Abstract

Why is there so much non-neutral genetic variation segregating in natural populations? We dissect function and evolution of a near-cryptic quantitative trait locus (QTL) for defense metabolites in Arabidopsis using the CRISPR/Cas9 system and nucleotide polymorphism patterns. The QTL is explained by genetic variation in a family of four tightly linked indole-glucosinolate O-methyltransferase genes. Some of this variation appears to be maintained by balancing selection, some appears to be generated by non-reciprocal transfer of sequence, also known as ectopic gene conversion (EGC), between functionally diverged gene copies. Here we elucidate how EGC, as an inevitable consequence of gene duplication, could be a general mechanism for generating genetic variation for fitness traits.

Information Accepted manuscripts
Accepted manuscripts are PDF versions of the author’s final manuscript, as accepted for publication by the journal but prior to copyediting or typesetting. They can be cited using the author(s), article title, journal title, year of online publication, and DOI. They will be replaced by the final typeset articles, which may therefore contain changes. The DOI will remain the same throughout.
This content is only available as a PDF.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact [email protected] for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact [email protected].
Associate Editor: Michael Purugganan
Michael Purugganan
Associate Editor
Search for other works by this author on:

Supplementary data