Abstract

We generalize the characterization of elementary equivalence by Ehrenfeucht–Fraïssé games to arbitrary institutions whose sentences are finitary. These include many-sorted first-order logic, higher-order logic with types, as well as a number of other logics arising in connection to specification languages. The gain for the classical case is that the characterization is proved directly for all signatures, including infinite ones.

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
You do not currently have access to this article.