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We consider the forensic context in which the goal is to assess whether two sets of observed data

came from the same source or from different sources. In particular, we focus on the situation in

which the evidence consists of two sets of categorical count data: a set of event counts from an un-

known source tied to a crime and a set of event counts generated by a known source. Using a

same-source versus different-source hypothesis framework, we develop an approach to calculating

a likelihood ratio. Under our proposed model, the likelihood ratio can be calculated in closed form,

and we use this to theoretically analyse how the likelihood ratio is affected by how much data is

observed, the number of event types being considered, and the prior used in the Bayesian model.

Our work is motivated in particular by user-generated event data in digital forensics, a context in

which relatively few statistical methodologies have yet been developed to support quantitative ana-

lysis of event data after it is extracted from a device. We evaluate our proposed method through

experiments using three real-world event datasets, representing a variety of event types that may

arise in digital forensics. The results of the theoretical analyses and experiments with real-world

datasets demonstrate that while this model is a useful starting point for the statistical forensic ana-

lysis of user-generated event data, more work is needed before it can be applied for practical use.

Keywords: multinomial distribution; Dirichlet distribution; Bayesian inference; digital evidence;

event data.

1. Introduction

Categorical count data arises across a variety of applications in forensics, e.g. counts of printed

documents with toners belonging to certain resin groups (Biedermann et al., 2011) or counts of licit

versus various illicit drugs in a sample for chemical analysis (Mavridis and Aitken, 2009). In foren-

sic investigations we often wish to use this data to answer source or identity questions; for example,

investigators may ask whether two documents came from the same printer or two sets of geolocated

events from the same individual. A widely accepted statistical approach for addressing such ques-

tions in forensics is to construct a likelihood ratio to quantify the strength of the evidence (see e.g.

Champod et al. (2016); Stern (2017); Aitken et al. (2021)). The likelihood ratio approach has been

widely applied in the context of DNA evidence (e.g. Evett and Weir (1998)), and there is ongoing

work in a variety of other forensic evidence types, such as fingerprints (e.g. Champod and Evett

†Corresponding author. E-mail: rlongjoh@uci.edu

VC The Authors (2022). Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/

licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly

cited.

Law, Probability and Risk (2022) 21, 91–122 https://doi.org/10.1093/lpr/mgac016
Advance Access publication on December 23, 2022

D
ow

nloaded from
 https://academ

ic.oup.com
/lpr/article/21/2/91/6958536 by guest on 24 April 2024



(2001)), glass evidence (e.g. Zadora and Ramos (2010)), and speaker recognition (e.g. Morrison

(2009)). In this article, we outline a likelihood ratio-based framework for forensic analysis when the

evidence is in the form of categorical count data.

Our work is motivated in particular by evidence in the form of user-generated event data in which

investigators possess counts of different types of events generated on a digital device for persons of

interest in a case. For example, an investigator may wish to determine how likely it is that two sets

of mobile phone usage records were generated by the same individual or by two different individu-

als. With the widespread use of smartphones and other devices, statistical methods for analysing

event data are becoming increasingly important in digital forensics. The majority of digital forensics

research has focused on information extraction and information reconstruction from devices and the

cloud (see e.g. Roussev (2016); Årnes (2017); SWGDE (2020a,b)), often producing vast amounts of

extracted digital data. However, there exist comparatively few statistical forensic approaches to sup-

port quantitative investigative efforts into such data. Indeed, an Organization of Scientific Area

Committees for Forensic Science (OSAC) Task Group focused on digital evidence recommended

that efforts should be made to ‘strengthen [the] scientific foundations of digital/multimedia evidence

by developing systematic and coherent methods for studying the principles of digital/multimedia

evidence. . .as well as any associated probabilities’ (Pollitt et al., 2018).

The primary contributions of this article are two-fold: (i) the theoretical development of a likeli-

hood ratio for categorical count data and (ii) the systematic experimental evaluation of the approach

on three event datasets relevant to digital forensics. To this end, the remainder of the article is

organized as follows: Section 2 introduces the mathematical notation and describes our proposed

approach, and Section 3 relates this approach to other relevant research in statistics and digital fo-

rensics. Sections 4–5 analyse various theoretical properties of the likelihood ratio that results from

our proposed model. We describe how our approach may be applied to digital forensics in Section

6, and present experiments and results using examples of such applications in Section 7. We con-

clude with a discussion of the results, future research directions, and conclusions in Sections 8–9.

2. Notation and modelling assumptions

2.1 Evidence in the form of count data

Consider evidence in the form of observed events, where each event belongs to one of K non-

overlapping categories or types. For example, an event could correspond to a user of a mobile phone

opening a certain software application (an ‘app’), and the category could be the particular app that

was opened. We focus here on representing such data in the form of counts, e.g. the number of times

a user opened each app over some time period. In what follows below we assume that we have a fi-

nite number K of predefined categories of interest (e.g. a set of commonly used apps on mobile

phones) and that events belonging to other categories are not of interest.

More specifically, let the evidence be comprised of two sets of counts, where one set was generated

by a known source (e.g. a person of interest or a suspect) and the other set was generated by an un-

known source and can be tied to a criminal activity. Each of these sets will be a K-dimensional vector

of category counts. Denote the counts from the known source as r1 ¼ ðr11; r12; . . . ; r1KÞ and the

counts from the unknown source as r2 ¼ ðr21; r22; . . . ; r2KÞ, such that rik is the number of events for

source i in category k. Also let N1 ¼
PK

k¼1 r1k and N2 ¼
PK

k¼1 r2k be the total number of events

observed for the known and unknown sources, respectively. Together, r1 and r2 constitute the

evidence.
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We do not impose any restrictions on the time periods over which r1 and r2 are observed.

Depending on the application, it may make sense to only consider disjoint, overlapping, or identical

time periods for r1 and r2 (e.g. the situation described in Section 6.1), but the proposed approach is

flexible and can handle any of these scenarios.

2.2 Source hypotheses

We evaluate the evidence in the context of two mutually exclusive hypotheses: the same-source hy-

pothesis Hs and the different-source hypothesis Hd. For the purposes of our model, these hypotheses

can be expressed as

Hs : r2 generated by Source 1

Hd : r2 not generated by Source 1

where r2 refers to the count data from the unknown source, and Source 1 is used to refer to the

known source of r1.

The wording that we have used for Hd implies that if not generated by Source 1, r2 was generated

by another person in the general population. In practice, the starting point for generating the alterna-

tive hypothesis should be the facts of the case (Robertson et al., 2016, pp. 30–33; Aitken et al.,
2021, pp. 615–619). Incorporating such information can be used to refine the relevant population ra-

ther than leaving it as the broad and vague ‘general population’. For example, in speaker recogni-

tion, the relevant population could be refined to be people who speak a certain language with a

particular regional accent (Morrison et al., 2016; Rose, 2002, pp. 64–65). One may also consider the

potential relationship between Source 1 and a potential alternate source. For example, Bosma et al.
(2020) briefly discuss if under the different-source hypothesis, the person who generated the

unknown-source data is not associated with Source 1 but is from the same city or country, or if they

are someone vaguely or well known to Source 1. For the purposes of our model specification, we

use the broad different-source hypothesis rather than focusing on a particular relevant population,

but later on we will note where in the model one could incorporate more information with a refined

relevant population.

We also note that the manner by which we define these hypotheses is an example of a

‘specific source’ rather than a ‘common source’ scenario. Under the common source scenario,

the same-source hypothesis would posit that the two sets of observations were generated by

the same, unknown source, and the different-source hypothesis would assume that the two

sets of observations originate from two different, unknown sources. In contrast, under the

specific source scenario, the same-source hypothesis attributes the unknown source evidence

to a specific, known source while the different-source hypothesis attributes the two sets of

evidence to two different sources, one known and the other still unknown (Ommen and

Saunders, 2018).

2.3 Multinomial model

Let h1 ¼ ðh11; h12; . . . ; h1KÞ represent the parameters of a categorical probability distribution for

Source 1, where h1k is the probability that a single event from Source 1 belongs to category k andPK
k¼1

h1k ¼ 1.
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To model multiple events, we assume that Source 1’s count data follows a multinomial distribu-

tion (the extension of a binomial distribution for K> 2 categories) given h1, i.e.

r1jh1 � MultinomialðN1; h1Þ:

Note that the multinomial assumption imposes a strong ‘memoryless’ property on the observed

events in that they are assumed to be independent (discussed further in Section 8).

The distributional assumption on r1 holds for both the same-source and different-source hypothe-

ses since this set of observations comes from the known source. However, the distributional assump-

tion for r2 depends on our source assumption. In particular, under Hs, we further assume that

r2jHs; h1 � MultinomialðN2; h1Þ

where, because we have assumed the same source, the vector of probabilities corresponds to Source

1 and is the same as for r1. Under Hd, however, we assume that

r2jHd; h2 � MultinomialðN2; h2Þ

where, given that we have assumed different sources, the set of categorical probabilities h2 ¼
ðh21; h22; . . . ; h2KÞ can be different from that of Source 1. In what follows below we assume that

r1; r2;N1, and N2 are known (the evidence) and h1 and h2 are unknown.

2.4 Likelihood ratio

The idea of applying the likelihood ratio to forensics has, in recent years, become widely accepted

in the forensic science community as a logical means by which to assess the strength of evidence

(e.g. Champod et al. (2016)); although there is still ongoing debate (see e.g. Lund and Iyer (2017)).

The likelihood ratio arises from using Bayes’ Theorem to evaluate the evidence regarding two mu-

tually exclusive hypotheses, such as those described in Section 2.2. In the forensic context, Bayes’

Theorem can be written as

PrðHsÞ
PrðHdÞ|fflfflffl{zfflfflffl}
prior odds

� PrðEjHsÞ
PrðEjHdÞ|fflfflfflfflffl{zfflfflfflfflffl}

likelihood ratio

¼ PrðHsjEÞ
PrðHdjEÞ|fflfflfflfflffl{zfflfflfflfflffl}
posterior odds

(1)

where E refers to the evidence. In this formulation we are implicitly conditioning on any back-

ground information, I, that may be present and that might be relevant when evaluating the evidence,

such as how the evidence was collected or population information (see e.g. National Commission

on Forensic Science (2015); Stern (2017)).

The likelihood ratio (LR) measures the relative probability of observing E under each of the two

hypotheses, Hs and Hd. The philosophy behind the LR is that the evidence evaluator will have a set

of prior odds regarding the two hypotheses before seeing the evidence. The LR can then be provided

to the evaluator such that they can modify their prior odds to arrive at a set of posterior odds, i.e. the

relative probability of the two hypotheses after observing the evidence. When LR < 1, the evidence

is more probable under the different-source hypothesis, and when LR > 1, the evidence is more

probable under the same-source hypothesis (LR¼ 1 is considered a neutral value). The role of the

forensic investigator is often viewed as supplying the likelihood ratio, thus providing the means by

which the evaluator can modify their pre-evidence beliefs (Stern, 2017).
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2.5 Bayesian computation

To calculate the likelihood ratio, we use a Bayesian approach and treat h1 and h2 as quantities

about which we are uncertain. The Bayesian approach allows us to average over our uncertainty

about the unknown parameters h1 and h2, which is particularly useful with small amounts of data

where there can be high uncertainty about possible parameter values. When unknown parameters

are averaged over a distribution rather than estimated, PrðEjHsÞ=PrðEjHdÞ can be referred to as a

Bayes factor (Berger, 2013, p. 146) rather than a likelihood ratio. However, there is some history

of ambiguity in the forensics literature around the use of the term ‘Bayes factor’ versus ‘likeli-

hood ratio’ (Stern, 2017). In this article, although we opt for the Bayesian approach of marginaliz-

ing over unknown parameters, we will nonetheless use the term ‘likelihood ratio’ (‘LR’)

throughout, rather than Bayes factor, to be consistent with the terminology used in other forensic

science literature.

An important component of the Bayesian computation of the LR is the specification of the prior

distribution over the probabilities h1 and h2. The prior distribution should reflect our a priori belief

about the unknown parameters before we see any evidence or data. The K-dimensional vectors of

probabilities exist in a K–1 dimensional simplex, where the simplex is the region defining a set of K
probabilities that sum to 1. A well-known prior over the simplex is the Dirichlet distribution, which

has the convenient property of being conjugate to the multinomial likelihood, meaning that the pos-

terior density is also a Dirichlet distribution and can be represented in closed form. Specifically, we

assume that

h1; h2 �i:i:d:DirichletðaÞ

where the parameters of the prior are a ¼ ða1; a2; . . . ; aKÞ and ak > 0 for k ¼ 1; . . . ;K. In Section

4.1 below we discuss how to conduct the Bayesian calculation of LRs in more detail for the

multinomial-Dirichlet model of interest in this article.

To inform this later discussion of Dirichlet distributions in the context of the LR, we briefly re-

view some of their general properties—later in the article we will return to a more detailed discus-

sion of the role of the Dirichlet prior on likelihood ratios for count data. A symmetric Dirichlet

distribution is one in which all of the ak’s are equal, expressing an a priori belief that each category

is equally likely to occur (Figure 1(a)). The special case in which ak ¼ 1 for k ¼ 1; . . . ;K is called

the uniform Dirichlet distribution because it assigns equal density to all vectors hi that satisfyPK
k¼1 hik ¼ 1 (Figure 1(b)). An asymmetric Dirichlet distribution is one in which not all of the ak’s

are equal (Figure 1(c)). A larger value of ak relative to other categories indicates that we expect

more events in category k, while a smaller value indicates that we expect fewer events in category

k.

The mean of the Dirichlet distribution is 1PK

k¼1
ak

ða1; a2; . . . ; aKÞ. The concentration parameter

c ¼
PK

k¼1 ak can be thought of as the strength of the Dirichlet prior (relative to the data) and deter-

mines how concentrated the prior probability density is around the mean. For example, larger c val-

ues indicate the density is more tightly concentrated around its mean and that more data is required

to shift the posterior density away from the prior (Figure 1(c) versus Figure 1(d)). Note that using

this notation, the parameters of a symmetric Dirichlet distribution can be written as

a ¼ c� 1
K ;

1
K ; . . . ; 1

K

� �
¼ c

K ;
c
K ; . . . ; c

K

� �
.
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3. Related work

3.1 Dirichlet-Multinomial modelling and applications

Data in the form of event counts arises in a wide variety of applications, such as population dynam-

ics in ecology (e.g. Johnson et al. (2010); Richards (2008)), RNA sequencing in genetics (e.g. Lowe

et al. (2017)), text classification in natural language processing (e.g. Blei et al. (2003); McCallum

et al. (1998)) and analysis of taxa counts in microbiome studies (e.g. Chen and Li (2013);

Wadsworth et al. (2017)). The multinomial distribution is an obvious choice for such data since it

naturally extends the well-known binomial distribution. In addition, because of its conjugacy in the

Bayesian framework, the Dirichlet distribution is often coupled with the multinomial in applications

involving the analysis of count data (e.g. Blei et al. (2003); Zhang and Stern (2005); Chen and Li

(2013); Wadsworth et al. (2017)).

Outside the context of forensic science, Puig et al. (2016) and Johansson and Olofsson (2007) use a

Dirichlet-multinomial framework similar to the one we propose. Puig et al. (2016) analyse the famous

Federalist papers, which are a set of essays that was published anonymously in 1787 and 1788 by

Alexander Hamilton, John Jay and James Madison. The goal in Puig et al. (2016) is similar to ours in

that they are addressing a source-based investigative question; they aim to attribute authorship of par-

ticular essays to one of the three men. However, they are comparing multiple documents’ worth of

source propositions rather than just two. As in our work, Johansson and Olofsson (2007) only consider

two source propositions. They, however, do this only in the special case of a uniform Dirichlet prior,

while our approach accommodates general Dirichlet prior distributions. The approaches in Puig et al.
(2016) and Johansson and Olofsson (2007) also differ from ours in that their primary focus is on the

posterior odds rather than on the likelihood ratio, which is the focus in forensics applications.

In forensics, Aitken et al. (2021, pp. 791–798) describe a likelihood ratio using a Dirichlet-

multinomial model in the context of shoeprint and document analyses. Their approach treats h as

unknown but differs from ours in that h represents the underlying proportions of the categorical evi-

dence in the entire source population (e.g., the proportion of all printers that use each of K types of

toner). In contrast, we treat h as belonging to an individual, i.e., each individual source may have a

unique probability ascribed to each category. Biedermann et al. (2011) also calculate a likelihood

ratio using a Dirichlet-multinomial model, but unlike in our approach, they do this through the inter-

mediate step of constructing a Bayesian network.

FIG. 1. Dirichlet density plots in which K¼ 3. In this case, the support of the distribution is on a 2-dimensional simplex
(because of the constraint that the vector values sum to 1), which we represent using a triangle for the purposes of
illustration. From left to right: (a) shows a symmetric, non-uniform Dirichlet distribution, (b) shows the uniform Dirichlet
distribution. (c) shows an asymmetric Dirichlet distribution, (d) shows an asymmetric Dirichlet distribution with the same
mean as (c) but with a larger concentration parameter.
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3.2 Statistical approaches in digital evidence

Much of the research in digital evidence so far has focused on information extraction and informa-

tion reconstruction (see e.g. SWGDE (2020a,b); Årnes (2017); Roussev (2016)), and there have

been relatively few statistical approaches developed specifically for quantifying the strength of

digital evidence.

Galbraith and Smyth (2017) and Galbraith et al. (2020a) introduce a score-based likelihood ratio

approach for comparing two time-stamped event streams, where the events are generated by users

on a digital device. Their approach is non-parametric and requires reference population data and the

specification of a score function in order to produce a likelihood ratio. This approach is extended to

geolocation data in Galbraith et al. (2020b), and a mixture of kernel density estimates is used to

compute both a likelihood ratio and a score-based likelihood ratio.

Bosma et al. (2020) use cell tower records for mobile phones in order to assess whether two

phones were being used by the same person during a given time period. Their approach uses a com-

bination of logistic regression and kernel density estimation to construct a likelihood ratio specific-

ally for data that is in the form of mobile call detail records. To accomplish this, they split the

training dataset into two parts, one for estimating the parameters of the logistic regression and the

other for conducting the kernel density estimation.

Casey et al. (2020) discuss the challenges associated with evaluating location-related mobile de-

vice evidence. The examples they present are similar in nature to the applications that we discuss in

Section 6.1, although they focus on specific locations of interest rather than comparing patterns of

user-generated events. Note that while Galbraith et al. (2020b), Bosma et al. (2020), and Casey

et al. (2020) are tied specifically to a device’s location data, our approach is applicable to any form

of user-generated event count data.

4. Likelihood ratio analysis

4.1 Solving for the likelihood ratio under the model

Below we provide an outline of the derivation of a general formula for the likelihood ratio, LR,

using the model described in Section 2.3, with full details in Appendix A.

LR ¼ Pðr1; r2jHsÞ
Pðr1; r2jHdÞ

(2)

¼
Ð

Pðr1; r2jHs; h1ÞPðh1jHsÞdh1Ð Ð
Pðr1; r2jHd; h1; h2ÞPðh1; h2jHdÞdh1dh2

(3)

¼
Ð

Multinomðr1jN1; h1Þ �Multinomðr2jN2; h1Þ � Dirðh1jaÞdh1Ð
Multinomðr1jN1; h1Þ � Dirðh1jaÞdh1

Ð
Multinomðr2jN2; h2Þ � Dirðh2jaÞdh2

(4)

¼ Bðaþ r1 þ r2ÞBðaÞ
Bðaþ r1ÞBðaþ r2Þ

; (5)

where Bð:Þ denotes the multivariate beta function (the mathematical definition of the multivariate

beta function is included in Equation (11) in the Appendix). Equation (2) expresses the general

form of the likelihood ratio with the count data, r1 and r2, serving as the evidence. The Bayesian
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aspect of our approach is illustrated in Equation (3), where under Hs we marginalize over h1 and

under Hd we marginalize over both h1 and h2. Equation (4) follows from the model’s assumptions

described in Section 2.3, and plugging in the appropriate probability mass and density functions

gives Equation (5). Equation (5) is a closed-form expression for the ratio of integrals in Equation

(4), resulting in an easily computable LR that is a function of the evidence data, r1 and r2, and the

prior parameters, a, all represented as vectors of length K.

4.2 Illustrative examples

To illustrate how the formula in Equation (5) leads to behaviour expected of a likelihood ratio

(Section 2.4), we consider it in the context of several examples. Suppose that there are three event

categories of interest (A, B and C) and that we have no a priori information regarding these three

types of events. Assume for the moment that we choose a uniform Dirichlet prior (Section 2.5) to

describe our uncertainty about the h parameters.

Suppose that we witness identical event patterns from the known and unknown sources: two A

events, one B event and zero C events, i.e. r1 ¼ r2 ¼ ð2; 1; 0Þ. Because the event count patterns are

identical, one would expect a likelihood ratio to favour the same-source hypothesis, and in fact,

applying Equation (5) in this case gives LR¼ 2.14. Interpreting as in Section 2.4, LR¼ 2.14 indi-

cates that observing this evidence is 2.14 times more probable under Hs than under Hd.

If instead we obtained more event counts for the known source, say twenty A events, ten B

events, and still zero C events (i.e., r1 ¼ ð20; 10; 0Þ and r2 ¼ ð2; 1; 0Þ), then LR¼ 3.88. Possessing

more data upon which to base our likelihood ratio, even for just one of the two sets of observations,

enables us to make a slightly stronger statement regarding the evidence. The resulting likelihood

ratios become stronger still when more data is obtained for both sources. For example, if

r1 ¼ r2 ¼ ð20; 10; 0Þ, then LR¼ 28.02.

Suppose now that the known source favours A events while the unknown source favours C

events: r1 ¼ ð2; 1; 0Þ and r2 ¼ ð0; 1; 2Þ. Under Equation (5), this leads to LR¼ 0.36 where, now

that the two sets exhibit different event patterns, observing this evidence is more probable under the

different-source hypothesis. Analogously to the previous examples, the resulting likelihood ratios

are strengthened (in the sense that they are further from 1) by observing more data as evidence. For

instance, if r1 ¼ ð20; 5; 5Þ and r2 ¼ ð0; 1; 2Þ, i.e. the amount of data is mixed, then LR¼ 0.19. If

r1 ¼ ð20; 5; 5Þ and r2 ¼ ð5; 5; 20Þ, i.e. larger amounts of data for both sources, then LR¼ 0.0008.

Table 1 summarizes the LR values for these examples.

Note that in the trivial case in which either N1 ¼ 0 or N2 ¼ 0, the likelihood ratio retains the neu-

tral value LR¼ 1. This is straightforward to show from Equation (5) by noticing that all elements of

r1 or r2 will be zero if N1 ¼ 0 or N2 ¼ 0. Therefore our formula for the likelihood ratio adheres to

Table 1. LR values for the six illustrative examples. For different patterns, LR < 1 and decreases further
with more data. For similar patterns, LR > 1 and increases further with more data

Different patterns Similar patterns

Little data 0.3571 2.1429

Mixed 0.1925 3.8824

More data 0.0008 28.0164
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the straightforward fact that if there is no available data for either the known or unknown source,

looking at the likelihood ratio should be unhelpful.

4.3 Theoretical properties of the LR under the model

4.3.1 Alternate formula. We can manipulate the expression for the LR in Equation (5) into a

form that is more amenable to interpretation (details of this derivation are in Appendix B)

LR ¼
YK

k¼1;r2k�1

Yr2k�1

s¼0

1þ r1k

ak þ s

� �0
@

1
A YN2�1

s¼0

1� N1

cþ N1 þ s

� � !
; (6)

where c ¼
PK
k¼1

ak, i.e. the concentration parameter discussed in Section 2.5. Equation (6) makes ex-

plicit that the LR is a product of two groups of factors, where the first group of factors are � 1 and

the second group of factors are � 1.

Note that in Equation (5), switching r1 and r2 does not change the value of the LR. This implies

that there exists a second alternative formula to Equation (6) in which the roles of the source data

are switched. However, since this equation does not have inferential implications beyond those of

Equation (6), we only note this as a mathematical identity here and leave further details to

Appendix B.

4.3.2 Bounds on the LR. It is straightforward to show that Equation (6) leads to the following

identity

YN2�1

s¼0

1� N1

cþ N1 þ s

� �
� LR <

YK
k¼1;r2k�1

Yr2k�1

s¼0

1þ r1k

ak þ s

� �
(7)

where the set of factors less than 1 form a lower bound for the LR, and the set of factors greater than

1 form an upper bound.

Let S be the set of all event categories in which both the known and unknown sources have non-

zero counts, i.e. an event category k is in S if r1k > 0 and r2k > 0. The upper bound is only a func-

tion of ak, r1k, and r2k for k 2 S. This implies that the maximum strength the LR can convey in

favour of the same-source hypothesis only relies on counts for event types that have been observed

across both sources (Figure 2).

Also note from Equation (7) that the lower bound is only a function of N1, N2, and c. In practice,

this means that one only needs to know the amount of data and the concentration parameter in order

to limit how extreme the resulting LR can be in favour of the different-source hypothesis. The lower

bound is only achieved when S ¼1, i.e. there are no categories for which an event was witnessed

for both the known and unknown sources. This particular case is further discussed in the context of

the prior in Section 5.4.

4.3.3 Number of categories. Choosing the event categories that are of forensic interest will

have implications on the resulting likelihood ratios. Omitting relevant categories, or including irrele-

vant categories, masks potentially important behaviour for distinguishing between the source
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hypotheses. This could result in falsely quantifying the strength of the evidence in either direction—

in favour of Hs or Hd. Consider, for example, the case in which investigators are examining device

geolocation data for a crime and suspect in Los Angeles. If investigators decided to count the devi-

ces’ visits to locations across the entire USA rather than just across southern California, the two sets

of counts will appear more similar because both sets of data will likely have many shared zero

counts for places not near Los Angeles. Similar to the relevant population discussion in Section 2.2,

decisions regarding which events are of forensic interest should be determined by the facts of the

case. For instance, in the example, it may be relevant to incorporate the entire USA in the analysis

if the case involved interstate travel outside of California.

In fact, decisions about the event categories may also be informed by the relevant population. For

example, consider again the case in which we have device geolocation data for a crime and a sus-

pect in Los Angeles. Suppose also that the relevant population is determined to be people who were

in California during a time period leading up to the crime. Given these circumstances, counting de-

vice visits to locations across the USA would not make sense because all potential sources will have

device visits only in California and shared zero counts for locations in all other states. In fact, we

prove below that in situations like this, in which case-irrelevant shared zero-count event categories

are included, the resulting LR will be inflated.

To demonstrate the issues associated with changing the number of categories, we show what hap-

pens to the LR under two possible scenarios for adjusting the Dirichlet prior to accommodate a

larger K. In the first scenario, the original ak’s in the prior have a fixed value as new categories are

added, e.g. going from a ¼ ð1; 1; 1Þ to a ¼ ð1; 1; 1; 1Þ to a ¼ ð1; 1; 1; 1; 1Þ. With this scenario, the

lefthand set of factors in Equation (6) remains constant, but the concentration parameter c ¼
PK
k¼1

ak

increases, thus increasing the righthand set of factors and the likelihood ratio (Figure 2 shows an

example).

FIG. 2. Plot showing the value of the likelihood ratio using a uniform Dirichlet prior when r1 ¼ r2 ¼ ð1; 1; 1; 0TÞ, where T
represents the number of 0’s appended to the end of the observed count vector. The value of the LR is shown in black, and
the upper bound is shown in red.
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LR ¼
YK

k¼1;r2k�1

Yr2k�1

s¼0

1þ r1k

ak þ s

� �0
@

1
A

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
constant

YN2�1

s¼0

1� N1

cþ N1 þ s

� � !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

increasing

In the second scenario, the concentration parameter c is held constant as the number of categories

increases, e.g. going from a ¼ ð1; 1; 1Þ to a ¼ 3
4
; 3

4
; 3

4
; 3

4

� �
to a ¼ 3

5
; 3

5
; 3

5
; 3

5
; 3

5

� �
. With this strategy,

the lefthand set of factors in Equation (6) increases as each ak decreases, but c, N1, and N2 remain

constant so that we have

LR ¼
YK

k¼1;r2k�1

Yr2k�1

s¼0

1þ r1k

ak þ s

� �0
@

1
A

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
increasing

YN2�1

s¼0

1� N1

cþ N1 þ s

� � !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

constant

:

Thus under either of the two proposed strategies, the LR increases when more categories with

shared zero counts are included, which, in some cases, could mean that the LR is artificially inflated

as a result of including irrelevant categories.

It is important to note, however, that only having zero counts does not alone make a category ir-

relevant, nor may all irrelevant categories have zero counts. Other scenarios of including/excluding

categories could be studied on a case-by-case basis.

5. The Dirichlet prior and the likelihood ratio

5.1 Revisiting the Dirichlet prior

We now revisit our discussion of the Dirichlet prior from Section 2.5 to focus in more detail on

choices in selecting the prior and how these choices can affect the LR. Recall that in the Bayesian

inference setting we have,

h � DirichletðaÞ ¼ Dirichletða1;. . .;aKÞ
r�jh � MultinomialðN; hÞ

where a, h and r* are each K-dimensional vectors. As mentioned in Section 2.5, the Dirichlet prior

is a conjugate prior for the multinomial, resulting in the posterior for h also being a Dirichlet distri-

bution. Specifically, the posterior distribution is of the form

hjr� � Dirichletða1 þ r�1; a2 þ r�2; . . . ; aK þ r�KÞ:

Each of the ak parameters in the prior are updated from ak to ak þ r�k having observed the data

r�k. The prior parameters ak of the Dirichlet prior can be intuitively interpreted as ‘pseudocounts’

since they seed the parameters of the posterior distribution. The role of the prior concentration par-

ameter c ¼
P

k ak can also be clearly seen (from the form of the posterior Dirichlet above) to reflect

the relative strength of the prior relative to the amount of observed data, namely N ¼
P

k r�k.

In our discussion below we will focus on a number of key aspects for selecting a prior in the con-

text of LR calculations for count data. In particular we discuss both non-informative priors and in-

formative priors and discuss options for how each can be specified. We also discuss the

specification of the concentration parameter c for both the non-informative and informative cases.
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While ultimately, as in any Bayesian analysis, the choice of a prior should be informed by an inves-

tigator’s prior knowledge (or lack of knowledge) about a particular problem, the discussion below

should nonetheless provide general guidance to investigators for prior selection when evaluating our

proposed approach.

We also note that arguments in favour or against a particular type of prior in the literature are

often based on the prior’s influence on the posterior distribution of the parameters h. However, our

focus here is on the likelihood ratio rather than on the posterior, so some of the standard Bayesian

arguments about priors may not be pertinent. With this in mind, at the end of this section, after dis-

cussing both non-informative and informative priors, we analyse directly how the choice of prior

can influence the likelihood ratio in Equation (6).

5.2 Non-informative Dirichlet priors

A necessary condition for a non-informative Dirichlet prior is that the prior is symmetric (Section

2.5), reflecting the fact that before we see the data for our problem we have no prior knowledge that

any of the categories k ¼ 1 . . . ;K are likely to occur more frequently than the others. The key ques-

tion then becomes how to select the concentration parameter c ¼
PK
k¼1

ak, or equivalently how to se-

lect a ¼ c
K ;

c
K ; . . . ; c

K

� �
.

To this end, there has been considerable discussion among researchers in Bayesian methodology

over the selection of an appropriate concentration parameter in order for a Dirichlet prior to be truly

non-informative. A full discussion on this topic is beyond the scope for this work, but we highlight

below some of the more well-known choices of non-informative Dirichlet priors from the literature.

A popular choice for a non-informative prior, given its easy interpretability, is the uniform

Dirichlet distribution (also referred to as the Bayes-Laplace prior), i.e. a ¼ ð1; 1; . . . ; 1Þ and c¼K
(see e.g. Gerlach et al. (2009); Tuyl et al. (2008)). As discussed earlier, this prior assigns equal prior

density to all possible K-ary vectors of event probabilities h.

Jeffrey’s prior is a ¼ 1
2
; 1

2
; . . . ; 1

2

� �
, i.e. c ¼ 1

2
K, and arises from Jeffrey’s invariance principle,

which posits that the prior density should give an equivalent result if applied to a transformed ver-

sion of the parameter, when that transformation is one-to-one. However, Jeffrey’s prior can be con-

troversial in multiparameter models, since it can yield different results than simply assuming

independent non-informative prior distributions for the different components of h. Jeffrey’s prior

and some of its associated issues are further discussed in Gelman et al. (2020) and Berger et al.
(2015).

Berger et al. (2015) introduce an ‘overall objective prior’ which is based on the idea of marginal

reference posteriors (see also Bernardo (1979) and Bernardo (2011)). Based on their work, they ad-

vocate for c¼ 1, i.e. the prior a ¼ 1
K ;

1
K ; . . . ; 1

K

� �
, as the overall objective Dirichlet prior; although

Tuyl (2017) points out some issues with this prior in the case of zero counts for any of the categories

in the observed data r.
Lastly, it can be argued that an appropriate parameter setting for a non-informative prior is c¼ 0,

i.e. a ¼ ð0; 0; . . . ; 0Þ, in which we impose no ‘pseudocounts’. This is an improper distribution since

its density integrates to1 rather than to 1. In the K¼ 2 case, this is referred to as Haldane’s prior

(see e.g. Zellner (1996), Gelman et al. (2020), Zhu and Lu (2004)), but the ideas behind it can gen-

erally be extended to general K as well (see e.g. Terenin and Draper (2017)). This prior can be moti-

vated by the fact that it is uniform in the logðhkÞ’s (i.e. the natural parameter in the exponential
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family representation of the multinomial, see e.g. Gelman et al. (2020)). In standard Bayesian infer-

ence, however, one would need to observe a count in each of the K categories in order for this prior

to yield a proper posterior (a constraint that can’t be guaranteed in general before we see the data).

For the likelihood ratio calculations of interest in this article, this prior results in a division by zero

in the formula for the LR, so Haldane’s prior is not directly applicable to our framework.

5.3 Informative priors and pseudocounts

In contrast to the non-informative case, the informative prior can be used when we have relevant

prior knowledge about the values of the components in h, e.g. that certain categories are more likely

to occur than others. In this situation, the ak’s are no longer equal, and there are two issues to con-

sider. First, how the relative size of the ak’s should be determined, and second (as with the non-

informative prior), how the overall concentration parameter c ¼
PK
k¼1

ak should be specified.

In general we can write a ¼ c� a1

c ;
a2

c ; . . . ; aK

c

� �
. This form emphasizes that each term 0 < ak

c <
1 can be selected as the relative prior belief in each category k, with c (the pseudocount) controlling

the overall strength of the prior. The prior could be specified subjectively by an investigator, manu-

ally setting higher values for categories which are known to be more common and then selecting c
by its pseudocount interpretation (e.g. how many datapoints N would be required to balance the

effect of the prior in the posterior).

An alternative approach is to use a reference dataset. For example, if an investigator is analysing

counts that correspond to the use of different software apps on a mobile phone, there may be rele-

vant reference data available in the form of published data on population usage of the same software

apps. In particular, consider reference data d ¼ ðd1; d2; . . . ; dKÞ in the form of counts for each of

the K categories, e.g. from some reference database that is known a priori. A natural approach here

would be to set the prior to be proportional to the reference counts, i.e.

a ¼ c� d1PK
k¼1

dk

;
d2PK

k¼1

dk

; . . . ;
dKPK

k¼1

dk

0
B@

1
CA

where c controls the strength of the prior. A variation of this approach was discussed in a forensic

investigation context by Aitken et al. (2021, pp. 793–798), who propose applying the equation with

each of the dk’s replaced by dk þ 1 and choosing c ¼
PK
k¼1

ðdk þ 1Þ. Adding 1 to each count avoids

the potential issue of division by zero in the LR calculations if any of the reference values dk ¼ 0.

Any method for selecting the prior distribution should take into account the relevant population

of potential sources (Section 2.2). In principle, non-informative priors should reflect a lack of prior

knowledge about the relevant population’s behaviour in the event categories; informative priors

should reflect the prior knowledge about the relevant population’s behaviour in the event categories.

For setting informative priors via a reference dataset, care should be taken that this reference dataset

reflects the relevant population. In practice, finding and choosing such a dataset can be quite diffi-

cult to do (see e.g. Champod et al. (2004)). To better understand the relationship between the choice

of the prior and the resulting likelihood ratios, in the next section we will examine the impact of

different priors on the LR.
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5.4 Effect of the prior on the LR

Having discussed a number of different aspects of how the Dirichlet prior can in general be speci-

fied, we now turn our attention to examining how the choice of prior can influence the likelihood

ratio. First we point out that in the case of a symmetric prior, the likelihood ratio can be written (as

in Equation (6)) as

LR ¼
YK

k¼1;r2k�1

Yr2k�1

s¼0

1þ r1k
c
K þ s

� �0
@

1
A YN2�1

s¼0

1� N1

cþ N1 þ s

� � !

where a ¼ c
K ;

c
K ; . . . ; c

K

� �
. For K, r1, and r2 fixed, as c!1 each individual factor in the set of prod-

ucts above approaches 1; hence in the limit we have that as c!1 the LR! 1. Thus as the prior

gets extremely strong, observing the data has little effect on our beliefs, and the likelihood ratio

remains close to the neutral value of 1. The result also holds in the asymmetric case, i.e. LR! 1, if

we proportionally send all of the individual prior parameters to1.

More generally, we can analyse each set of factors from Equation (6) to gain additional insight:

LR ¼
YK

k¼1;r2k�1

Yr2k�1

s¼0

1þ r1k

ak þ s

� �0
@

1
A

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Term ðaÞ

YN2�1

s¼0

1� N1

cþ N1 þ s

� � !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Term ðbÞ

: (8)

For each factor in Term (a), a higher ak decreases the value of that factor, i.e. for ax < ay

1þ r1k

ax þ s
> 1þ r1k

ay þ s

for constant r1k and s. An intuitive way of thinking about this is that up-weighting a particular ak in

the prior will decrease that particular category’s effect on the likelihood ratio, provided that c, N1

and N2 are held constant. In other words, observing a shared event in a common category does not

impact the likelihood ratio as much as observing a shared event in an uncommon category.

Recall that it is exclusively Term (b) in Equation (6) that decreases the value of the LR in the cal-

culation, and Term (b) is a function of the amount of data and the concentration parameter. The LR
is exactly equal to the value of Term (b) in the case in which the known and unknown source data

have no observed counts in overlapping event categories, i.e. S ¼1, to use the notation from

Section 4.3.2. In this special case, it is guaranteed that the LR � 1 regardless of the setting of the

prior parameters. We also consider the behaviour of Term (b) for general r1 and r2. For c and N1

fixed, Term (b) decreases as N2 increases, and similarly for c and N2 fixed, Term (b) decreases as

N1 increases. Intuitively, this means that if more data is obtained from either source, then more over-

lap between the event counts, i.e. larger Term (a) values, is required to obtain a LR > 1 since Term

(b) will be closer to 0 with more data. If instead we hold the amount of data fixed, then as c
increases Term (b) also increases. Thus, for stronger values of the prior the value of Term (b) is

closer to the neutral value of 1.

The value of Term (b) can become extreme when there is an imbalance between c versus N1 and

N2. For c	 N1;N2, Term (b) remains very close to 1 such that even in the case of no overlap the

value of the LR is still close to the neutral value. For example, consider the case in which K¼ 1000,
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N1 ¼ N2 ¼ 10, and we select a uniform Dirichlet prior such that c¼ 1000. This leads to a value of

0.91 for Term (b), which means that this is the smallest any LR can be with this prior and this

amount of data, regardless of the amount of non-overlap observed in the counts. If, on the other

hand, c
 N1;N2, then the value of Term (b) can become extremely close to 0. For example, con-

sider the case in which we place a uniform prior over K¼ 10 categories such that c¼ 10. If

N1 ¼ N2 ¼ 100, then the value of Term (b) becomes 1:14 � 10�49. This means that to obtain an

LR > 1 one would need to observe a large amount of event count overlap between r1 and r2 in order

to overcome the extremity of the Term (b) values.

The properties of the prior, and its effect on the LR, as discussed above in this section and in

Section 4, will be used to motivate our prior choices in the experiments with real-world data below

in Section 7.2.

6. Use cases in digital evidence

As discussed earlier, digital evidence from devices such as mobile phones and computers is increas-

ingly common. One common form of digital evidence in this context is logfiles recording the

actions that have been taken on a device by its user (see e.g. Casey (2011); Roussev (2016); Cheng

et al. (2021)). This data is often in the form <ID, event, timestamp>, where the ID identifies

the user/account/device, the event is one from a set of possible user actions, and the timestamp is

the time at which the user initiated the event, e.g. <John Doe’s phone, Opened App X, 09/
24/2021 5:15pm>. In this section we discuss how this form of user-generated event data can be

analysed by converting event records to user-event counts and then applying our likelihood-ratio ap-

proach to identity-related questions.

6.1 Motivating scenario

Suppose that investigators have recovered a digital device from a crime scene and have extracted

from the device historical event logs of its user-generated actions. Suppose also that the device’s

owner is now a suspect in the investigation. A common defence in cases like this is to claim that the

recovered device was stolen or otherwise not in the suspect’s possession during the period of crim-

inal activity (see e.g. Casey et al. (2020)). Using the device logs, we would like to be able to answer

questions such as: how likely is it that these kinds of activities would be observed if the suspect’s

claim is false, and they actually did possess their device? Or, how likely is it that these kinds of

activities would be observed if the device was not in the suspect’s possession?

To answer these types of questions, we convert the event logs into count data by tallying how

many times a particular action was taken on that device. We can split the counts into two time peri-

ods, one period during which the suspect is known to have had the device and another period in

which the user is unknown, i.e. the time during which the suspect claims the device was stolen

(Figure 3). Ideally an investigator would like to be able to systematically compare the patterns in

the event data from the known and unknown sources to determine if there is support for the hypoth-

esis that the two sets of data were actually generated by the same individual. While visual inspection

of the data might provide a general intuition of how much evidence there is to support the same-

source hypothesis, a quantitative evaluation of the evidence in the form a likelihood ratio (using the

methods we have outlined earlier in the article) is preferable.

The count-based likelihood-ratio framework can also be used in the context of other scenarios in

digital forensics. For instance, suppose it is believed that a suspect carries two phones on their
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person, and one of these phones was recovered from the crime scene. The proposed likelihood-ratio

framework could then be used to compare patterns of activities on the recovered phone to patterns

of activities on the phone still on the suspect, where the activities in general can include opening

and closing of apps and files, emails or text messages sent or received, geolocations visited, and

so on.

6.2 Datasets

In order to evaluate how our approach applies to digital evidence, we consider three real-world data-

sets that each consist of rows in the general format <ID, event, timestamp>. For each of

these datasets, we describe below basic characteristics of the data and how the event categories

were chosen1. Table 2 presents summary statistics.

6.2.1 Email communications. The first dataset consists of 285 929 emails sent between

October 2003 and May 2005 (Paranjape et al., 2017). We organized this data into a set of email

events per sender in which each event consists of <sender_id, recipient_id, time-
stamp>. The sender and recipient IDs identify the accounts who sent and received the emails, re-

spectively, and the timestamp is the time at which the email was sent. This resulted in 655 unique

sender IDs and 946 unique recipient IDs, corresponding to 655 accounts and 946 event categories in

our framework.

6.2.2 Device geolocation records. The second dataset comes from the Twitter Streaming API

(Twitter, 2021) and consists of 74 663 geolocated tweets from Orange County, CA collected from

September 2020 to March 2021. Each tweet event consists of the following information:

<user_id, latitude, longitude, timestamp>, where the user ID identifies the Twitter

account, the latitude and longitude coordinates are the location of the device from which the tweet

FIG. 3. Timeline in the stolen device scenario. Blue event counts correspond to the known-source counts r1. Red event
counts correspond to the unknown-source counts r2.

1 Additional information about the datasets and how to access them is available publicly at https://ucidatalab.github.io/
uci-digital-evidence/datasets/.

106 R. LONGJOHN ET AL.

D
ow

nloaded from
 https://academ

ic.oup.com
/lpr/article/21/2/91/6958536 by guest on 24 April 2024

https://ucidatalab.github.io/uci-digital-evidence/datasets/
https://ucidatalab.github.io/uci-digital-evidence/datasets/


was sent, and the timestamp is the time at which the tweet occurred (Figure 4). These are public

tweets for which users have opted in to sharing their geo-coordinates.

To define event categories, we mapped the latitude and longitude values to a set of census block

groups (CBGs) which partition Orange County into approximately 1800 polygons covering the en-

tire county (Figure 5). We removed CBGs in which no events were ever observed, resulting in 1412

CBGs under consideration. The data we used to define these polygons was downloaded from the

Census Reporter website and comes from the American Community Survey 2019 1-year OC Total

Population U.S. Census data (U.S. Census Bureau, 2019). Thus, each event category corresponds to

sending a geo-located tweet from a particular CBG. Other representations of spatial information,

such as geoparcels, could potentially be used as alternatives to categorize geo-located events. We

used CBGs since they are well-defined, publicly accessible and provide a reasonable tradeoff be-

tween spatial resolution and data sparsity.

6.2.3 Mobile app usage. The third dataset consists of records of app usage on mobile phones

in which each event consists of <user_id, app_name, event_type, timestamp>
(Aliannejadi et al., 2021). There are approximately 1.8 million such app usage records, generated

by Android users across 86 different apps from September 2017 to May 2018. The possible event

types are: Opened, Closed, User Interaction and Broken, and the app name identifies the mobile app

on which the user initiated the event. For our analysis, we only consider events of the type Opened

or User Interaction since almost every Opened event is subsequently followed by a Closed event,

and the Broken event types may be system-generated rather than user-generated events. We define

event categories by taking the combination of the app and whether the user opened or interacted

with the app, e.g. Opened App X or Interacted with App Y. However, for 13 apps, no User

Interaction events were observed across any of the app usage logs. For these apps, we only consid-

ered Opened events, resulting in 86� 2� 13 ¼ 159 different event categories.

7. Computational experiments and results

7.1 Experimental set-up

For each dataset, we divide the time range over which the data was collected into two periods and

count the event data for each user in each of the two time periods. For each user, there are two sets

of event data: one set coming from the first half of the collection period and the other set coming

from the second half of the collection period. To obtain data with which we can calculate likelihood

Table 2. For each of the three datasets, the number of users, the number of categories (K), the mean and me-
dian number of events per user, and the number of events per category during the collection period (exclud-
ing holdout data used for setting the informative priors, as described in Section 7.2)

Num. events per user Num. events per category

Dataset Num. users K Mean Median Mean Median

Email 655 946 436.53 184.0 302.25 140

Geolocation 2265 1412 32.70 8.0 52.77 8

App 260 159 6957.63 1710.5 11377.26 3875
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ratios, we treat all of the user data coming from the first half of the collection period as having

come from a known source, and the user data coming from the second half of the collection period

as having come from an unknown source (though in reality we do know the user), as illustrated in

Figure 6. Users with zero events during either of the two time periods were not used in the

experiments.

FIG. 5. Census block groups (CBGs) in Orange County, CA. Event categories for the Twitter data correspond to sending a
geo-located tweet from coordinates located in a particular CBG.

FIG. 4. Example geolocations of publicly available geo-located Tweets. The plot on the left shows Tweets generated by the
same account, while the plot on the right shows Tweets generated by two different accounts.
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For each set of event counts we treat as coming from a known source, we create a same-source

pair by partnering it with that user’s event data from the second half of the collection period (treated

as the unknown source in LR calculation). We construct a different-source pair by partnering any

two distinct users’ event data where one set comes from the first half of the collection period and

the other from the second half. For our experiments, we calculate the likelihood ratio using all of

the same-source pairs and a simple random sample of the different-source pairs, with 50% same-

source and 50% different-source pairs. The choice of a 50–50 split (versus some other split) was

chosen for convenience and does not (in the limit as the size of the evaluation dataset increases) af-

fect the values we obtain for evaluation metrics, nor is it intended to reflect the proportion of same-

versus different-source comparisons that a forensics investigator might encounter in practice.

For the email dataset, users sending the emails are also present in the recipients but do not send

emails to themselves. We circumvent this issue by removing the known sender as one of the catego-

ries within each comparison. For example, if our known source data was coming from the ID 1234,

we would not count any emails to 1234 among both the known and unknown source data. Thus

each likelihood ratio calculation for this dataset is computed using 946� 1 ¼ 945 event categories.

For the mobile app dataset, the app usage records were not collected for the same period of time

for each user, e.g. some users have data from a few days within the collection period while others

have a few weeks of data. To circumvent this problem, for each set of known source data, we con-

struct an unknown source match by pulling event data from the second half of the known user’s col-

lection period. For example, if the known user’s total data collection happened from September 1

through 10, their known source data would be their event counts from September 1–5 and their un-

known source event data would be their event counts from September 6–10. To find a different

source to compare them to, we would only consider other users for which we have event data from

September 6–10, and this is the data that would be used in the likelihood ratio calculation. This

ensures that there is consistency in the data collection dates for same-source and different-source

pairs in which the known source data is coming from the same user.

7.2 Prior selection

For each dataset, we consider two different priors in our experiments: a non-informative (symmet-

ric) prior and an informative (asymmetric) prior. The non-informative prior is motivated by the

FIG. 6. Illustration depicting the general experiment setup. Count data coming from the first half of the collection period is
treated as having come from a known source, and count data coming from the second half of the collection period is
treated as having come from an unknown source.
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discussion in Section 5.2. To this end, we opt to choose the uniform Dirichlet distribution as the

prior, i.e. a ¼ ð1; 1; . . . ; 1Þ, resulting in a concentration parameter c¼K. We use the uniform prior

for two main reasons:

• For a given dataset, choosing constant ak values which do not depend on K ensures that we

maintain a constant upper bound in the situation in which irrelevant zero-count categories

have been included (Section 4.3.3).
• The uniform prior is straightforward to interpret since it assigns equal density to all probabil-

ity vectors satisfying the linear constraint that
PK
k¼1

hk ¼ 1 (Section 2.5).

To construct the informative prior, we take a sample of data across all users to use as reference

data. For the email and geolocation datasets, we hold out the data coming from the first 10% of the

collection time window (corresponding to 12.4% and 13.1% of the total number of events, respect-

ively), and for the app dataset, because the data collection period is varied across users, we hold out

data coming from a random sample of 30 users (corresponding to 9% of the total number of events).

We count all the events across the reference dataset, yielding marginal counts across all of the cate-

gories, denoted by ðd1; d2; . . . ; dKÞ. We then use a strategy similar to the one described in Section

5.3 in which we set the prior to be

a ¼ K � d1 þ 1PK
k¼1

ðdk þ 1Þ
;

d2 þ 1PK
k¼1

ðdk þ 1Þ
; . . . ;

dK þ 1PK
k¼1

ðdk þ 1Þ

0
B@

1
CA:

This ensures that the likelihood ratio values from both of the priors share the factors from Term

(b) in Equation (8) (also a lower bound, Section 4.3.2) since c, N1, and N2 will be unchanged.

However, the factors in Term (a) from Equation (8) will be up-weighted or down-weighted accord-

ing to their frequency in the marginal data, such that more common categories will have a smaller

impact on the LR than with the non-informative prior, and uncommon categories will have a larger

impact (Section 5.4).

With this reference data strategy, we are also effectively treating all of the users in each dataset

as samples from the relevant population (Section 2.2). For the email dataset, all the users are affili-

ated with the same large university. For the geolocation dataset, all accounts opted in to sharing geo-

location data and all have geolocated tweets in Orange County, CA during the collection period.

For the app dataset, all users were recruited via Amazon Mechanical Turk. These implied relevant

populations are used for convenience for our experiments, but as discussed in Section 2.2, Section

4.3.3, and Section 5.3, the selection of the relevant population is an important decision in practical

applications that should be informed by the facts of the case.

7.3 Results

In Table 3, we summarize the results of the computational experiments using three metrics: true

positive rate using 1 as a threshold (TPR@1), false positive rate using 1 as a threshold (FPR@1),

and area under the receiver operating characteristic (AUC). We chose 1 as a threshold for the TPR

and FPR because of its straightforward interpretability, as described in Section 2.4.
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Across all three datasets, we observed AUC values generally close to 1. For the email and geolo-

cation datasets, using the informative prior resulted in slightly higher AUC values and only slightly

lower TPRs than those resulting from the non-informative prior. In contrast, for the app dataset, the

informative prior yielded a lower AUC and a TPR that was substantially lower than that of the non-

informative prior. We speculate that this is because much of the overlap in the same-source pairs

arises from shared counts in apps that are commonly used by all users (e.g. Facebook, Google,

Twitter, Instagram) and the impact of sharing these event counts is reduced using the informative

prior (to be further discussed in the context of the plots below). Across all datasets, all FPRs were

below 12% for both non-informative and informative priors. Using the informative prior resulted in

lower FPR values than those of the non-informative prior, with the greatest relative reduction for

the app dataset.

Figure 7 shows the values of the LR using a non-informative prior versus the LR using an inform-

ative prior. From these plots, it can be seen that the two different priors yield similar LR values, but

using the informative prior often results in a slightly decreased LR value (below the diagonal) com-

pared to that from the non-informative prior, and this difference can be more dramatic for larger val-

ues of the LR. These results align with the discussion in Section 5.4 in that the informative prior has

the effect of dampening the impact of the more common categories on the LR. Hence a majority of

the LR values across the experiments are slightly decreased. Less frequently, using the informative

prior also takes into account the fact that a category is rare and increases this category’s impact on

the LR when it appears as a shared category in the evidence. This is most easily seen in Figure 7(b)

where a few points are clearly above the identity line. In general, however, we did not find the dif-

ference in results for the non-informative and informative priors to be as impactful as the setting for

the concentration parameter (discussed following Figure 8), i.e. our results were relatively insensi-

tive to whether we used informative or non-informative priors.

Figure 8 shows boxplots of the LR values obtained for pairs in each dataset, as a function of the

amount of data used in the LR calculations. Across all three datasets, we can see a separation be-

tween the LR values for same-source versus different-source pairs, and these values become more

extreme with high amounts of data. Also for all three datasets, the median LR for the same-source

pairs is greater than 1, while the median LR for the different-source pairs is less than 1. These trends

Table 3. Likelihood ratio results are expressed as percentages for the three real-world datasets. TPR@1 and
FPR@1 are the true and false positive rates, respectively, using 1 as a threshold for the LR. AUC is the area
under the ROC curve (50% indicates a random classifier; 100% indicates a perfect classifier)

TPR@1 FPR@1 AUC

Email, K ¼ 945

Non-informative 94.8% 10.1% 98.1%

Informative 94.7% 8.1% 98.5%

Geolocation, K ¼ 1412

Non-informative 72.8% 6.4% 91.5%

Informative 72.7% 5.1% 92.4%

App, K ¼ 159

Non-informative 75.0% 11.5% 86.3%

Informative 63.8% 6.2% 82.5%
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also hold for the experiments using the informative prior so we only show the boxplots using the

non-informative prior here.

Figures 7–8 make apparent the fact that there are systematic imbalances in the values of the like-

lihood ratios for both the geolocation and app datasets. For the geolocation dataset, a majority of the

different-source LR values are close to the neutral value of 1 (even for ‘high’ amounts of data),

while the same-source values are more extreme. In contrast, for the app dataset, many of the same-

source LR values are close to the neutral value while the different-source values become very ex-

treme. With both of these datasets, we believe this to be a consequence of an imbalance between the

concentration parameter and the amount of data (as discussed in Section 5.4). As a result of using

the uniform Dirichlet distribution as the prior, the geolocation dataset has concentration parameter

c¼ 1412 while the medians for N1 and N2 are 4 and 3 events, respectively (Table 4). Using the nota-

tion from Equation (8) in Section 4.3.2, this results in c	 N1;N2; in fact, calculating Term (b) in

Equation (8) using the median values and c¼ 1412 yields a value of 0.99 (log 100:99 ¼ �0:004, for

reference in the plots). Consequently, many of the pairs of counts in the geolocation dataset remain

close to the neutral value, and those that we have defined as using high amounts of data still largely

suffer from such imbalance. The app dataset, on the other hand, has an imbalance in the opposite

direction, with c
 N1;N2. The uniform Dirichlet prior for the app dataset gives c¼ 159 while the

medians for N1 and N2 are 922.5 and 597.5, respectively (Table 4). Calculating the value of Term

(b) in Equation (8) using these values (medians rounded down to the nearest whole number) gives

1:83e� 306 ( log 101:83e� 306 ¼ �305:74). Thus, in order to obtain an LR > 1, substantial event

count overlap is required. As is evident from the TPR@1 value, a majority of the same-source pairs

achieve such overlap. This imbalance, however, means that many of the different-source pairs’ LR
values are very extreme, even in the presence of some category overlap. The problem is generally

exacerbated when using the informative prior because, as mentioned before, much of the overlap in

the same-source pairs arises from categories that are common across all of the users, and overlap in

these categories has less of an impact when using the informative prior. The extremity of these val-

ues aside, in theory the demonstrated behaviours could be reasonable. For instance, in the presence

of many potential categories and little data, one may want to have fairly neutral LR values, and any

overlap between the many event categories could be a strong indicator of similarity. Similarly, in

the presence of few categories but a substantial amount of data, one may deem that considerable

overlap should be required to support the same-source hypothesis. However, the results of these

FIG. 7. Scatterplots for each of the three datasets plotting the value of the log 10LR for the same r1 and r2 when using the
non-informative versus the informative prior. The y¼ x line is plotted in red.
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experiments demonstrate that these behaviours could quickly become quite extreme. We look at the

extremity of these values more closely in Table 5.

Table 5 shows that the experiments across all three of the datasets yielded likelihood ratios with

extreme values, some of which were contrary to fact. The trends in these extreme values were simi-

lar between the email and geolocation datasets but generally differed for the app dataset. For the

email and geolocation datasets, the percentage of extreme values increased with the amount of data,

and extreme contrary-to-fact LR values were only observed for mixed or high amounts of data and

only for the different-source pairs. The percentage of extremely small values for the app dataset

increased with the amount of data but was unstable for extremely large values. This dataset also has

the strongest presence of extreme contrary-to-fact LR values, particularly extremely small LR values

for same-source pairs. This is consistent with the observations in Figures 7–8 and makes clearer the

effects of the sensitivity to the imbalance between the concentration parameter and the amount of

data discussed above. For higher amounts of data, this imbalance is only exacerbated. Overall,

Table 5 suggests that the values of the LR are too extreme and that the model lacks suitability for

the app dataset. Such behaviour could easily go unnoticed, however, if one were to only examine

FIG. 8. Boxplots of the log10LR values for same- and different-source pairs by the amount of data (using the non-
informative prior). A low amount of data is the case in which both N1 and N2 are less than their medians, and a high
amount of data is the case in which both N1 and N2 are greater than their medians. Cases that are neither low nor high are
considered mixed. Values for these medians are in Table 4.

Table 4. Median amount of data by dataset for the first and second halves of the collection period. Note that
these medians are taken only across the same-source pairs, such that each user is only represented once in
the median calculation

Dataset Median(N1) Median(N2)

Email 122.0 44.0

Geolocation 4.0 3.0

App 922.5 597.5
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the performance using the metrics in Table 3 since many of the values are on the desirable side of

the threshold.

To capture the extremity of these values in a performance metric, we also summarize the results

of the experiments using the log-likelihood ratio cost in Table 6. The formula for the log-likelihood

ratio cost is

Cllr ¼
1

2Ns

X
i2Ds

log 2 1þ 1

LRi

� �
þ 1

2Nd

X
i2Dd

log 2ð1þ LRiÞ (9)

where Ns and Nd are the total numbers of same-source and different-source pairs respectively, Ds

and Dd denote the indices of the same-source and different-source pairs respectively, and LRi is the

likelihood ratio value evaluated for pair i. This metric penalizes performance according to the mag-

nitude of the resulting likelihood ratios rather than using a threshold (Brümmer and du Preez, 2006).

Smaller values of Cllr indicate better performance, and always returning LR¼ 1 would give Cllr ¼
1. Brümmer and du Preez (2006) also showed that the Cllr can be decomposed into two components

as follows:

Cllr ¼ Cmin
llr þ Ccal

llr : (10)

Cmin
llr denotes the discrimination loss, which measures how well the method differentiates between

same-source and different-source pairs. This is calculated by using the PAV algorithm to transform

the resulting LR values and then recalculating the Cllr using these transformed values instead. The

PAV-transformed LR values are optimized to achieve the minimum value of the log-likelihood ratio

cost while still maintaining the rank ordering of the untransformed values. Hence, the transformed

LRs have the same level of discriminatory power as the untransformed LRs, but their magnitudes

will differ. Ccal
llr denotes the calibration loss, which measures the difference in the log-likelihood

Table 5. Extreme likelihood ratio values expressed as percentages by dataset, amount of data, and same ver-
sus different source. For example, in the email dataset, 24.4% of the LR values for same-source pairs with a
low amount of data (defined as in Figure 8) were extremely large. Percentages corresponding to extreme
contrary-to-fact LRs are shown in bold

Same source Different source

LR < 10�10 LR � 1010 LR < 10�10 LR � 1010

Email, K ¼ 945

Low 0.0% 24.4% 0.0% 0.0%

Mix 0.0% 76.2% 6.0% 1.1%

High 0.0% 100.0% 62.5% 3.3%

Geolocation, K ¼ 1412

Low 0.0% 0.0% 0.0% 0.0%

Mix 0.0% 0.0% 0.0% 0.0%

High 0.0% 32.2% 0.2% 0.4%

App, K ¼ 159

Low 0.0% 67.0% 50.0% 3.9%

Mix 11.1% 75.0% 78.6% 2.9%

High 42.9% 53.6% 100.0% 0.0%
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ratio cost resulting from how far the magnitudes of the untransformed LRs are from the optimal

PAV-transformed values.

From Table 6, it can be seen that both the email and geolocation datasets produced log-likelihood

ratio cost values less than 1, with lower costs when using the informative prior. For all three data-

sets, much of the Cllr can be attributed to the cost due to miscalibration (Ccal
llr ); the log-likelihood

ratio cost results for the app dataset, in particular, are quite glaring. This may indicate that for the

app data the multinomial model is especially inappropriate. For example, the model might not suffi-

ciently account for variability in individual behaviour over time, which is supported by the large

number (42.9% in Table 5) of extremely small LR values (contrary to fact) for same-source pairs

with high amounts of data. We discuss these limitations and potential directions for handling these

issues in the discussion section below.

8. Discussion

A feature of the categorical-multinomial modelling approach we investigated in this article is that

the likelihood ratio is available in closed form, allowing for easy computation, supporting analysis

and interpretation (such as how changes in various quantities impact the resulting likelihood ratio).

For example, in a particular investigation, for a fixed set of event categories and prior settings, one

could calculate multiple LRs under a variety of possibilities for the evidence to better understand its

potential behaviour in the context of that investigation. This would be useful, for example, in analy-

sing the potential effects of imbalances between the concentration parameter and the amount of

data, as was observed with our experimental choices with the geolocation and app datasets.

In this article, we focused on particular examples of count data related to digital evidence, but the

methodology is broadly applicable to count data in general, whether in the context of digital evi-

dence or more broadly in forensic investigations in general. Relevant case-specific circumstances

should be used to justify the choices for the relevant population (Section 2.2), the event categories

(Section 4.3.3), and the prior distribution (Section 5). As discussed earlier, these choices can have a

strong influence on the resulting likelihood ratios and should be carefully considered on a case-

specific basis.

Table 6. Log-likelihood ratio cost results. The log-likelihood ratio cost (Cllr) can be decomposed into the
cost due to discrimination (Cmin

llr ) and the cost due to calibration (Ccal
llr ). Smaller values of Cllr indicate better

performance. An LR system that always returns a value of 1 for the LR would give Cllr ¼ 1

Cllr Cmin
llr Ccal

llr

Email, K ¼ 945

Non-informative 0.791 0.214 0.577

Informative 0.603 0.194 0.408

Geolocation, K ¼ 1412

Non-informative 0.778 0.482 0.297

Informative 0.771 0.475 0.296

App, K ¼ 159

Non-informative 113.488 0.556 112.932

Informative 140.266 0.622 139.644
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The results from the experiments with the three real-world datasets suggest that while the count-

based multinomial model is able to capture useful information in terms of discrimination (Table 3),

the magnitudes of the resulting likelihood ratios have weak performance in terms of calibration

(Tables 5–6). One approach that has been proposed to address miscalibration is through post-hoc

calibration methods that adjust the resulting likelihood ratios themselves (e.g. Morrison (2013)).

However, it may also be prudent in this case to address calibration by improving upon the count-

based model itself. To this end, we identify and discuss three limitations of the model below.

First, individual human behaviour can be highly variable over time, i.e. a user’s behaviour can

(and likely will) change over time for a number of different reasons. The same user’s behaviour

could appear to be completely different in two different time windows, or two different users could

appear to have similar behaviour patterns. The proposed model does not take into account this time-

varying aspect of users’ behaviour on their devices because the probability vectors h are assumed to

be constant through time. Future work could take into account deviations from these static event

probabilities, e.g. where users have daily or weekly fluctuations in their behaviour but tend to return

to the same core behaviour, or where users drift in their behaviour over time.

Second, as mentioned in Section 2.3, the multinomial distribution imposes a strong memoryless

assumption on the data in which the events are assumed to be independent. Because of this, depend-

ent behaviour between events is not be captured by the multinomial model. For example, consider

the situation in which one user has the sequence of events A, B, C, A, B, C, and the other user has

the sequence B, A, C, B, A, C. The multinomial model treats these two as identical sets of counts,

even though the sequences are quite different. In the case of geographic data, for example, if some-

one visited a particular census block group that person may be more likely to visit neighbouring

census block groups. Further exploration to account for different kinds of event dependence in the

model, such as sequential or spatial, is an avenue for future work.

Third, recall from Section 4.3.3 that an excess of shared zero counts in the event categories leads

to larger likelihood ratios under the proposed model. Having a large amount of shared zero counts

could be a consequence of considering irrelevant event categories, but it may also be an identifying

feature of the source or arise from expected sparsity in the data rather than from meaningful similar-

ities between the two sets of observations. The proposed model currently handles shared zero counts

implicitly in the calculation; the categories’ inclusion in the concentration parameter leads to an

increased likelihood ratio. A future direction of this work, however, could be to explore extensions

or alternatives to the proposed model which explicitly incorporate sparsity and investigate their the-

oretical properties in a similar manner as we have done for the multinomial model here.

These limitations that we have highlighted generally arise from behaviours that the count-based

multinomial model cannot capture. Similar limitations with count-based models have been observed

elsewhere in forensics, e.g. uncaptured variance (overdispersion) in authorship attribution analyses

(Ishihara and Carne, 2022). Addressing these limitations that we have pointed out will help better

take into account the variability in behaviour and may improve the calibration performance by mak-

ing the likelihood ratios more conservative.

Beyond the model’s limitations, we return to our earlier point that there is relatively little existing

work on the statistical analysis of user-generated event data in forensics. As such, further study into

the potential implications and consequences of using such data in forensics is recommended before

statistical methods for analysing this data, including the one discussed in this article, are ready for

use in forensic practice.
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9. Conclusion

In this article, we develop a likelihood ratio-based technique for the statistical forensic analysis of

categorical count data. We provide a closed-form solution for the likelihood ratio under our pro-

posed model and illustrate how the resulting likelihood ratio is impacted by the amount of data in

the evidence, the determination of events that are of forensic interest, and the choice of the prior

used for Bayesian computation. Our approach is particularly relevant to digital forensics in which

investigators wish to analyse logs of user actions generated on a digital device. Relatively few statis-

tical methods have been developed for the forensic analysis of such data; however, with the prolifer-

ation of digital devices, the development of such methods is only likely to grow increasingly

important. To this end, we demonstrate the potential efficacy of our approach through computation-

al experiments on three datasets relevant to digital forensics. The results from these experiments

suggest that the proposed methodology provides a useful starting point for the statistical forensic

analysis of user-generated event data in digital forensics; however, further work is necessary before

this method can be applied in practice.
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Appendix A. Derivation of likelihood ratio under the model

Below is the general Bayes theorem set-up for the likelihood ratio.

PðHsjr1; r2Þ
PðHdjr1; r2Þ

¼ Pðr1; r2jHsÞ
Pðr1; r2jHdÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
likelihoodratio

PðHsÞ
PðHdÞ

Using the assumptions described in Section 2.3, we would like to derive the formula for the

likelihood ratio, LR.

LR ¼
Ð

Pðr1; r2jHs; h1ÞPðh1jHsÞdh1Ð Ð
Pðr1; r2jHd; h1; h2ÞPðh1; h2jHdÞdh1dh2

¼
Ð

Pðr1; r2jHs; h1ÞPðh1Þdh1Ð Ð
Pðr1jHd; h1ÞPðr2jHd; h2ÞPðh1ÞPðh2Þdh1dh2

¼
Ð

Pðr1; r2jHs; h1ÞPðh1Þdh1Ð
Pðr1jHd; h1ÞPðh1Þdh1

Ð
Pðr2jHd; h2ÞPðh2Þdh2

Let Bð:Þ denote the multivariate beta function, which is defined as

BðaÞ ¼

QK
k¼1

CðakÞ

C
PK
k¼1

ak

 ! (11)

where CðakÞ ¼
Ð1

0
xak�1e�xdx is the gamma function. Focusing on the first term in the denomin-

ator first, we have

Ð
P r1jHd; h1ð ÞP h1ð Þdh1 ¼

Ð � N1

r11; r12; . . . ; r1K

� �YK
k¼1

hr1k

1k

� 1

BðaÞ
YK
k¼1

hak�1
1k

 !
dh1

¼ N1

r11; r12; . . . ; r1K

� �
1

BðaÞ

ðYK
k¼1

hr1kþak�1
1k dh1

¼ N1

r11; r12; . . . ; r1K

� �
Bðaþ r1Þ

BðaÞ

ð
1

Bðaþ r1Þ
YK
k¼1

hr1kþak�1
1k dh1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

integral of Dirichletðaþr1Þ

¼ N1

r11; r12; . . . ; r1K

� �
Bðaþ r1Þ

BðaÞ

Similarly, for the other terms we have
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Ð
P r2jHd; h2ð ÞP h2ð Þdh2 ¼

N2

r21; r22; . . . ; r2K

� �
Bðaþ r2Þ

BðaÞÐ
P r1; r2jHs; h1ð ÞP h1ð Þdh1 ¼

N1

r11; r12; . . . ; r1K

� �
N2

r21; r22; . . . ; r2K

� �
Bðaþ r1 þ r2Þ

BðaÞ

Then this gives for the likelihood ratio

LR ¼ Bðaþ r1 þ r2ÞBðaÞ
Bðaþ r1ÞBðaþ r2Þ

:

Appendix B. Derivation for alternative formula under equal priors assumption

In this section, we will derive the alternative formula in Equation (6).

LR ¼ Bðaþ r1 þ r2ÞBðaÞ
Bðaþ r1ÞBðaþ r2Þ

(12)

¼

YK
k¼1

Cðak þ r1k þ r2kÞ

Cð
XK

k¼1

ðak þ r1k þ r2kÞÞ

YK
k¼1

CðakÞ

Cð
XK

k¼1

akÞ

�
Cð
XK

k¼1

ðak þ r1kÞÞ

YK
k¼1

Cðak þ r1kÞ

Cð
XK

k¼1

ðak þ r2kÞÞ

YK
k¼1

Cðak þ r2kÞ

¼

YK
k¼1

Cðak þ r1k þ r2kÞ

Cðcþ N1 þ N2Þ

YK
k¼1

CðakÞ

CðcÞ
� Cðcþ N1ÞYK

k¼1

Cðak þ r1kÞ

Cðcþ N2ÞYK
k¼1

Cðak þ r2kÞ

(13)

¼

YK
k¼1

Cðak þ r1k þ r2kÞ

YK
k¼1

Cðak þ r1kÞ

YK
k¼1

CðakÞ

YK
k¼1

Cðak þ r2kÞ

�Cðcþ N2Þ
CðcÞ

Cðcþ N1Þ
Cðcþ N1 þ N2Þ

(14)
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¼
YK

k¼1;r2k�1

Yr2k�1

s¼0

ak þ r1k þ s

ak þ s

0
@

1
A YN2�1

s¼0

cþ s

cþ N1 þ s

 !

¼
YK

k¼1;r2k�1

Yr2k�1

s¼0

1þ r1k

ak þ s

� �0
@

1
A YN2�1

s¼0

1� N1

cþ N1 þ s

� � ! (15)

where c ¼
PK
k¼1

ak. The penultimate line (15) follows from the following results:

• Cðak þ r1k þ r2kÞ ¼ Cðak þ r1kÞ
Qr2k�1

s¼0

ðak þ r1k þ sÞ

• Cðak þ r2kÞ ¼ CðakÞ
Qr2k�1

s¼0

ðak þ sÞ

• Cðcþ N2Þ ¼ CðcÞ
QN2�1

s¼0

ðcþ sÞ

• Cðcþ N1 þ N2Þ ¼ CðcÞ
QN2�1

s¼0

ðcþ N1 þ sÞ

which all arise from the fact that �ðxþ 1Þx�ðxÞ for x 2 R, which is a general property of
gamma functions.

Note that the LR in Equation (12) is symmetric in r1 and r2. As pointed out in Section 4.3.1,
this implies the existence of another equivalent formula. Starting with Equation (13), this formula
can be derived as follows:

LR ¼

YK
k¼1

Cðak þ r1k þ r2kÞ

YK
k¼1

Cðak þ r2kÞ

YK
k¼1

CðakÞ

YK
k¼1

Cðak þ r1kÞ

�Cðcþ N1Þ
CðcÞ

Cðcþ N2Þ
Cðcþ N1 þ N2Þ

(16)

¼
YK

k¼1;r1k�1

Yr1k�1

s¼0

ak þ r2k þ s

ak þ s

0
@

1
A YN1�1

s¼0

cþ s

cþ N2 þ s

 !

¼
YK

k¼1;r1k�1

Yr1k�1

s¼0

1þ r2k

ak þ s

� �0
@

1
A YN1�1

s¼0

1� N2

cþ N2 þ s

� � !
:

(17)

Equations (14) and (16) are two different groupings of the factors that result from plugging in
for the definition of each of the multivariate beta functions. Again applying the properties of
gamma functions gives Equation (17) and the final result.
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