,
and levels of its transcript have been found to be induced
during leaf and stem senescence (Perez-Amador et al.,
2000). The BFN1 protein sequence is highly similar to the
petal senescence DSA6 nuclease (Panavas et al., 1999) and
the PCD-associated ZEN1 nuclease (Ito and Fukuda,
2002), and can be classified as a type I nuclease.

The type I nucleases, also termed S1-like nucleases, are
single-strand-specific endonucleases that degrade both
RNA and single-stranded DNA. They have been de-
scribed in many different organisms, from microorgan-
isms to mammals (Desai and Shankar, 2003); however,
knowledge of their biological functions is limited. In
plants, two major classes of these endonucleases have
been proposed, Zn2+-dependent and Ca2+-dependent
(Sugiyama et al., 2000). Endonucleases have been
isolated from various plant cell compartments such as the
nucleus, vacuole, chloroplast, endoplasmic reticulum, and
the Golgi apparatus (Bariola and Green, 1997; Desai and
Shankar, 2003). Induction of plant endonucleases has
been observed during growth and developmental pro-
cesses such as cell division (Grafi and Larkins, 1995), as
well as in response to environmental stress (Muramoto
et al., 1999; Yupsanis et al., 2001). In addition to
senescence, nuclease induction is strongly associated with
a variety of different plant PCD processes (Sugiyama
et al., 2000), including the hypersensitive response (HR)
(Mittler and Lam, 1997), aleurone cell death (Fath et al.,

1999; Dominguez et al., 2004), endosperm development
(Young and Gallie, 1999), and tracheary element (TE)
differentiation (Thelen and Northcote, 1989; Aoyagi et al.,
1998). However, the only direct evidence of nuclease
function in PCD was reported for the zinnia nuclease
ZEN1, which was demonstrated to be responsible for
nuclear DNA degradation during PCD associated with
xylem development (Ito and Fukuda, 2002).

The Arabidopsis endonuclease BFN1 may be involved
in the nucleic acid degradation that takes place during
senescence, as inferred by its senescence-associated
expression (Perez-Amador et al., 2000). To learn more
about BFN1 gene regulation and the function of its
encoded BFN1 endonuclease, detailed analysis of the
BFN1 promoter’s pattern of induction was performed in
both Arabidopsis and tomato. The results indicate that the
BFN1 endonuclease is involved in developmental PCD as
well as senescence.

Materials and methods

Construction of the BFN1 promoter::GUS gene fusion and

generation of transgenic plants

To construct the BFN1 promoter::GUS gene fusion, a 2.3 kb DNA
fragment containing the BFN1 promoter (AT1G11190: 3752746–
3755053) was PCR-amplified from genomic DNA using gene-
specific primers: forward 5#-TCTCAACGCTCAGACATATGCAC-
3# and reverse 5#-GTCTTCTCTTCTCTTGTCTATAACAACCT-
CATCG-3#. The amplified DNA fragment was cloned into the SmaI
site located in front of the GUS (b-glucuronidase) gene-coding
region in the binary vector pCAMBIA1381Z (CAMBIA, Black
Mountain, Australia), in which the plant selection gene hptII had
previously been replaced with nptII to enable selection with
kanamycin instead of hygromycin (S Burd, unpublished). This was
achieved by excising the XhoI fragment containing the nptII-coding
sequence from pCAMBIA2301 and inserted into pCAMBIA1381Z
following release with XhoI of the hptII-coding sequence. The
resulting vector, which included the chimeric BFN1 promoter::GUS
fusion and the nptII selectable marker gene, was named pFPB.

Transformation of pFPB into Arabidopsis thaliana (ecotype
Col-0) plants was performed by the Agrobacterium-mediated
vacuum infiltration method (Bechtold et al., 1993). Tomato trans-
formation with pFPB was performed via Agrobacterium tumefa-
ciens strain EH105 using cotyledons of Solanum lycopersicum
variety VF36 according to McCormick (1991). Transformants were
selected on kanamycin, and antibiotic-resistant T0 plants were
analysed by PCR with specific BFN1 promoter and GUS primers to
verify the presence of the chimeric gene. Homozygous lines were
established, and T3 or T4 lines were used for the experiments.

Plant growth conditions

Arabidopsis seeds were sown, after a 2 d vernalization treatment at
4 �C, on half-strength Murashige and Skoog (MS) medium and
grown at 22 �C under a 16 h/8 h light/dark cycle. After 10 d, the
seedlings were transferred to soil. Tomato seeds were germinated on
perlite support at 26 �C in the dark and, after 3 d, were transferred
to the light. About a week later, when cotyledons were fully
developed, the seedlings were transferred to 12 cm containers filled
with HR1 potting mixture (Hagarin Ltd, Yavne, Israel). The plants
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were grown in the greenhouse under a controlled temperature of
25 �C and natural daylight. Two independent transgenic lines of
Arabidopsis and tomato were selected and used for detailed
analysis.

GUS activity assays

Localization of reporter gene expression was visualized by in situ
histochemical staining. Transgenic plants harbouring the BFN1
promoter::GUS fusion were grown on agar medium or in soil as
described above. Plant tissues, at different developmental stages,
were submerged in a staining solution [50 mM sodium phosphate
pH 7.0, 0.1% (v/v) Triton X-100, 0.1 mM potassium ferricyanide,
0.1 mM potassium ferrocyanide, 1 mM Na2EDTA pH 8.0, 20% (v/
v) methanol, and 0.5 mg/ml 5-bromo-4-chloro-3-indolyl-b-D-glu-
curonid acid (X-gluc; Duchefa, Haarlem)] and subjected to
a vacuum for 3 min. Samples were incubated at 37 �C for several
hours to overnight (depending on the tissue type and colour
development rate) followed by chlorophyll removal, by submerging
the samples in ethanol [70% (v/v)] (Jefferson et al., 1987). GUS
staining was visualized using an MZFIII stereoscope (Leica,
Heerbrugg, Switzerland) or a BMLB light microscope (Leica).
Control non-transformed plants were analysed for GUS activity in
order to exclude non-specific staining resulting from endogenous
activity (Sudan et al., 2006).

Quantitative measurements of GUS activity were made by
fluorometric GUS assay, using 4-methylumbelliferyl glucuronide
(MUG) as the substrate, which is converted by GUS enzyme into
the fluorescent product 4-methyl umbelliferone (4-MU) (Jefferson
et al., 1987). Leaf samples were ground in GUS extraction buffer
[50 mM NaH2PO4, 1 mM EDTA, 0.1% Triton X-100, 0.1% (w/v)
sarcosine and 10 mM dithiothreitol (DTT)] and, following removal
of tissue debris by centrifugation at 10 000 g for 10 min at 4 �C,
the crude total protein extract was used to measure GUS activity
using an FL600 fluorometer (BIOTEX). Standard curves were
prepared with 4-MU, and GUS activity was expressed as pmol
4-MU mg FW�1 min�1 (Jefferson et al., 1987). Chlorophyll content
was determined in the same sample used for the GUS assay.
Chlorophyll was extracted from a sample of the solution with 80%
(v/v) acetone and its content was measured spectroscopically (Porra
et al., 1989).

Results

Production of BFN1–GUS transgenic plants

To study the regulation and function of BFN1, its spatial
and temporal expression pattern was analysed. A 2.3 kb
Arabidopsis genomic DNA fragment, including the 5#
sequences upstream of the BFN1 gene transcription
initiation site, was cloned and fused upstream of the
coding sequence of the GUS reporter gene. It was
assumed that this 2.3 kb fragment includes promoter
elements and sequences required for BFN1 regulation.
The BFN1 promoter::GUS chimeric construct (pBFN1-
GUS) was transformed into Arabidopsis plants and the
resultant transgenic plants were analysed for BFN1 pro-
moter activity during the development of different tissues,
either by histochemical staining to follow specific tissue
localization, or by GUS activity fluorometric assay for
quantitative analyses. To examine the functionality of the
BFN1 promoter in a heterologous plant system, the

pBFN1-GUS construct was also transformed into tomato
plants. Initially, three independent transgenic lines each of
Arabidopsis and tomato plants were analysed; for some of
the more detailed histochemical staining, two independent
representative lines were used from each species. In all
parallel analyses performed with control plants, no non-
specific endogenous activity was visualized.

Pattern of BFN1 expression during natural leaf
senescence

The pattern of BFN1 promoter expression was examined
in Arabidopsis leaves at different developmental stages,
from fully green young leaves to leaves at a late senescent
stage in which >75% of the leaf area was yellow. Using
histochemical staining, specific GUS activity resulting
from BFN1 promoter activation was observed in the
senescing tissue, but not in the green sections of leaves
which had begun senescing (Fig. 1A). In young, green
leaves, no GUS activity was observed, while in leaves at
an advanced stage of senescence, high level activity was
detected throughout the leaf tissue (data not shown). To
follow the kinetics of activation of the BFN1 promoter,
quantitative analysis was performed by measuring GUS
activity in extracts of leaves at different stages of
senescence, as indicated by the level of chlorophyll.
Following homogenization, the leaf tissue extracts were
used for both quantifying the chlorophyll level and
measuring GUS activity by quantitative fluorometric
assay. This analysis revealed clear induction of the BFN1
promoter as leaf senescence progressed, as reflected by the
decrease in leaf chlorophyll content (Fig. 1B). GUS
activity was also measured in extracts of Arabidopsis
flowers and roots. This activity was higher than that
measured in young leaves, indicating that the BFN1
promoter is developmentally induced in these organs as
well. Similar quantitative analysis in transgenic tomato
plants harbouring the pBFN1-GUS construct revealed the
same type of inverse correlation between BFN1 promoter
induction, as indicated by GUS activity, and the advance-
ment of leaf senescence, as reflected by the decrease in
chlorophyll content (Fig. 1C). The results indicated that in
tomato, as in Arabidopsis, the BFN1 promoter is activated
as natural leaf senescence progresses. To examine whether
BFN1 promoter activation occurs continuously during the
advancement of leaf senescence or is activated at a specific
and distinct stage of the process, the measured level of
GUS activity was plotted versus the chlorophyll level
determined from measurements performed on leaves at
different stages of senescence from a few different plants.
The results, shown in Fig. 2, suggest that the induction of
the BFN1 promoter, resulting in elevated GUS activity,
does not increase linearly with the decrease in chlorophyll
content, but occurs during a more restricted late stage of
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the senescence process in both Arabidopsis (Fig. 2A) and
tomato (Fig. 2B) leaves.

Pattern of BFN1 expression in vascular tissues

Expression of the BFN1 promoter was examined in the
developing vascular tissues of 4- to 14-d-old Arabidopsis
seedlings. At all ages, histochemical GUS staining
revealed that the BFN1 promoter directs GUS expression
in the vascular tissues of the developing seedling
(Fig. 3A–E). In the stem and cotyledons, GUS activity,
representing BFN1 promoter activation, was observed
discontinuously in parts of the vascular tissue (Fig. 3A,
B). In order to localize GUS activity more specifically in
the different stem tissues, cross-sections were taken of
stems of BFN1 promoter::GUS-transformed Arabidopsis

plants at different developmental stages. This histochem-
ical analysis revealed GUS-stained cells in the primary
xylem bundles in stems of young plants (Fig. 3C), while
in stem sections of more mature plants, GUS activity was
localized to the vascular cambium cells, which produce
secondary xylem (Fig. 3D). Thus, specific BFN1 promoter
activation occurs in cells that are probably undergoing
differentiation into xylem. Histochemical GUS staining of
developing roots of young seedlings also revealed activa-
tion of GUS expression in some sections of the root’s
central zone, which are likely to be differentiating into
xylem (Fig. 3E). Expression of the BFN1 promoter in the
stems of transgenic tomato plants was also examined.
Following histochemical GUS staining of the pBFN1-
GUS tomato stems, they were embedded in paraffin,
sectioned, and counterstained with safranin O to visualize
cell structures. Similar to the findings in Arabidopsis,
GUS expression was detected specifically in the differen-
tiating xylem cells (Fig. 3F).

Pattern of BFN1 expression in flowers and fruits

Expression of the BFN1 promoter was examined in
Arabidopsis flowers at different developmental stages, as
classified by Ferrandiz et al. (1999). In flowers at stage 13
or 14, GUS activity was expressed in the anthers
(Fig. 4A), stigma, and transmitting tract cells (Fig. 4B).
At this developmental stage, anthers dehisce, and pollina-
tion and fertilization take place. GUS activity was also
followed after fertilization and during fruit and seed

Fig. 1. GUS activity in transgenic Arabidopsis and tomato plants
during leaf senescence. (A) Senescing Arabidopsis leaves before (left)
and after (right) histochemical staining of GUS activity and extraction
of pigments. (B) Columns: quantitative fluorometric assays of GUS
activity in extracts of Arabidopsis leaves at different stages of natural
senescence, from fully green young leaves (L4) to leaves in late
senescence (L1) and in extracts of flowers (F) and roots (R). Line plots:
chlorophyll content of leaf samples. (C) Gus activity and chlorophyll
content in tomato leaf extracts; legend as in (B). L5, youngest leaf
stage.

Fig. 2. The relationship between GUS activity and chlorophyll content.
GUS activity and chlorophyll content were measured in the same tissue
extracts from leaves at different stages of senescence obtained from
several Arabidopsis (A) and tomato (B) plants.
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development; when the silique expands, flower organs
wither (stages 15 and 16). Clear and specific GUS staining
was visualized during these stages in the developing seeds
(Fig. 4C). GUS activity was also observed in senescent
petals, sepals, and stamens (data not shown). In mature
siliques, GUS activity was observed in the pod dehiscence
zone (DZ) (Fig. 5, stages 18 and 19) and in the valves that
separate from the dry silique (not shown).

The expression of GUS activated by the BFN1 promoter
was also examined in the reproductive organs of trans-
genic tomato plants. At anthesis day, GUS activity was
detected in the petal margins of flowers, as well as in the
anthers (Fig. 6). In senescent flowers, GUS activity was
visualized all over the petals (data not shown). In the

green fruit, GUS activity was detected specifically in the
developing seed (Fig. 4D, E).

Pattern of BFN1 expression in pith autolysis

Pith autolysis is a widespread phenomenon in some
plants, resulting in the elimination of parenchyma cells in
the pith and formation of hollow stems (Carr et al., 1995).
In some species, it is positively correlated with rapid stem
elongation and increasing sink strength of the reproduc-
tive organs or with abiotic stress conditions such as high
temperature (Lu et al., 1991). In transgenic pBFN1-GUS
tomatoes, GUS activity was observed in the pith of mature
stems. The staining intensity was correlated with the
advancement of the pith autolysis process: initially, before

Fig. 3. Histochemical staining of GUS activity in vascular tissues of Arabidopsis and tomato. (A) Arabidopsis seedling, 4 d after germination. (B)
Young rosette leaves of Arabidopsis, 13 d after germination. (C, D). Cross-sections of young (C) and mature (D) Arabidopsis inflorescence stems.
(E) Arabidopsis root vascular tissues. (F) Cross-section of tomato stem, counter-stained with safranin.
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any autolysis was visible, only a few cells in the central
part of the pith exhibited GUS activity (Fig. 7A). Later,
when cavities had formed as a result of autolysis, more
intense GUS activity was visualized in the cells surround-
ing the cavities (Fig 7B, C). These cells eventually
underwent autolysis as the process progressed.

BFN1 expression in abscission zones

During analysis of BFN1 promoter expression in flowers,
GUS activity was observed in the abscission zone (AZ) of
the flower organs. The abscission process is responsible
for controlled separation of the plant organs from the main
plant body, including leaves, flower or flower organs, and
fruits. In Arabidopsis pBFN1-GUS plants, reporter gene
expression was examined during the natural shedding of
flower organs after fertilization. GUS activity was
detected at the AZ of stamens, petals, and sepals
(Fig. 8A, B). BFN1 promoter expression was also
examined in the AZs of leaves and fruits in the pBFN1-
GUS transgenic tomato plants. GUS activity was observed
specifically around the AZ tissue of the senescing leaves
(Fig. 9A–C). In ripe fruits, GUS activity was observed in
the mid-pedicel AZ of the fruit which initially appeared to
be localized in a ring of cells around the pith and vascular
tissue (Fig. 9H). A similar expression pattern was de-
scribed for the promoter of the polygalacturonase (PG) gene
in tomato flower AZs (Hong et al., 2000). GUS staining
was also observed in the mid-pedicel AZ of non-fertilized
flowers in which the abscission process had begun
(Fig. 9D, E, F, G). GUS staining was detected in cells
on both the proximal and distal sides of the AZ located in
an external ring section of the pedicel (Fig. 9F, G).

Discussion

BFN1 expression was previously found to be associated
with senescence in Arabidopsis (Perez-Amador et al.,
2000). However, the specific function of this nuclease in
senescence or other processes can only be hypothesized at
this stage. As a first step to gaining better insight into
BFN1 function, a temporal and spatial characterization of
BFN1 promoter activity was performed by using the GUS

Fig. 4. Histochemical staining of GUS activity in Arabidopsis floral
organs and tomato fruit. (A) Arabidopsis anther. (B) Silique after
pollination. (C) Young silique showing the developing seeds. (D)
Cross-section of green tomato. (E) Magnification of one of the seeds.

Fig. 5. Histochemical staining of GUS activity in Arabidopsis siliques.
Arabidopsis siliques at different developmental stages [indicated as
stages 17, 18, and 19 of development according to Ferrandiz et al.
(1999)]. Bottom: unstained siliques. Top: the same siliques stained for
GUS. Magnification of a stage 19 silique is presented for better
visualization of the dehiscence zone.

Fig. 6. Histochemical staining of GUS activity in tomato flowers. (A)
Tomato flowers at anthesis. (B) The same flower stained for GUS
activity. (C) Magnification of petal margins.
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reporter gene. The BFN1–GUS transgene maintained
a similar type of senescence-specific expression in both
Arabidopsis and tomato transgenic plants, demonstrating
that BFN1 regulation is mediated, at least in part, at the
transcriptional level by a mechanism which is conserved
between the two different species.

The specificity of BFN1 gene expression to senescing
tissue was demonstrated by histochemical analysis. BFN1
promoter-activated GUS expression was visualized only in
leaf sectors that were at an advanced stage of senescence,
as reflected by their yellowing (Fig. 1). In general, a very
good association was observed between BFN1 promoter
activation and tissue senescence, since expression was not
detected in nearby green tissue in the same leaf, which
was mature and of the same chronological age. This
indicated that the dominant factor governing BFN1
promoter activity is senescence stage and not chronolog-
ical age. The relationship between the increase in BFN1
promoter activity and the decrease in chlorophyll level,
used as a marker for senescence progression, identifies
BFN1 as a late senescence-associated gene, whose
function is probably required in the latest stages of the
senescence process. When the increase in BFN1 promoter
activity, represented by the level of GUS activity, was
plotted against the decline in chlorophyll level, rather than
a continuous linear relationship, a sharp increase in GUS
activity was observed at a particular stage of the decrease
in chlorophyll level. This phenomenon held true for both

Arabidopsis and tomato (Fig. 2), and supports the
existence of a regulatory mechanism that activates the
BFN1 promoter at a specific late stage of the senescence
process. The existence of a common mechanism control-
ling SAG expression among different plants is supported
by previous observations in which promoters of SAGs
retained their senescence-specific expression in other
plants. For example, the Arabidopsis SAG12 promoter
was efficiently used in different plant systems to activate
senescence-specific expression of different target genes
(Guo and Gan, 2007).

The induction of nucleases is tightly associated with
plant senescence, as was demonstrated for BFN1, but it is
also associated with different PCD processes (Sugiyama
et al., 2000), including the HR (Mittler and Lam, 1997),
aleurone cell death (Fath et al., 1999), endosperm de-
velopment (Young and Gallie, 1999), and TE differentia-
tion (Thelen and Northcote, 1989; Aoyagi et al., 1998).
However, the only direct evidence of nuclease function in
PCD was reported for the zinnia nuclease ZEN1, re-
sponsible for nuclear DNA degradation during PCD
associated with TE differentiation during xylem develop-
ment (Ito and Fukuda, 2002). Note that it is still not clear
whether the above-mentioned nucleases are involved in
PCD processes other than the specific ones they were
associated with originally. PCD is a genetically encoded,
active process, whereby cells organize their own de-
struction, crucial to the development and survival of
plants. There are two broad categories of PCD in plants,
namely developmentally regulated PCD and environmen-
tally induced PCD (Rogers, 2005; van Doorn and
Woltering, 2005; Gunawardena, 2007; Hofius et al.,
2007). Developmental PCD has been found to occur
during various plant developmental processes, such as
xylem differentiation, anther dehiscence, organ senes-
cence, seed and embryo development, root cap shedding,
and leaf morphogenesis. Developmentally regulated PCD
occurs at a predictable time and location, and is induced
by internal factors (Rogers, 2005). In contrast, environ-
mentally induced PCD, such as the HR triggered by
pathogen invasion (Greenberg and Yao, 2004), is initiated
in response to external abiotic or biotic signals. As already
mentioned, increased activities of nucleases have been

Fig. 7. Histochemical staining of GUS activity in tomato stem. (A–C) Cross-sections of stems at progressive stages of pith development.

Fig. 8. Histochemical staining of GUS activity in the abscission zones
(AZs) of Arabidopsis floral organs. (A) Arabidopsis petal AZ. (B)
Stamen AZ.
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associated with different plant PCD processes (Sugiyama
et al., 2000).

The activation pattern of the BFN1 promoter observed
in this study suggests that in addition to its involvement in
senescence, BFN1 is involved in PCD processes. In-
terestingly, in the present study, BFN1 promoter activation
was visualized only during developmental PCD processes;
so far, it has not been possible to demonstrate its
activation during PCD processes associated with biotic
stress. For example, activation of the BFN1 promoter was
not detected when the plant was challenged with agents
known to induce HR-associated PCD, such as fumonisin
B1 (Asai et al., 2000) (data not shown). Although
senescence can be induced prematurely by environmental
stress, it is considered to be a developmental type of PCD
(Thomas et al., 2003; van Doorn and Woltering, 2004).
Thus, activation of BFN1 in senescence fits with the
hypothesis that this nuclease is associated with develop-
mental PCD processes in Arabidopsis.

Vascular cell differentiation is one of the best character-
ized developmental PCD processes in plants, required for
TE differentiation (Fukuda, 2004). During the final stage
of PCD associated with TE differentiation, the enzymatic
machinery which is responsible for the autolytic digestion

of the cells is activated, resulting in the development of
water-conducting vascular tissue. Specific autolysis-
related hydrolases (cysteine and serine proteases,
nucleases, and RNase) are recruited to carry out this cell-
autonomous, active, and regulated cell death (Roberts and
McCann, 2000).

Activation of the BFN1 promoter was visualized during
this process in both Arabidopsis and tomato. BFN1
promoter expression was pronounced in the vascular
tissues of roots and leaves of young Arabidopsis seedlings
(Fig. 3). Furthermore, strong and highly specific BFN1
promoter activity was observed in primary xylem bundles
and in vascular cambium cells, which produce secondary
xylem, in both Arabidopsis and tomato (Fig. 3). This
observation is supported by a microarray analysis in
which BFN1 was found to be up-regulated in xylem
relative to non-vascular tissue (Mitsuda et al., 2005).

In zinnia, a particular nuclease, ZEN1, has been shown
to be responsible for nuclear DNA degradation during TE
differentiation-associated PCD (Ito and Fukuda, 2002).
ZEN1 belongs to the S1-type nuclease family (Aoyagi
et al., 1998) and shares high similarity with BFN1,
exhibiting ;70% identity at the amino acid sequence
level (Perez-Amador et al., 2000). BFN1 may also be

Fig. 9. Histochemical staining of GUS activity in tomato abscission zone (AZ). (A–C) Longitudinally halved section of a tomato leaf AZ at
progressive stages of abscission, from early (A), to intermediate (B), to advanced (C). (D, E) Tomato flower (D, unstained; E, GUS stained)
undergoing senescence and abscission due to non-fertilization. (F, G) Magnification of the two AZ surfaces of the abscised flower in E, stained for
GUS. (H) Fruit pedicel AZ following longitudinal sectioning.
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involved in nuclear DNA degradation during PCD
associated with TE differentiation in Arabidopsis, as well
as in other developmental processes associated with PCD.
Whereas according to the present analysis, BFN1 is
involved in both senescence and TE differentiation, ZEN1
was specifically expressed in PCD associated with TE
differentiation: it was not expressed in leaf senescence or
in stress-induced cell death. Two other zinnia S1-type
nuclease genes, ZEN2 and ZEN3, have been reported to be
expressed during senescence (Perez-Amador et al., 2000).
In Arabidopsis, BFN1 seems to be the only S1-type
nuclease gene induced during leaf senescence based on
the database search using the Genevestigator software
(Zimmermann et al., 2005).

PCD is known to be associated with seed development,
whereby several seed tissues undergo PCD as part of their
normal development, including development of the endo-
sperm layer (Young and Gallie, 2000; Rogers, 2005) and
cell death of the inner integument during the development
of the seed coat (Wan et al., 2002; Nakaune et al., 2005).
In cereals, the progression of endosperm PCD is accom-
panied by an increase in nuclease activity and the
internucleosomal degradation of nuclear DNA (Young
et al., 1997). Here, the BFN1 promoter was activated
during seed development (Fig 4) and the pattern of GUS
staining in the seed suggested that the observed expres-
sion of the BFN1 gene is related to the PCD that occurs
during endosperm development.

The BFN1 promoter was also activated in the trans-
mitting tract of the carpel in Arabidopsis (Fig. 4). Normal
transmitting tract development has also been shown to
involve PCD (Wang et al., 1996; Crawford et al., 2007).
The involvement of BFN1 in this developmental process
is supported by transcript profiling showing that its
expression is lower in an Arabidopsis mutant whose
transmitting tract cells were genetically ablated (Tung
et al., 2005). A high level of GUS activity was observed
in the stamens, indicating high BFN1 promoter activation
in this tissue (Fig. 4). PCD is known to occur pro-
gressively during the development of the different anther
tissues (Wu and Cheung, 2000; Rogers, 2006). It is first
triggered in the tapetum, sustaining microspore to pollen
development (Wang et al., 1999; Varnier et al., 2005),
while at a later stage, PCD of specified cells of the anther
wall is required for anther dehiscence and the release of
mature pollen (Ge et al., 2005; Sanders et al., 2005).
Microarray analysis of spatial gene expression in Arabi-
dopsis flowers identified specific expression of BFN1 in
stamens (Wellmer et al., 2004). Further analysis is
required to identify specific stamen-related PCD processes
in which BFN1 is involved.

The clear and significant association that was observed
between developmental PCD processes and activation of
the BFN1 promoter suggests that this promoter can be
used as a marker for PCD. In transgenic tomato plants,

intense activation of the BFN1 promoter was observed in
the pith of mature stems in cells targeted for autolysis,
which resulted in longitudinal stem cavities (Fig. 7). While
it involves cell death (Beers, 1997), hallmarks of PCD
have not yet been described for this process. Pith autolysis
is a widespread phenomenon which in some species is
positively correlated with rapid stem elongation or with
abiotic stress conditions (Carr and Jaffe, 1995; Carr et al.,
1995), and may occur in roots as well (Lu et al., 1991).
Pith autolysis is very similar to lysigenous aerenchyma,
known to form as a consequence of PCD in the roots and
shoots of wetland species and in some dryland species
under adverse flooding conditions (Evans, 2004).

Activation of BFN1 in the tomato petal margins may
indicate the occurrence of PCD in this tissue (Fig. 6). This
activation appears to occur well before the initiation of
petal senescence. The early occurrence of nuclear DNA
degradation in flower petals, before visible signs of
senescence are exhibited, was demonstrated in gypsophila
(Hoeberichts et al., 2005). It has also been suggested that
in Alstroemeria petals, PCD processes are initiated
extremely early at a similar location on the petals to that
observed for expression of the BFN1 promoter in tomato
(Wagstaff et al., 2003). By the time Alstroemeria flowers
have opened, mesophyll cells at the petal and sepal
margins have completely degenerated, indicating that
some cell death is occurring from the earliest stages of
flower development (Wagstaff et al., 2003).

Specific activation of the BFN1 promoter in several
types of examined AZs in both Arabidopsis and tomato
supports the hypothesis of a PCD process involved in
plant abscission (Lers et al., 2006). It has previously
shown that inhibition of the RNase gene LX, associated
with senescence and PCD in tomato, results in a marked
delay of leaf abscission. At that time, it was hypothesized
that PCD is involved in abscission and that LX probably
plays a role in the process. In addition to the demonstrated
activation of the BFN1 promoter in AZs, an induction of
nuclease activity has been detected in AZ following the
initiation of the abscission process (T Bar, L Sonego, and
A Lers, unpublished results). Although GUS staining does
not identify the precise cells in which BFN1 is activated,
GUS expression coincides with cells in the AZ layer.
Interestingly, activation of the BFN1 promoter was also
detected during the dehiscence process in mature Arabi-
dopsis siliques (Fig. 5), where expression localized around
the pod DZ and in the valves that separate from the dry
silique. This activation was observed only in the mature
siliques, suggesting an association with the cell separation
process underlying dehiscence. The pattern of BFN1
promoter-activated GUS expression is very similar to that
observed for the promoters of different origin endopoly-
galacturonase (PG) genes examined in Arabidopsis, which
were activated in the floral organ AZ and in the mature
silique (Christiansen et al., 2002; Gonzalez-Carranza
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et al., 2002, 2007). The apparent co-localization of BFN1
and PG expression further supports the involvement of
BFN1 in abscission and dehiscence. Similar to abscission,
dehiscence is a cell separation process. Both processes, at
least in Arabidopsis, seem to be controlled by a common
regulatory mechanism, as demonstrated by the involve-
ment of the positive activator INFLORESCENCE DE-
FICIENT IN ABSCISSION (IDA) in both (Stenvik et al.,
2006). Cell separation in dehiscence occurs via break-
down of the middle lamella between the cells of the
separation layer of the DZ, resulting in loss of cellular
cohesion, which, together with subsequent cell death,
creates a detachment line between the valves and replum
(Spence et al., 1996). Based on electron microscopy
analysis of the soybean pod DZ, it has been suggested
that cells on both sides of the opened pod’s DZ may have
undergone PCD (Christiansen et al., 2002).

Overall, high correlation had been observed between
BFN1 promoter-regulated GUS expression and all exam-
ined developmental processes associated with PCD, and
no expression was detected elsewhere. Thus, the present
results suggest that BFN1 is involved in developmental
PCD-related processes in Arabidopsis, as well as senes-
cence. The specific function of BFN1 in these develop-
mental processes has not yet been demonstrated. It is
likely that BFN1 is involved in nuclear DNA degradation,
as was demonstrated for the related ZEN1 nuclease in
zinnia TE differentiation (Ito and Fukuda, 2002). To gain
further insight into the function of BFN1 in PCD,
Arabidopsis mutants that are deficient in BFN1 gene
expression are currently being examined for the conse-
quences of such mutation to the different PCD-related
developmental processes in the plant.
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