
REVIEW PAPER

We be jammin’: an update on pectin biosynthesis, trafficking 
and dynamics

Charles T. Anderson1,2

1 Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
2 Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, PA 16802, USA

To whom correspondence should be addressed. E-mail: cta3@psu.edu

Received 11 August 2015; Revised 12 October 2015; Accepted 23 October 2015

Editor: Simon Turner, University of Manchester

Abstract

Pectins are complex polysaccharides that contain acidic sugars and are major determinants of the cohesion, adhe-
sion, extensibility, porosity and electrostatic potential of plant cell walls. Recent evidence has solidified their positions 
as key regulators of cellular growth and tissue morphogenesis, although important details of how they achieve this 
regulation are still missing. Pectins are also hypothesized to function as ligands for wall integrity sensors that enable 
plant cells to respond to intrinsic defects in wall biomechanics and to wall degradation by attacking pathogens. This 
update highlights recent advances in our understanding of the biosynthesis of pectins, how they are delivered to the 
cell surface and become incorporated into the cell wall matrix and how pectins are modified over time in the apo-
plast. It also poses unanswered questions for further research into this enigmatic but essential class of carbohydrate 
polymers.
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Introduction

The walls of plant cells must be both flexible and strong to 
enable and constrain cellular, tissue and organ growth. These 
specialized extracellular matrices, which are largely built 
of carbohydrate polymers that are synthesized using sugars 
derived from photosynthesis, serve as dynamic support struc-
tures for plants to enable the development of a wide array of 
morphologies (Cosgrove, 2005). Cell walls also serve as pro-
tective barriers that buffer the interiors of plant cells against 
abiotic and biotic stresses. The so-called primary walls that sur-
round actively growing plant cells are composed of cellulose, 
hemicelluloses, pectins and structural glycoproteins, and also 

contain a wide array of enzymes and other proteins that can 
modify wall structure or trigger cellular responses to intrinsic 
and environmental stimuli (Somerville et al., 2004; Keegstra, 
2010). The cell wall is often described as a distinct extracellu-
lar compartment, but in fact it is intimately connected to the 
cell surface by components of the wall biosynthetic machin-
ery itself, as well as structural proteins that maintain plasma 
membrane-wall contacts and sensory proteins that can bind to 
wall components to monitor wall integrity (Liu et al., 2015).

Pectins have long been used by human societies as gelling 
agents in foods, and more recently, their influence on wall 

© The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. 
For permissions, please email: journals.permissions@oup.com

Abbreviations: APAP1, ARABINOXYLAN PECTIN ARABINOGALACTAN PROTEIN1;ARAD, ARABINAN DEFICIENT;CESA, CELLULOSE SYNTHASE; 
FRA1, FRAGILE FIBER 1 kinesin;GalA, galacturonic acid;GAUT, GALACTURONOSYLTRANSFERASE;GT, glycosyltransferase;HG, homogalacturonan;PG, 
polygalacturonase;PL, pectate lyase;PME, pectin methylesterase;RG-I, rhamnogalacturonan-I;RG-II, rhamnogalacturonan-II;RGXT, RHAMNOGALACTURONAN 
XYLOSYLTRANSFERASE;RLP, RECEPTOR-LIKE PROTEIN;SCAMP, SECRETORY CARRIER MEMBRANE PROTEIN;ssNMR, solid-state Nuclear Magnetic 
Resonance;SVC, secretory vesicle compartment;TBL, TRICHOME BIREFRINGENCE-LIKE;WAK, WALL-ASSOCIATED KINASE.

Journal of Experimental Botany, Vol. 67, No. 2 pp. 495–502, 2016
doi:10.1093/jxb/erv501 Advance Access publication 20 November 2015

D
ow

nloaded from
 https://academ

ic.oup.com
/jxb/article/67/2/495/2884921 by guest on 25 April 2024

mailto:cta3@psu.edu?subject=


charge and porosity has made them targets for studies aimed 
at optimizing cell wall deconstruction, which is one of the 
most expensive stages in bioenergy production from plant-
based biomass (Xiao and Anderson, 2013). Additionally, pec-
tins are often used as biodegradable carriers for time-released 
drug delivery, and limited studies have indicated that pectins 
themselves can influence the gut microbiome (Koropatkin 
et al., 2012) and, in modified forms, act as antitumor agents in 
some types of cancers (Leclere et al., 2013). Thus, the utility 
of pectins is widespread, and is poised to expand rapidly as 
biorefineries become more sophisticated in producing a wide 
array of biomass-derived, value-added products (Edwards 
and Doran-Peterson, 2012).

The unique biomechanical properties of plant cell walls, 
which exhibit both elastic and plastic deformation under 
stress (Burgert and Dunlop, 2011), have long fascinated biolo-
gists. Although cellulose-hemicellulose networks are thought 
to act as the main load-bearing components of plant cell 
walls and cellulose-hemicellulose interfaces are the targets 
of a major class of wall-loosening proteins called expansins 
(Wang et al., 2013), pectins also play critical functions in wall 
architecture, cellular growth and tissue morphogenesis (Palin 
and Geitmann, 2012; Wolf and Greiner, 2012). However, 
many details of how pectins are generated, delivered to the 
wall and interact with other wall components to achieve 
their functions either remain completely mysterious or are 
only beginning to be understood. This update will focus on 
synthesizing connections between specific aspects of pectin 
dynamics, some of which have been covered in further detail 
in a series of excellent recent reviews (Palin and Geitmann, 
2012; Wolf and Greiner, 2012; Atmodjo et al., 2013; Senechal 
et al., 2014b; Levesque-Tremblay et al., 2015), and will also 
pose some key questions for future research.

Evolving views of pectin abundance and 
structure

Pectins are highly abundant in the primary walls of eudicot 
plant species and can comprise up to one third of the non-
water mass of the wall (Somerville et  al., 2004). However, 
their much lower abundance in secondary walls, which are 
deposited after plant cells cease growth, and the walls of 
commelinid monocots, which include bioenergy crops and 
other grasses (Vogel, 2008), has led to speculation that the 
functions of pectins can be supplanted by other wall matrix 
polymers such as glucuronoarabinoxylans, which despite 
their classification as hemicelluloses also contain large 
numbers of glucuronic acid residues (Rennie and Scheller, 
2014) that make them somewhat pectin-like. However, many 
monocot genomes contain significant numbers of putative 
pectin-synthesizing and -modifying genes (Tyler et al., 2010; 
McCarthy et al., 2014; Senechal et al., 2014b), implying that 
pectins function in at least some aspects of monocot growth 
and development. For example, pectins are among the earliest 
detectable wall elements of the cell plate during cytokinesis 
in plants and their presence in the cell plates of both dicots 
(Samuels et  al., 1995) and monocots (Baluska et  al., 2005) 

suggests that a function for pectins in cytokinesis might be 
conserved among both groups. Additionally, pectin compo-
sition and abundance changes in some monocot species in 
response to environmental stimuli such as drought (Leucci 
et al., 2008), suggesting that pectins might be involved in fac-
ultative adaptations to environmental perturbation across 
diverse plant taxa. Thus, the perception that pectins are lim-
ited to functioning in eudicot primary walls is likely incorrect.

Conventionally, pectins have been classified into so-called 
‘domains’ that include homogalacturonan (HG), xylogalac-
turonan, apiogalacturonan, rhamnogalacturonan-I (RG-I) 
and rhamnogalacturonan-II (RG-II) (Atmodjo et al., 2013; 
Mohnen, 2008). HG is the most abundant form of pectin 
in the primary walls of eudicot plants, comprising 50–70% 
of recoverable pectins in Arabidopsis thaliana primary walls 
(Zablackis et al., 1995). It is composed of unbranched α-1,4-
linked galacturonic acid (GalA) chains that can be decorated 
with xylose to form xylogalacturonan, apiose to form apioga-
lacturonan, and acetyl groups at the O2 and O3 positions of 
GalA (Ishii, 1997). The carboxyl groups of GalA residues in 
HG can be methyl-esterified, and when de-methyl-esterified 
can be negatively charged, with apparent pKa values ranging 
from 3.55 to 4.10 depending on the overall degree of methyl-
esterification of the polymer (Plaschina et  al., 1978); thus, 
methyl-esterification status can considerably alter the charge, 
chemistry and rheology of HG (Levesque-Tremblay et  al., 
2015). RG-I is the second-most abundant form of pectin and 
possesses a backbone of alternating rhamnose and GalA 
subunits that are decorated with galactan, arabinan and ara-
binogalactan side chains. The most structurally complex pec-
tin domain is RG-II, which has an HG-like GalA-containing 
backbone that is modified with four different side chains; 
these side chains include 12 different monosaccharide con-
stituents, and side chain A contains apiose residues that can 
form borate diester linkages to crosslink RG-II molecules, 
generating RG-II dimers (Funakawa and Miwa, 2015).

These classifications are based on monosaccharide com-
position and linkage analyses of pectins that have been sol-
ubilized from cell wall preparations and purified to varying 
degrees, but they do not provide a complete picture of pec-
tin structure. The extents to which different pectin domains 
themselves are linked have not been fully established (Vincken 
et al., 2003), and although degree of polymerization can be 
measured in some cases and has been estimated to be fairly 
homogeneous (Yapo et al., 2007), the precise size distribution 
for most pectins remains poorly defined. In addition, some 
pectins are more difficult to extract from the insoluble por-
tions of cell wall preparations (Immerzeel et al., 2006), and 
their chemical compositions and linkage structures are there-
fore less certain. Whether these insoluble pectins are molecules 
that are topologically entangled with other wall polymers such 
as cellulose or hemicelluloses, are covalently linked to these 
other polymers (Thompson and Fry, 2000; Popper and Fry, 
2005), are themselves highly insoluble, or comprise some com-
bination of these populations, remains unclear. One intriguing 
possibility is that pectin domains might be linked to polypep-
tides that serve as nuclei for their biosynthesis. Crosslinks 
between RG-I and extensins, which are hydroxyproline-rich 
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glycoproteins that localize to cell walls, have been reported 
(Qi et  al., 1995), and in 2013, Tan and coworkers reported 
a peptidoglycan structure in which HG, RG-I, galactan and 
xylan domains were linked to ARABINOXYLAN PECTIN 
ARABINOGALACTAN PROTEIN1 (APAP1) (Tan et  al., 
2013). Mutants lacking the APAP1 protein displayed altera-
tions in wall composition and extractability, and the authors 
estimated that up to 95% of extractable RG-I from suspen-
sion-cultured cell walls is linked to an arabinogalactan protein 
(Tan et al., 2013). Whether all pectin domains are attached to 
polypeptides remains to be fully established. It is possible that 
APAP1-like peptidoglycans represent a differentially soluble 
sub-population of pectins, or that these are core ‘remnants’ 
of pectin biosynthetic products from which pectin macromol-
ecules are cleaved after synthesis. It will be interesting to learn 
to what extent APAP1-like proteins are involved in pectin bio-
synthesis, whether their glycans are common or distinct from 
those of other types of pectins and exactly how attachment to 
a polypeptide affects pectin behavior in the wall.

Pectin biosynthesis: a complex subject

Given the structural complexity of pectins, over 65 distinct 
enzyme activities have been hypothesized to be required 
for their synthesis (Mohnen, 2008; Caffall and Mohnen, 
2009; Harholt et al., 2010). However, genetic and biochemi-
cal experiments are making progress toward identifying the 
genes and enzymes that generate pectin linkages. The site of 
pectin synthesis is thought to be the Golgi lumen (Sterling 
et al., 2001), wherein nucleotide-sugar substrates, S-adenyl-L-
methionine and acetyl-CoA or some other acetylated carrier 
molecule (Schultink et al., 2015) are imported from the cyto-
plasm and used by a variety of glycosyltransferases (GTs), 
methyltransferases and acetyltransferases to construct pectin 
macromolecules. One of the best-characterized pectin biosyn-
thetic enzymes is GALACTURONOSYLTRANSFERASE1 
(GAUT1), which catalyzes the transfer of GalA from 
UDP-GalA to an oligo-GalA acceptor (Sterling et  al., 
2006). GAUT1 is cleaved at its N-terminus during matu-
ration and thus lacks a membrane anchor itself, but it has 
been reported to be anchored to the Golgi membrane in a 
complex with GAUT7; GAUT7 does not possess detect-
able GalA transferase activity, but retains an N-terminal 
membrane anchor (Atmodjo et  al., 2011). HG can also be 
xylosylated to form xylogalacturonan by the membrane-asso-
ciated protein XYLOGALACTURONAN DEFICIENT1 
(Jensen et  al., 2008). For RG-I, genetic evidence indi-
cates that ARABINAN DEFICIENT1 and ARABINAN 
DEFICIENT 2 function non-redundantly to synthesize ara-
binan side chains, and these proteins can form both homo- 
and heterodimers when expressed transiently (Harholt 
et  al., 2012; Lund et  al., 2015). Likewise GALACTAN 
SYNTHASE1 has been confirmed biochemically as a β-1,4-
galactan galactosyltransferase (Liwanag et  al., 2012). In 
the case of RG-II, three RHAMNOGALACTURONAN 
XYLOSYLTRANSFERASE (RGXT) proteins have been 
proposed to transfer xylose residues to RG-II (Egelund 

et  al., 2006, 2008., and two sialyltransferase-like proteins 
are hypothesized to add 2-keto-3-deoxy-D-lyxo-heptulosaric 
acid (Dha) and/or 2-keto-3-deoxy-D-manno-octulosonic 
acid (Kdo) to its side chains (Dumont et al., 2014).

The acetylation of pectin is putatively carried out by 
pectin acetyltransferases, possibly in the TRICHOME 
BIREFRINGENCE-LIKE (TBL) protein family (Schultink 
et al., 2015). However, no specific protein has thus far been dem-
onstrated as a bona fide acetyltransferase for pectin. Methyl-
esterification of GalA residues in HG is thought to be achieved 
by the putative methyltransferases QUASIMODO2 (QUA2), 
QUASIMODO3 (QUA3), COTTON GOLGI-RELATED2 
(CGR2) and/or COTTON GOLGI-RELATED3 (CGR3) 
(Mouille et al., 2007; Held et al., 2011; Miao et al., 2011; Kim 
et al., 2015), resulting in HG chains that have a high degree of 
methyl-esterification (DM) soon after synthesis. In A.  thali-
ana, qua2 mutants display lower HG methyl-esterification, are 
dwarfed and have less HG in their cell walls (Mouille et  al., 
2007). Whether the reduction in HG is a compensatory response 
to lowered methyltransferase activity or is due to increased 
pectin degradation is not entirely clear, although the degree of 
polymerization for HG is not substantially altered in the mutant 
(Ralet et al., 2008), suggesting that a compensatory decrease in 
HG synthesis occurs. Likewise, cgr2 cgr3 double mutant plants 
are dwarf, have HG with a lower degree of methyl-esterification, 
and display less HG methyltransferase activity in microsomes 
(Kim et al., 2015). The precise contribution of each of these 
enzymes to HG methyl-esterification remains to be determined.

The coordination of so many enzyme activities during pectin 
biosynthesis might be achieved, at least in part, by the forma-
tion of multi-subunit protein complexes that can ‘pass’ accep-
tor substrates to one another. The presence of several types of 
such complexes might result in a ‘domain synthesis’ mechanism 
for pectin biosynthesis, in which individual domains are built 
and then linked together to form final pectin macromolecules 
(Atmodjo et al., 2013). The fact that QUA3 and a related pro-
tein have been detected as interactors of the GAUT1:GAUT7 
complex (Atmodjo et al., 2011) suggests that HG methyl-ester-
ification might occur coordinately with its polymerization, 
and the interaction of ARAD1 with both itself and ARAD2 
implies that these proteins might work together to construct 
arabinan side chains. However, ‘oligoglycosyltransferases’ 
that can link multimeric pectin chains together have not yet 
been reported. Further analyses of interactions between pec-
tin biosynthetic enzymes, facilitated by newly developed pro-
tein-protein interaction reporters that reversibly reconstitute 
fluorescent or luminescent proteins (Gookin and Assmann, 
2014; Lund et al., 2015) and are thus less prone to false posi-
tive results than previous generations of reporters, should shed 
more light on the extent to which pectin biosynthesis involves 
orchestration between physically linked enzymes.

Transport and delivery of pectins to the 
apoplast

Although pectins are synthesized in the Golgi, there is con-
siderable uncertainty about how they are then trafficked from 
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the Golgi to the plasma membrane. Pioneering immunoelec-
tron microscopy experiments using antibodies raised against 
isolated cell wall components have indicated that in some cell 
types, pectins might exit from the cis/medial Golgi in vesicles 
that are delivered directly to the plasma membrane, but in 
other cell types, both pectins and hemicelluloses are detect-
able in later Golgi compartments (Moore et al., 1991; Lynch 
and Staehelin, 1992; Zhang and Staehelin, 1992). However, 
these data are not conclusive, in that biophysical or chemi-
cal changes in pectins in later Golgi compartments might 
prevent recognition by antibodies in the former cell types. 
Uncertainty also stems in part from the complexity of post-
Golgi trafficking, in which cargo transits from the Golgi to 
the trans-Golgi network (TGN) before being targeted along 
exocytic or post-endocytic pathways. The post-Golgi traffick-
ing mediators ECHIDNA, YPT/RAB GTPase Interacting 
Protein 4a, and YPT/RAB GTPase Interacting Protein 4b 
are likely to function in the proper targeting of pectins to the 
plasma membrane, since mutants lacking these genes mis-
localize wall matrix polymers to the vacuole (Gendre et al., 
2011, 2013; McFarlane et al., 2013). Mobile Secretory Vesicle 
Compartments (SVCs) marked by the late trafficking pro-
tein SECRETORY CARRIER MEMBRANE PROTEIN 
2 (SCAMP2) have been demonstrated to contain pectins 
(Toyooka et al., 2009) and have therefore been proposed to 
perform bulk delivery of pectins to the cell surface, and mem-
bers of the exocyst complex, which mediates secretion at the 
plasma membrane in plant cells (Hala et al., 2008), have been 
implicated in the final delivery of pectins to the apoplast, 
albeit in highly specialized seed coat cells that produce large 
amounts of pectin-rich mucilage (Kulich et al., 2010).

One predicted consequence of pectin transit through the 
secretory apparatus is a decrease in the pH of the environment 
from ~6.6 in the Golgi to a more acidic pH that ranges ~5 in 
growing cell walls (Felle, 2001; Martiniere et al., 2013). This 
change in pH might be expected to alter the physical prop-
erties of pectins, possibly resulting in changes in their solu-
bility and/or interactions with other wall matrix polymers, 
which are synthesized in the same Golgi compartments. These 
changing physical properties, in turn, might also influence the 
size, shape and dynamics of vesicular compartments along the 
secretory pathway: for example, seed coat and root cap cells, 
both of which secrete large amounts of pectins, have Golgi 
that appear distinct from those of other cell types (Staehelin 
et  al., 1990; Young et  al., 2008). The development of tech-
niques for measuring local pH and the precise synthesis status 
and nanomechanical properties of pectins in different secre-
tory compartments will be required to test these ideas.

The timing of when HG is methyl-esterified relative to its 
initial synthesis (see above) is also relevant to its stability. 
Pectin methyl-esterases (PMEs), which remove methyl-ester 
groups from HG, releasing methanol and a proton, polygalac-
turonases (PGs), which hydrolyze HG backbones and pectate 
lyases (PLs), which cleave HG backbones via a β-elimination 
mechanism, would be expected to co-exist with nascent pec-
tin molecules in Golgi and post-Golgi compartments before 
their secretion to the apoplast. Inhibitory and autoinhibitory 
proteins and domains exist that might prevent PMEs, PGs 

and PLs from acting prematurely on their substrates, and 
some of these can be removed by subtilisin-like proteases in 
the wall (Rautengarten et  al., 2008; Senechal et  al., 2014a). 
Additionally, the aforementioned pH gradient along the secre-
tory pathway might prevent PMEs, PGs and PLs from operat-
ing until they reach the relatively acidic environment of the 
apoplast; indeed, the activity of many PMEs, PGs and PLs is 
highly pH-dependent (Senechal et al., 2014b). Whether these 
or other regulatory mechanisms are responsible for stabilizing 
pectins before their delivery to the apoplast, or if  in fact pectin 
degradation begins during transit, remains to be determined.

The question of how the spatial distribution of pectin 
delivery sites at the cell surface is regulated has not yet been 
answered, although tantalizing hints have emerged. In tip-
growing pollen tubes, pectin subtypes are distributed hetero-
geneously along the length of the cell (Rounds et al., 2011; 
Chebli et  al., 2012), which may be a consequence of oscil-
lations in wall component delivery and/or growth (Li et al., 
1994; McKenna et al., 2009) and/or variations in the timing 
and/or location of PME activity that result in differential 
epitope localization. Golgi bodies move through the cyto-
plasm in diffusely growing cells via actin-myosin-driven cyto-
plasmic streaming, and this mobility would be expected to 
spread the delivery of pectins to the apoplast relatively evenly 
across the cell surface, but recent data have also implicated 
the microtubule cytoskeleton in pectin transport and deliv-
ery. Genetic and metabolic labeling experiments using click 
chemistry-based detection of a taggable sugar analog, fucose-
alkyne, have shown that pectins are delivered to discrete sites 
in root epidermal cells (Anderson et al., 2012) and that muta-
tions in the FRAGILE FIBER 1 kinesin result in reduced 
delivery of fucose-alkyne-labeled pectins to the cell wall (Zhu 
et al., 2015). The relatively normal distribution and density 
of CELLULOSE SYNTHASE3 (CESA3) in fra1 mutants 
suggests that CESAs and pectins might be delivered to the 
cell wall in distinct compartments, providing differential con-
trol over the sites and densities of matrix polymer delivery 
and cellulose extrusion into the wall, although further experi-
ments will be required to fully support this hypothesis.

Pectin dynamics in the wall

The cell walls of plants first form during cytokinesis, when 
the secretory apparatus of the cell is reorganized to direct the 
delivery and/or synthesis of wall polymers to the growing cell 
plate, which coalesces from post-Golgi compartments at the 
midline of the phragmoplast and requires massive membrane 
rearrangements for its formation, expansion and remodeling 
into a nascent cell wall (Jurgens, 2005). Pectins are detectable 
early in the formation of the cell plate (Samuels et al., 1995) 
and their flexibility might facilitate cell plate deformation and 
expansion. It is also possible that pectins, through interac-
tions with extensins and/or other structural proteins (Cannon 
et al., 2008), might provide the proper chemical or mechani-
cal environment for the initiation of cellulose biosynthesis in 
newly forming cell walls (Miart et al., 2014), perhaps by form-
ing nanoscale patches of wall with differential stiffness that 
cause nascent cellulose chains to coalesce into microfibrils. 
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Indeed, pectins have recently been reported to bind extensively 
to bacterial cellulose during its synthesis, although they do not 
appear to dramatically affect cellulose crystallinity (Lin et al., 
2015, 2016). Pectins have also been detected in close proximity 
to cellulose in intact plant cell walls using solid-state Nuclear 
Magnetic Resonance (ssNMR) experiments (Dick-Perez et al., 
2012; Wang et al., 2015), suggesting intimate interactions with 
the cellulose-hemicellulose network. Upon the completion of 
cytokinesis, the new wall fuses with the parental wall and dis-
tinct wall layers become apparent as wall deposition continues 
in both daughter cells. The layer that lies between the primary 
walls of each cell is the so-called middle lamella, which is highly 
enriched in pectins and is hypothesized to function in cell-cell 
adhesion, a topic that has recently been reviewed (Daher and 
Braybrook, 2015) and will not be discussed in detail here.

Recently, pectin de-methyl-esterification in the wall has 
been proposed as a key event in the symmetry breaking that 
initiates anisotropic cellular expansion during the elongation 
of epidermal cells in Arabidopsis hypocotyls (Peaucelle et al., 
2015), a process that heretofore has largely been attributed to 
constraints placed on radial expansion by the strength of trans-
versely oriented cellulose microfibrils. As the wall expands dur-
ing cell growth, the middle lamella might be expected to thin to 
the point of disappearance, but this does not appear to be the 
case. Are additional pectins ‘squeezed’ into the middle lamella 
as the cell grows? Intriguing observations in the unicellular algae 
Penium margaritaceum suggest that this might occur, since in 
these cells, pectins are enriched in a reticulated outer wall layer 
that is distal to an underlying cellulosic layer, suggesting that as 
cell growth and wall deformation occurs, pectins are extruded 
from the primary wall (Domozych et al., 2014). In the case of 
continuous pectin delivery in growing plant tissues, an equilib-
rium might exist in which the steady state fraction of pectin in 
the wall is constant, but as wall biosynthesis diminishes and 
growth continues, as has been shown to be possible in the case 
of cellulose for elongating hypocotyls (Refregier et al., 2004), 
the amount of pectin in the primary wall might decrease and/
or become reorganized (Anderson et al., 2012). This successive 
physical de-pectination might have important implications for 
wall biomechanics and cellular adhesion.

The ultimate fate of much HG that is delivered to the wall 
appears to be de-methyl-esterification by PMEs, potentially 
followed by degradation. Depending on the cell type and 
the specific enzyme, HG degradation by PGs can facilitate 
either cellular expansion (Xiao et al., 2014) or controlled cell 
separation events that occur during plant development and 
maturation (Ogawa et  al., 2009). Whether this degradation 
is regulated by transcriptional networks that turn different 
pectin-modifying genes on and off  in diverse spatiotemporal 
patterns (Kim et al., 2006), by post-translational control of 
enzyme activities (Senechal et al., 2014b), or by both of these 
factors in combination has yet to be fully determined.

Pectins and wall integrity signaling

As degradable wall components, pectins are ideally situated 
to act as molecular sentinels in the apoplast for the detection 

of wall damage or degradation, either as a result of intrinsic 
growth processes or by invading pathogens, and have there-
fore been proposed to act as key players in wall integrity sign-
aling networks (Engelsdorf and Hamann, 2014). Pectins have 
been identified as binding interactors with cell wall integrity-
sensing WALL-ASSOCIATED KINASES (WAKs) (Wagner 
and Kohorn, 2001; Decreux and Messiaen, 2005), inducing 
MAP kinase signaling cascades that result in changes in gene 
expression (Kohorn et  al., 2009). Although pectin-derived 
oligogalacturonides have been proposed to act as ligands for 
WAKs (Brutus et  al., 2010), the exact nature of the pectic 
epitope(s) that bind to WAKs have not been precisely defined, 
and the question of whether pectins act in concert with other 
molecules, such as secreted peptides, to activate WAKs and/
or other receptor-like kinases has not been fully addressed. 
Another open question is exactly how bound pectin molecules 
transmit ‘integrity’ signals: are these signals based on size-
dependent interactions between pectin fragments and recep-
tor binding pockets, mechanical tension (or lack thereof) 
between the receptor and ligand, which is in turn connected 
to one or more supermolecular wall networks, or some com-
bination thereof? Genetic evidence has also recently impli-
cated RECEPTOR-LIKE PROTEIN 44 (RLP44) in sensing 
changes in the status of pectins in the cell wall and transmit-
ting this information through the brassinosteroid hormone 
signaling network (Wolf et al., 2014). However, the ligand for 
RLP44 has not yet been isolated. Reductive dissection of the 
wall integrity sensing machinery by testing combinations of 
heterologously expressed receptors and purified or synthe-
sized candidate ligands might be required to fully understand 
how pectins, alone or in combination with other wall compo-
nents, activate wall integrity signaling.

New methods for detecting pectin 
structure and dynamics

Given their complex structures, pectins have resisted complete 
characterization. A large number of antibodies has been gen-
erated that can detect specific pectin epitopes in intact plant 
tissues or wall extracts (Pattathil et  al., 2010); despite their 
broad utility, these probes should be used with the knowledge 
that the epitopes for many of these antibodies have not been 
fully defined (due to the difficulty of purifying or synthesizing 
the appropriate oligo- or polysaccharides for binding stud-
ies). Additionally, certain pectin epitopes might be masked 
in intact walls by other wall polymers (Marcus et al., 2008, 
2010), and antibodies are large in comparison with the aver-
age pore sizes of cell walls, raising questions about penetra-
tion and accessibility.

Fortunately, progress is being made in the development 
of sensitive and comprehensive methods for detecting pec-
tin structure and degradation. So-called ‘epitope detection 
chromatography’ can be used to separate subpopulations of 
pectins and probe their structures using the above-mentioned 
antibodies (Cornuault et al., 2014). Alternatively, after print-
ing specialized glycan arrays containing a wide variety of 
pectin epitopes and probing them with sets of monoclonal 
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antibodies, multivariate regression analysis can be used to 
identify trends in antibody-epitope binding patterns (Sousa 
et  al., 2015). However, the complexity and apparent het-
erogeneity of pectins makes these methods imperfect for 
determining complete structural information. PME activity 
and pectin degradation can be detected using the cationic 
dye Ruthenium Red on agar plate-based assays in combina-
tion with chromatographic separation of pectin fragments 
(Lionetti, 2015), and the oligogalacturonides produced by 
pectin-degrading enzymes in intact plants can be measured 
using MALDI-TOF mass spectrometry (Korner et al., 1998; 
Pontiggia et  al., 2015). Ideally, the community will be able 
to develop the ability to ‘sequence’ pectin structures to more 
completely understand structure-function relationships.

Another promising avenue for detecting pectins involves the 
development and application of small molecule-based probes. 
One promising study along these lines involves chitosan oli-
gosaccharides, which molecularly ‘dock’ with stretches of 
de-methyl-esterified HG; when covalently linked to a fluoro-
phore, these probe molecules can be used to label de-methyl-
esterified HG in situ (Mravec et  al., 2014). Additionally, as 
mentioned earlier, the time-resolved behavior of populations 
of synchronously synthesized pectins can be followed using 
metabolic labeling and click chemistry (Anderson et  al., 
2012), although this approach does not currently allow for in 
vivo fluorescent labeling and requires the use of pulse-chase 
experiments to follow pectin dynamics.

In summary, our understanding of pectin synthesis, traf-
ficking and behavior is far from complete, but the future looks 
bright. As functional genomics and advances in biochemistry 
and cell biology allow us to identify the full contingent of 
pectin biosynthetic and modifying genes and the life histories 
of their products, we will become better able to manipulate 
pectin structure and study its effects on wall organization and 
behavior, plant development and the production of renewable 
food, materials and energy resources.
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