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Abstract

Gibberellins (GAs) and cytokinins (CKs) are plant hormones that act either synergistically or antagonistically during 
the regulation of different developmental processes. In Arabidopsis thaliana, GAs and CKs overlap in the positive 
regulation of processes such as the transition from the vegetative to the reproductive phase and the development of 
epidermal adaxial trichomes. Despite the fact that both developmental processes originate in the rosette leaves, they 
occur separately in time and space. Here we review how, as genetic and molecular mechanisms are being unraveled, 
both processes might be closely related. Additionally, this shared genetic network is not only dependent on GA and 
CK hormone signaling but is also strictly controlled by specific clades of transcription factor families. Some key flow-
ering genes also control other rosette leaf developmental processes such as adaxial trichome formation. Conversely, 
most of the trichome activator genes, which belong to the MYB, bHLH and C2H2 families, were found to positively 
control the floral transition. Furthermore, three MADS floral organ identity genes, which are able to convert leaves 
into floral structures, are also able to induce trichome proliferation in the flower. These data lead us to propose that 
the spatio-temporal regulation and integration of diverse signals control different developmental processes, such as 
floral induction and trichome formation, which are intimately connected through similar genetic pathways.
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Introduction

Flowering is one of the most critical developmental steps 
to ensure species perpetuation. Floral induction must occur 
at an appropriate time of the year to ensure offspring sur-
vival. Early flowering may result in poor flower and seed 
production as plants do not recruit enough reserves for an 
energy-consuming process, while late flowering may lead to 
a robust plant, but perhaps may jeopardize fruit maturation. 
As the time for floral induction is critical, both late induction 

and precocious flowering should be avoided. Consequently, 
plants constantly monitor environmental and endogenous 
signals to control their growth (Penfield, 2008). When plants 
are not competent to flower, they are insensitive to induc-
tive environmental factors, while after the juvenile-to-adult 
transition plants reach the competence to respond to those 
signals (Bergonzi et  al., 2013; Huijser and Schmid, 2011). 
Indeed, flowering is controlled by a complex network of 
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interdependent genetic pathways that monitor and respond 
to both endogenous and environmental signals. Endogenous 
factors include hormones such as gibberellin (GA) and cyto-
kinin (CK) (Mutasa-Göttgens and Hedden, 2009; Huijser and 
Schmid, 2011) and the age of the plant (Huijser and Schmid, 
2011). Among the major environmental effectors are photo-
period, light intensity/quality and seasonal/daily changes in 
temperature (Thomas, 2006; Andrés and Coupland, 2012; 
Song et al., 2012, 2013).

Plant fitness is an essential factor that may directly affect 
the success of plant reproduction. Not only environmental 
conditions but also insects can endanger proper plant devel-
opment, including flower reproductive success. Herbivorous 
insect attacks can substantially decrease plant survival 
(Marquis and Alexander, 1992). Due to the fact that plant-
insect encounters are not predictable, plants generally do not 
show high levels of resistance. However, plant plasticity cre-
ates the ability to respond rapidly to damage and to divert 
resistance resources for overcoming that damage (Agrawal, 
2000). This plasticity most probably arose because plants 
are not able to move; consequently they have developed 
multiple physiological defense responses. Leaf trichomes 
are among these physiological defenses. Trichomes are epi-
dermal protuberances that protect plants from the attack of 
herbivorous insects and develop even when plants are grow-
ing under optimal conditions (Traw and Bergelson, 2003). 
Interestingly, plasticity allows plants to respond to insect 
attacks by increasing the number and density of trichomes in 
new growing leaves, stems and flowers (Agrawal, 2000; Traw 
and Bergelson, 2003).

In many plant species trichomes are glandular multicel-
lular structures able to produce, distribute and store toxic 
substances for protecting the plant against insect attacks 
(Olsson et al., 2009), however Arabidopsis thaliana trichomes 
are unicellular and non-glandular structures (Hülskamp 
et al., 2004). Despite not being able to store toxic substances, 
Arabidopsis trichome morphology, with a big size and three 
sharp terminations that develop on the adaxial surface of 
rosette leaves, reduce the access of herbivorous insects to leaf 
surface (Mauricio, 2005). But trichomes defend the plant not 
only against insects but also from other external factors such 
as an excess of UV light or high temperatures (Szymanski 
et al., 2000; Schellmann et al., 2007).

Adaxial rosette trichome initiation and development pro-
cesses involve a complex genetic network. These include a 
multimeric complex, known as trichome activator complex, 
formed by a R2R3 MYB protein GLABROUS1 (GL1), two 
redundant trichome formation bHLH proteins, GLABRA3 
(GL3) and ENHANCER OF GLABRA3 (EGL3), and a 
WD40 repeat containing protein, TRANSPARENT TESTA 
GLABRA 1 (TTG1) (Fig. 1) (Zhao et al., 2008; Zhou et al., 
2011). Mutations in GL1, TTG1, and both GL3/EGL3 result 
in Arabidopsis plants with a significant loss of trichomes 
(Payne et al., 2000; Zhou et al., 2011). In addition to that, this 
complex has not only a role in trichome initiation but also 
in later trichome development, as mutations in these genes 
result in smaller and less branched trichomes (Payne et al., 
2000).

It is accepted that the competency to enter the trichome 
pathway is limited to a few epidermal cells. Once an epi-
dermal precursor is specified to acquire trichome cell fate, 
a mechanism of lateral inhibition towards the surrounding 
epidermal cells initiates (Langdale, 1998; Kirik et al, 2004a) 
(Fig.  1). This lateral inhibition mechanism involves cell-to-
cell communication. Indeed, trichome activation factors 
such as GL3 and TTG1 also turn on negative regulators of 
trichome initiation as CAPRICE (CPC) and ENHANCER 
OF TRIPTYCHON AND CAPRICE 1 (ETC1), which sub-
sequently move into neighboring epidermal pavement cells 
to prevent trichome formation (Zhao et al, 2008; Balkunde 
et al, 2010, 2011) (Fig. 1). In addition, these trichome posi-
tive regulators GL3 and TTG1 are also able to move among 
cells (Bouyer et al, 2008; Savage et al, 2008). CPC and ETC1 
are not the only trichome repressors in Arabidopsis, others 
have been described to act as trichome inhibitors contribut-
ing to an elaborated and well-regulated genetic network that 
determines which epidermal cell may – or may not –morpho-
genetically become a trichome (Langdale, 1998; Kirik et al, 
2004a). Interestingly, most of this trichome repressors includ-
ing CPC, ETC1, ETC2, ETC3, TRICHOMELESS 1 (TCL1), 
TCL2 and TRIPTYCHON (TRY), belong to the R3-MYB 
TF family (Wang and Chen, 2014) (Fig. 1). Although TRY 
is the predominant member controlling trichome clustering 
on adaxial surface of rosette leaves (Schnittger et al., 1998; 
Schellmann et al., 2002), CPC, ETC1, ETC2 and ETC3 also 
regulate trichome development on leaves (Wada et al., 1997, 
2002; Esch et al., 2004; Kirik et al., 2004a, b; Tominaga et al., 
2008). However, TCL1 and TCL2 control trichome develop-
ment mainly on inflorescence stems and pedicels (Wang et al., 
2007; Gan et  al., 2011). But not all these R3-MYB mem-
bers are regulated by the trichome activator complex (GL1-
TTG1-GL3/EGL3). Only TRY, CPC, ETC1 and ETC3 
expressions are controlled by this multimeric complex in the 
rosette leaf, while TCL1, TCL2 and TRY are regulated by an 
independent trichome pathway mediated by microRNA156 
(miR156) and SQUAMOSA PROMOTER BINDING 
PROTEIN LIKE (SPL) at least on the inflorescence stems 
(Yu et al., 2010; Xue et al., 2014). miR156-targeted SPL tran-
scription factors not only play important roles in determining 
trichome initiation on the abaxial side of the rosette leaf but 
also on stems (Yu et al., 2010; Xue et al., 2014). Curiously 
enough, these genes also play a key role in controlling flow-
ering through the age-dependent genetic pathway (Yu et al., 
2010; Xue et al., 2014).

In the past decades, strong efforts have been made in the 
model plant Arabidopsis to unravel the different molecular 
and genetic mechanisms that regulate diverse cellular dif-
ferentiation programs. Different results revealed that the 
network of transcriptional regulators affecting trichome pro-
liferation are themselves affected by two plant hormones, GA 
and CK (Fig. 1), both of which are able to control and inte-
grate diverse biological processes that occur at different cell 
levels (Schellmann et al., 2002; Gan et al., 2007; Zhao et al., 
2008). GA and CK are phytohormones required throughout 
plant development that contribute to and overlap in some 
plant developmental processes but they also have opposite 
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roles in others (Zhang et al., 2003). For instance, GA and CK 
act antagonistically in leaf formation and meristem mainte-
nance and GA counteracts the CK effect in epidermal dif-
ferentiation (Gan et al., 2007). However, both hormones have 
synergistic effects on the constitutive induction of epider-
mal defensive trichomes, floral induction, valve margins and 
senescence suggesting that genetic interactions may be shared 
between these two hormonal signaling pathways (Chien and 
Sussex, 1996; Perazza et al., 1998; Corbesier et al., 2003; Traw 
and Bergelson, 2003; Gan et al., 2007; D’Aloia et al., 2011; 
Marsch-Martinez et al., 2012; Pattanaik et al., 2014). The fact 
that phytohormones play independent and overlapping func-
tions may imply that the spatio-temporal pattern and integra-
tion of diverse signals through downstream regulators are of 
great importance. Two possible strategies have been described 
so far to explain plant hormone integration. The first one uses 
a centralized system of upstream hormone signaling integra-
tors, such as the DELLA family, that are able to control plant 
growth in combination with hormones such as GA, auxin, 
ethylene and abscisic acid (Silverstone et  al. 1998; Fu and 
Harberd, 2003; Achard et al., 2006). The second strategy uses 
more specialized regulators such as transcription factors that 
may act downstream controlling the specific gene networks 
of different developmental processes, but without excluding 
an upstream regulation (Nemhauser et al., 2006). This review 
will focus on how a small number of proteins may use one or 
both strategies for regulating upstream and downstream steps 
of floral induction and trichome formation by integrating the 
control of hormone signaling and diverse genetic networks.

Gibberellins and their positive role in 
flowering and trichome formation

GAs regulate different plant growth and developmental 
processes that span from seed germination to the control of 

last processes in the plant life cycle, such as senescence, leaf 
expansion, hypocotyl and stem elongation (Fig.  2) (Chien 
and Sussex, 1996; Perazza et  al., 1998; Davis, 2009). The 
GA biosynthetic pathway follows a complex regulatory net-
work that leads to the final production of the GA bioactive 
form, GA4 (Mitchum et al., 2006). Most of the genes encod-
ing enzymes of the GA biosynthetic pathway have been well 
studied (Olszewski et al., 2002). For example, GA3OXIDASE 
1 (GA3OX1) and GA3OX2 encode enzymes that transform 
GA9 into the bioactive GA4, but there are other important 
enzymes, such as GA2OXIDASE, which catabolizes an excess 
of GA4 (Mitchum et al., 2006). Therefore, a proper balance 
between the biosynthetic and catabolic enzymes is of essen-
tial importance for keeping a correct amount of GA.

In Arabidopsis, bioactive GAs promote floral induction 
as well as some other aspects of flower development, such 
as petal, stamen and viable pollen formation (Koornneef 
and van der Veen, 1980). GAs are also mobile signals that 
travel from the leaves to the shoot apical meristem (SAM) 
to induce the florigen FLOWERING LOCUS T (FT) and 
SUPRESSOR OF OVEREXPRESSION OF CONSTANS1 
(SOC1) in order to trigger flowering (Fig.  3) (Corbesier 
et al., 2007; Mathieu et al., 2007). Flowering is induced by 
GA under both inductive long-days (LD) (16 h light/8 h dark) 
and non-inductive short-day (SD) (8 h light/16 h dark) condi-
tions, although GAs have a stronger effect controlling floral 
induction under SD conditions (Wilson et al., 1992; Blázquez 
et al., 1998; Nilsson et al., 1998). Under SD conditions, GA 
are able to activate the floral integrator SOC1 and the floral 
meristem identity gene LEAFY (LFY) in the SAM (Blázquez 
et al., 1998; Moon et al., 2003) (Fig. 3). Trichome prolifera-
tion and branching are also among the processes controlled 
by GA (Smyth et al., 1990; Dill and Sun, 2001). External GA 
applications increase trichome density in leaves and stems of 
Arabidopsis (Perazza et al., 1998; Gan et al., 2006).

Fig. 1.  Model for trichome and pavement cell fate specification in Arabidopsis thaliana. Trichome proliferation regulation is affected by gibberellins and 
cytokinins hormones through transcriptional regulation of the GIS clade genes: GIS, GIS2, and ZFP8. GIS2 and ZFP8 activate the trichome activator GL2, 
while GIS positively regulate some of the members of the trichome activation complex – GL1, TTG1 and GL3/EGL3 – that in turn activate GL2 and, at the 
same time, R3-MYB repressor genes (black arrows). R3-MYB members that include CPC, ETC1, ETC2, ETC3, TCL1, TCL2 and TRY act as repressors 
of trichome initiation. Some of these R3-MYB move to the neighboring cells (dashed red lines) to prevent trichome formation, where they compete with 
GL1 for the interaction with GL3 and/or EGL3, thus limiting the activity of the trichome activation complex, and consequently decreasing GL2 expression 
(dashed arrow).
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GA3OX1 and GA3OX2 functions overlap during 
Arabidopsis development, showing functional redundancy 
not only in stimulating flowering but also in trichome devel-
opment (Mitchum, 2006). ga3ox1 ga3ox2 double mutant 
plants are semi-dwarf, late flowering and bear a reduced 
number of trichomes on rosette leaves, stems and flowers 
(Koornneef and van der Veen, 1980; Chiang et  al., 1995; 
Mitchum et al., 2006). In general, mutant plants in which GA 
biosynthesis genes have been knocked down and are unable 
to produce normal GA levels, produce leaves with fewer tri-
chomes (Chien and Sussex, 1996; Traw and Bergelson, 2003). 
In fact, when GA are exogenously sprayed on an Arabidopsis 
wild-type plant, rosette leaf adaxial trichome production is 
significantly increased (Chien and Sussex, 1996), while plants 
treated with GA biosynthesis inhibitors such as paclobutra-
zol and uniconazole are not able to produce trichomes (Chien 
and Sussex, 1996; Perazza et al., 1998).

In Arabidopsis, functional redundancy in GA signal-
ling has been attributed not only to the GA biosynthetic 
enzymes but also to DELLA proteins (Gallego-Bartolomé 

et  al., 2010). DELLA transcriptional regulators directly or 
indirectly repress the expression of GA-induced genes. The 
DELLA family encodes five members: GIBBERELIC ACID 
INSENSITIVE (GAI), REPRESSOR OF gai-3 (RGA), and 
three RGA-like genes (RGL1, RGL2 and RGL3) (Eckardt, 
2002; Wen and Chang, 2002; Achard et al., 2003). DELLA 
proteins not only repress GA signaling, but they also modu-
late GA homeostasis by regulating the expression of some 
GA biosynthetic enzymes such as GA3OX1 andGA20OXI-
DASE2, and/or GA receptor genes such as GIBBERELLIN 
INSENSITIVE DWARF 1a (GID1a) and GID1b (Gallego-
Bartolomé et  al., 2010). DELLA proteins act as repressors 
of GA-activated processes, consequently controlling floral 
induction. Among all the five members, RGA and GAI are 
the ones with a more important role in the transition to floral 
initiation (Dill and Sun, 2001; King et al., 2001), while RGA, 
RGL1 and RGL2 have a more important role in flower and 
fruit development (Cheng et al., 2004; Tyler et al., 2004). The 
role of DELLA repressors in flowering control was deter-
mined by measuring the ability of different DELLA mutants 

Fig. 3.  The transcriptional regulatory network that affects floral and adaxial trichome induction at different organ, tissue and cell levels. (A) In rosette 
leaves, this complex network is partially controlled by GA and CK hormones that overlap in positively regulating the transcription of diverse trichome- and 
flowering-genes in either leaf mesophyll or epidermis. (B) Similar transcriptional regulation for the control of floral induction is found in the shoot apical 
meristem (SAM).

Fig. 2.  Diagram showing GA- and CK-dependent overlapping and non-overlapping biological processes. GA and CK phytohormones regulate different 
plant growth and developmental processes that span from early stages during seed germination to the control of the final processes in the plant life 
cycle. Despite GA and CK acting antagonistically in several biological processes showed here, both hormones have synergistic effects on floral induction, 
trichome initiation, valve margins development, senescence and responses to nutrients availability.
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to rescue the strong phenotypes of the ga1-3 mutant. The 
ga1-3 mutant contains a large deletion in GA REQUIRING 
1 (GA1) gene, the enzyme that catalyzes the first committed 
step in GA biosynthesis (Sun and Kamiya, 1994). rga and 
gai null alleles are able to interact synergistically in order 
to rescue the normal vegetative growth and floral initiation 
in the ga1-3 mutant background (Dill and Sun, 2001; King 
et al., 2001), indicating that RGA and GAI act as major flo-
ral transition repressors. However, some evidence shows that 
RGA, RGL1, and RGL2 are also involved, to a lesser extent, 
in modulating flowering and floral development (Tyler et al., 
2004; Galväo et al., 2012).

In addition, diverse plant species overexpressing DELLA 
proteins show dwarfism and delayed flowering (Dill et  al., 
2004; Hamama et al., 2012). It is known that DELLAs also 
regulate flower development by partly repressing the expres-
sion of floral homeotic genes such as APETALA 3 (AP3), 
PISTILLATA (PI), and AGAMOUS (AG) (Yu et al., 2004). 
Consequently, DELLA proteins are now universally con-
sidered as flowering inhibitors. Exogenous GA treatment is 
enough to restore the wild-type phenotype to ga1-3 in terms 
of floral induction and flower development (Wilson et  al., 
1992). Interestingly, this GA treatment is also able to restore 
the adaxial trichome number of glabrous ga1-3 rosette leaves 
to wild-type levels (Smyth et  al., 1990). Later studies also 
show that DELLAs are directly involved in repressing tri-
chome proliferation. Similar to members that control floral 
induction, RGA and GAI, play significant roles in trichome 
formation (Dill and Sun, 2001). rga and gai mutants are able 
to restore adaxial trichome initiation in the glabrous ga1-3 
mutant plants (Dill and Sun, 2001). Furthermore, several 
trichome activator transcription factor genes, including GL1 
and GL3, are induced in these plants, while contrarily RGA 
over-expression represses GL1 and GL3 expression (Fig. 3). 
Indeed, RGA and/or RGL2 proteins are able to interact with 
GL1, GL3 and EGL3 to repress the transcriptional function 
of this trichome activator complex (Qi et al., 2014).

Cytokinins overlap with GA in floral 
induction and trichome formation

Cytokinins are involved in several aspects of plant growth 
and development. Firstly identified as factors that promote 
cell proliferation and shoot formation in vitro, CKs are 
found to activate cell-cycle genes in the leaf and interact with 
genetic regulators of stem cells in the SAM (Fig. 2) (Riou-
Khamlichi et al., 1999; Leibfried et al., 2005). Additionally, 
CKs affect other important processes such as chloroplast or 
vascular exchange activity, branching and response to differ-
ent nutrients as well as senescence (Fig. 2) (Yanai et al., 2005; 
Gordon et al., 2009). Decades ago, exogenous CK applica-
tion was found to activate the floral transition of relatively 
old plants (Besnard-Wibaut, 1981; Dennis et al., 1996). Later 
on, applications of CK in the form of benzylaminopurine 
(BAP) treatments using a hydroponic system have confirmed 
that CK are clearly involved in the floral transition (D’Aloia 
et  al., 2011). After BAP treatment, an up-regulation of 

APETALA1 (AP1) expression, a marker of floral meristems, 
is detected; and indeed floral meristems are initiated two days 
later (D’Aloia et  al., 2011). CK have been proposed to act 
transmitting root-to-shoot signals during the floral transi-
tion (Kinet et al., 1993; Havelange et al., 2000). In fact, BAP 
application in the roots strongly promote floral induction 
in seven-week-old plants grown under SD conditions in the 
absence of other flowering stimulators such as extra GA, ver-
nalization and/or LD photoperiod (D’Aloia et al., 2011). At 
the histological level, an increase of CK levels is found in the 
SAM of Arabidopsis plants at the moment of flowering, sug-
gesting that CKs might be real regulators of floral induction 
(Corbesier et al., 2003).

CK biosynthetic enzymes have been well elucidated and are 
encoded by multigene families whose members are function-
ally redundant (Sakakibara et al., 2006; Hirose et al., 2008); 
this has always been an obstacle to genetically study in depth 
the role of CK in flowering. Luckily, physiological informa-
tion has been obtained using genes that alter endogenous lev-
els of CK, as ALTERED MERISTEM PROGRAM 1 (amp1) 
overexpression results in early flowering plants (Werner et al., 
2006). Contrarily, when enzymes that degrade CK, such as 
CYTOKININ OXIDASE/DEHYDROGENASE (CKX), are 
overexpressed, Arabidopsis plants flower later than wild-type 
plants (Werner et  al., 2006). Genetically, CK applications 
are not able to activate the main florigen FT, but instead 
are able to promote the expression of its paralogue TWIN 
SISTER of FT (TSF) (Fig. 3) (D’Aloia et al., 2011). As FT, 
TSF protein interacts with FLOWERING LOCUS D (FD) 
and is activated by CONSTANS (CO), therefore TSF acts 
redundantly with FT to promote flowering (Michaels et al., 
2005; Yamaguchi et al., 2005; Mathieu et al., 2007; Jang et al., 
2009). Furthermore, CKs are also able to activate, at least 
in the SAM, SOC1 and FD (Fig. 3) (D’Aloia et al., 2011). 
Indeed, it has been shown with BAP treatments on tsf-1 and 
soc1-2 that both genes are necessary for flowering in response 
to CK. Consequently, a model is proposed in which CKs acti-
vate TSF in the leaf, TSF moves to the SAM, and through 
interaction with FD, similarly to the action of FT, TSF 
induces the transcription of SOC1 and AP1 (Fig. 3) (D’Aloia 
et al., 2011). Moreover, these results provide a clue of how 
redundant FT and TSF genes can be differentially regulated 
by distinct signals (D’Aloia et al., 2011).

CKs are also able to stimulate trichome formation. Plants 
treated with BAP produce more trichomes on cauline leaves, 
stems and flowers (Maes et  al., 2008). The expression of 
many genes that act as trichome activators are stimulated by 
exogenous BAP not only on inflorescence organs but also to 
a lesser extent on the adaxial surface of rosette leaves (Gan 
et al., 2007). Furthermore, interesting overlapping roles are 
found for some enzymes that degrade CK, such as CKX, 
which repress both floral induction and trichome initiation. 
When CKX is overexpressed a reduction in the number of 
flower trichomes and a late flowering are observed (Werner 
et al., 2003).

However, phytohormones sometimes play antagonis-
tic functions due to competition. Both GA and CK stim-
ulate trichome formation and floral induction but, for 
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instance, exogenous GA applications may inhibit the effect 
of CK treatments as GAs are able to block CK signaling 
(Greenboim-Wainberg et  al., 2005). In contrast, exogenous 
CK applications increase the expression of genes that nega-
tively regulate GA signaling (Brenner et al., 2005). For exam-
ple, this exhaustive control has been found to be essential 
for shoot meristem maintenance (Jasinski et al., 2005; Yanai 
et al., 2005). In the case of trichome proliferation, GA induc-
tion of trichomes is required throughout plant development; 
while CKs, although slightly affecting trichome formation in 
rosette leaves, are more specialized in trichome proliferation 
in upper inflorescences (Gan et al., 2007).

Flowering-time genes affect trichome 
initiation

Leaves perceive light and other environmental conditions 
and, as mentioned, different genetic pathways that respond 
to environmental and endogenous status tightly control flo-
ral induction from the leaf. These genetic pathways have been 
extensively studied in Arabidopsis, and they converge in the 
activation of the so-called floral pathway integrators FT and 
SOC1 that induce flowering from the leaf vascular tissue 
(Takada and Goto, 2003; Fornara et al., 2010; Wellmer and 
Riechmann, 2010). FT protein, which is part of the florigen 
(Kardailsky et al., 1999; Kobayashi et al., 1999), travels from 
the leaf to the SAM, where it triggers flowering after inter-
action with FD (Fig.  3) (Corbesier et  al., 2007, Jaeger and 
Wigge, 2007; Lin et al., 2007; Mathieu et al., 2007; Tamaki 
et al., 2007).

Epidermal trichomes are present on both adaxial and 
abaxial surfaces of  rosette leaves in Arabidopsis. The 
number of  trichomes growing on the adaxial surface 
reaches high numbers from the first true rosette leaf, and 
keeps increasing in new leaves through development. As 
mentioned, the main reason for that increase in adaxial 
trichomes is for protection against predators, excess of 
UV-light and transpiration, while the presence and utility 
of  abaxial trichomes seems to be rather different. Abaxial 
trichomes are used as a marker for the juvenile-to-adult 
phase transition because they only develop in the adult 
rosette leaves but not in juvenile leaves (Chien and Sussex, 
1996; Telfer et al., 1997; Yu et al., 2010). Adaxial trichome 
analyses have hardly been done in important floral activa-
tor mutant backgrounds, but some published results show 
that the number of  abaxial trichomes, but not the time of 
appearance, of  the late flowering ft-1 and soc1-2 mutants 
were clearly and significantly reduced (Willmann and 
Poethig, 2011). The double mutant ft-1 soc1-2 produced 
even fewer trichomes than the single mutants (Willmann 
and Poethig, 2011), implying that those flowering activa-
tors may also have a role in the induction of  trichome 
formation. Moreover, FLOWERING LOCUS C (FLC), a 
well-known MADS box gene that delays floral induction by 
repressing FT and SOC1 (Hepworth et al., 2002; Helliwell 
et  al., 2006; Searle et  al., 2006), also inhibit abaxial tri-
chome formation. flc mutants show a significant increase 

in the abaxial trichome numbers independently of  its role 
in flowering (Willmann and Poethig, 2011).

In addition to that, miR156-targeted SPL genes known 
to play key roles in the juvenile-to-adult transition as well 
as the plant phase transition towards flowering (Wang et al., 
2009; Wu et al., 2009) have been found to control trichome 
initiation on the abaxial side of rosette leaves and stems 
(Yu et al., 2010). They positively regulate the expression of 
some R3-MYB trichome repressors as TCL1, TCL2 and 
TRY (Yu et  al., 2010; Xue et  al. 2014). Not only miR156 
but also the negative regulator of the GA signaling pathway, 
DELLAs, interact with SPLs to control flowering (Yu et al., 
2012). Therefore, and similarly to other flowering-time genes 
described in this review, SPLs affect other developmental 
processes that include trichome proliferation (Yu et al., 2010; 
Xue et al. 2014).

And … all the way around: adaxial trichome 
activators affect floral transition

As previously described, GA and CK hormones play essential 
roles in trichome proliferation by positively controlling cru-
cial downstream genes (Schellmann et al., 2002; Gan et al., 
2006; Zhao et al., 2008). The GA-dependent trichome path-
way acts partially through GLABROUS INFLORESCENCE 
STEMS (GIS), which positively regulates the trichome acti-
vation complex formed by GL1, GL3, EGL3 and TTG1 
(Fig. 1) (Payne et al., 2000; Zhao et al., 2008). On the other 
hand, the CK-dependent trichome pathway is controlled by 
GLABROUS INFLORESCENCE STEMS2 (GIS2) and 
ZINC FINGER PROTEIN (ZFP8) (Fig. 1) (Gan et al., 2007; 
Marsch-Martinez et  al, 2012). Both pathways converge to 
activate GLABROUS 2 (GL2), the universal trichome activa-
tor (Payne et al., 2000) (Fig. 1).

Mutations in GL1, TTG1 and both GL3/EGL3 result in 
Arabidopsis plants with a significant loss of trichomes (Payne 
et al., 2000; Zhou et al., 2011). In addition to that, this com-
plex has not only a role in trichome initiation but also in later 
trichome development, as mutations in these genes result in 
smaller and less branched trichomes (Payne et al., 2000).

Trichome proliferation regulation affected by both hor-
mones was first found to be activated through transcriptional 
regulation of the GIS clade, a clade that belongs to the exten-
sive C2H2 transcription factor family (Tague and Goodman, 
1995; Zhou et al., 2013). GIS, GIS2 and ZFP8 – all members 
of the GIS clade – are able, collectively and individually, to 
positively regulate GL1 (Gan, 2006, 2007; Ishida et al., 2008), 
but they have diverged in their responses to developmental 
and hormonal signals, playing different roles in regulat-
ing trichome initiation on diverse plant organs (Gan et al., 
2006, 2007). Although playing a major role in controlling CK 
signaling, GIS2 and ZFP8 were found to partially integrate 
GA and CK to control trichome formation in inflorescence 
organs (Gan et al., 2006, 2007).

Despite the fact that the regulation of trichome initiation 
has been extensively studied, recent data have identified new 
transcription factors that belong to the GIS clade, which may 
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play redundant roles in integrating GA and CK signaling, 
such as ZINC FINGER PROTEIN 5 and 6 (ZFP5 and ZFP6) 
and GLABROUS INFLORESCENCE STEMS3 (GIS3) tri-
chome activators (Zhou et al., 2011, 2013; Sun et al., 2015). 
Similar to the phenotypes of mutants in any of the genes of 
the trichome activator complex, loss of GIS-clade function 
leads to a decrease in trichome formation on the adaxial sur-
face of rosette leaves and/or inflorescence organs. In addi-
tion, overexpression of any of these proteins generates a high 
density of trichomes (Tague and Goodman, 1995; Gan et al., 
2006, 2007; Zhou et al., 2011, 2013; Sun et al., 2015).

Interestingly, and in comparison with some of the floral 
activators and floral repressors that show clear trichome phe-
notypes, an equivalent situation is found in several trichome 
mutants. Compared with wild-type plants, a significant delay 
in flowering has been reported in all trichome activation 
mutants analyzed. gl1, gl3, gis, gis2 and zfp8 show a strong 
reduction in adaxial trichome production, some of them 
being almost glabrous, and all flower late (Yan et al., 2012). 
Among them, the flowering time of the gl1 mutant is the most 
delayed, with an average increase of 62.5% in the number of 
days to flowering relative to control plants (Yan et al., 2012). 
The single mutants gis, gis2 and zfp8 show a clear late flower-
ing, with increases of 44.15%, 57.88% and 51.67%, respec-
tively, in the number of days to flowering compared with 
wild-type Columbia (Col-0) ecotype plants. The gl3 mutant in 
a Landsberg erecta (Ler) background shows a similar pheno-
type, with an average of 56.45% more days needed to flower 
than Ler wild-type plants (Yan et  al., 2012). In contrast, 
plants overexpressing GIS and GIS2, which produce more 
trichomes, show early flowering in comparison to wild-type 
plants, with a 28.34% and 36.65% of reduction in the number 
of days needed to flower (Yan et al., 2012). Additionally, some 
of the R3-MYBs trichome repressors that control trichome 
formation in a GL2-independent manner (Wang and Chen, 
2014), as TRY and ETC3, have been found to play pleiotropic 
effects such as delaying flowering. Indeed, single try and cpl3 
mutants flower earlier with a decrease of 5.31% and 23.13% 
in the number of days, respectively (Tominaga et  al., 2008; 
Yan et al., 2012).

Consequently, all these observations indicate that differ-
ent developmental processes separated in time and space, i.e. 
adaxial trichome proliferation and floral induction, might be 
closely correlated and inter-connected through the CK and 
GA hormones (Fig. 3). Indeed, when publicly available high-
throughput data was analyzed (www.ebi.ac.uk/arrayexpress) 
similar results were obtained. Data used included diverse 
microarrays from Arabidopsis plants treated with GA and 
CK as well as plants with mutated key-genes for flower transi-
tion, trichome initiation, GA-or CK-biosynthesis pathways; 
specifically mutants in the FT, CO, SPINDLY (SPY), GA1, 
RESPONSE REGULATOR 1 (ARR1), GL1, GL3 and EGL3 
genes. A Venn diagram of the differentially expressed (DE) 
genes among the different microarrays shows that there is a 
small but still significant number of genes that overlap at least 
among three out of the four aspects compared in this review 
(Fig. 4).

Floral organ identity genes repress 
inflorescence trichome initiation

This review is focused mainly on developmental processes 
that originate in the rosette leaves such as trichome initia-
tion and flowering, but Arabidopsis trichomes are also pre-
sent on inflorescence stems and flowers. In flowering species, 
floral organs, including sepals, petals, stamens and carpels 
are specified and controlled by floral organ identity genes 
(Bowman et  al., 1989; Coen and Meyerowitz, 1991; Pelaz 
et al., 2000, 2001; Theissen, 2002; Ditta et al., 2004). AG, a 
gene involved in stamen and carpel development (Yanofsky 
et al., 1990; Drews et al., 1991), has recently been found to be 
involved in repressing trichome proliferation on floral organs 
(Ó’Maoiléidigh et al., 2013). Computational analyses using 
microarray data of early stage ag mutant flowers revealed that 
AG represses transcripts that encode proteins with several 
essential functions in rosette leaf development including tri-
chome formation (Ó’Maoiléidigh et al., 2013). Indeed, induc-
ible artificial miRNA plant lines that silence AG (amiRAG) 
control trichome formation through direct regulation of some 
important trichome initiation genes, and show increased 
levels of the trichome initiation activators GL1 and ZFP8 
(Larkin et al., 1994; Schellmann et al., 2002), while the tri-
chome initiation repressors CPC and TCL1 (Gan et al., 2007; 
Wang et al., 2007) are repressed (Ó’Maoiléidigh et al., 2013). 
Phenotypical analyses showed that these amiRAG knock-
down lines produce flowers with aberrant-shaped carpels that 
develop branched trichomes on their valves (Bowman et al., 
1989; Ó’Maoiléidigh et al., 2013). The combinatorial function 
of AG, AP3 and PI proteins is widely known (Riechmann 
et al., 1996; Honma and Goto, 2001; Theissen, 2002; Wuest 
et al., 2012). ChIP-seq data analyses from AP3 and PI (Wuest 
et al., 2012) revealed that both proteins are able to bind in vivo 
to the same trichome regulators targeted by AG, confirming 

Fig. 4.  Venn diagram showing the differentially expressed genes found 
among the diverse microarrays analyzed. High-throughput data used 
included microarrays from diverse Arabidopsis backgrounds that affect 
independently four biological processes: floral induction (yellow), trichome 
initiation (red), CK- (green) and GA-signaling (blue). A significant number of 
genes overlap at least among three out of the four aspects compared.
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their combinatorial functions (Ó’Maoiléidigh et  al., 2013). 
Indeed, when all AG, AP3 and PI are simultaneously knocked 
down, anthers of these mutant flowers develop branched and 
unbranched trichomes (Wuest et  al., 2012; Ó’Maoiléidigh 
et  al., 2013). Interestingly, these aberrant flowers, although 
slightly weaker, resemble those of plants overexpressing GL1 
trichome activator in the trichome repressor try mutant back-
ground (Schnittger et al., 1998). TRY is able to control tri-
chome initiation not only in rosette leaves but also in flowers 
(Schnittger et al., 1998; Wellmer et al., 2006). Similar to its 
GL2-independent function in leaves (Wang and Chen, 2014), 
TRY suppresses trichome proliferation in the flower indepen-
dently of AG (Ó’Maoiléidigh et al., 2013).

Conclusions

Using mutant analyses, gene expression studies and over-
lapping transcriptional regulatory interactions, great effort 
has been made to unravel the diverse molecular and genetic 
mechanisms that regulate different cellular differentiation 
programs in Arabidopsis. Data reveal that a network of 
transcriptional regulators is able to affect and be affected 
by GA and CK hormones at different organ, tissue and cell 
levels.

Indeed, in this review we show that the proper control of 
cell fate is of  central importance and it is well coordinated 
in apparently distant developmental processes such as flo-
ral induction and epidermal trichome development. Both 
processes happen separately in time and most probably in 
space, but are interconnected, sharing a small genetic net-
work on GA and CK hormone signaling. Several transcrip-
tion factors belonging to the MYB, bHLH, C2H2, MADS 
families as well as DELLA proteins control both separated 
processes, floral transition and rosette leaf  adaxial trichome 
proliferation, in response to different hormonal and devel-
opmental cues. Significant genetic interactions are shared 
between these two developmental processes. Here, we elu-
cidate on how some important floral key activators and 
repressors control not only floral transition from the rosette 
leaf  but also other rosette leaf  developmental processes 
such as epidermal trichome formation. However, most of 
the analyzed trichome activator genes also positively con-
trol later developmental processes such as floral induction. 
In addition to that, as floral organs are essentially modified 
leaves through the action of  different floral organ identity 
genes, these genes are also able to repress trichome pro-
liferation in the flower. All these described transcription 
factors regulate floral induction and trichome formation 
processes by integrating diverse genetic networks and/or 
the control of  hormone signaling. Therefore, while further 
investigation is necessary in order to dissect this complex 
regulatory network, these data lead us to suggest that the 
spatio-temporal regulation pattern and integration of  sig-
nals of  downstream regulators are of  great importance; and 
consequently, different developmental processes separated 
in time, such as adaxial trichome proliferation and floral 
induction, might be closely correlated.
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Appendix

Expression information of the genes responding to GA, CK, 
flowering and trichome formation was obtained by the anal-
ysis of the following public microarray studies (http://www.
ebi.ac.uk/arrayexpress/): E-GEOD-576,E-GEOD-7353,E-
GEOD-8739,E-GEOD-8785,E-GEOD-12522,E-GEOD-
12551,E-GEOD-39384,E-GEOD-44919,E-MEXP-344,E-
MEXP-2270,E-MEXP-3362. For the datasets E-GEOD-7353, 
E-GEOD-8739, E-GEOD-8785, E-GEOD-12551 the lists of 
differentially expressed genes were taken directly from the 
published papers. E-GEOD-576 dataset was analyzed with the 
GEO2R tool from the NCBI with the default options. CEL 
files from E-GEOD-12522 and E-MEXP-2270 were down-
loaded; data were normalized with RMA using the R grma 
package (R package version 2.40.0). Then normalized data 
were used for differential expression test with the R package 
limma (Ritchie et al., 2015). Probe expression values from the 
dataset E-MEXP-344 were analyzed with a t-test to identify 
the differentially expressed ones. Finally, E-GEOD-44919 and 
E-MEXP-3362 data were downloaded and limma was used to 
perform background correction (normexp), within normaliza-
tion (loess) and between array normalization (quartile).

The differentially expressed genes coming from the four 
groups of experiments were joined and compared through a 
Venn diagram. An interactive tool for comparing lists with 
Venn diagrams was used (http://bioinfogp.cnb.csic.es/tools/
venny/index.html).
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